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Let F be a finite Riemann surface, i.e., one which is either compact or

bounded by a finite number of boundary contours Y. By a quadratic differen-

tial on V is meant an expression df2 which, relative to a local uniformizer z,

has the form

df2 = h(z)dz2,

where h(z) is an analytic function depending on the uniformizer so that df2

is independent of the uniformizer. Thus in terms of another local uniformizer

w

/ dz\2
df2 - *(*)(-) dw2.

\dw /

The differential df2 is said to have a pole of order k at a point p if h has a

pole of order k there. The point p is often referred to as a pole of df2. If df2 is

non-negative on the contours Y, then df2 is called a quadratic differential of

V, every quadratic differential on a compact surface being a quadratic differ-

ential of the surface. A curve along which df2 is positive is called a trajectory

[3]ofdf2.
It is known [7 ] that if Vi is a subregion of V with the property that there

are no mappings of Vi into V which are arbitrarily close to the identity map-

ping of Vi into V, then V\ must be a dense subregion of V whose boundary

relative to V consists of slits along which some quadratic differential df2 of

V is non-negative. The principal result of this paper is the proof of a strong

form of the converse of this fact, a proof that under the proper conditions

there are not only no conformai mappings near the identity but no con-

formal mappings which are homotopic to the identity. More precisely we have

the following theorem.

Theorem. Let df2 be a quadratic differential of a finite Riemann surface V,

and let Vi be a dense subregion of V bounded by a finite number of arcs along

which df2 is non-negative and containing in its interior all the multiple poles of

df2. Then the identity is the only conformai mapping f of Vi into V which has all

of the following properties:

(i) there is an interior point of Vi which is a fixed point off;

(ii) the poles of dp which lie in V\ are fixed points of f, and near a pole of
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order k^2 the mapping has the form

fiz) = z + azh + • • •

in terms of a uniformizer z at the pole;

(iii) on Ví there is a deformation in V off into the identity mapping of V{

into V, where the primes indicate surfaces formed by removing the points at

which df2 has poles.

The special case in which F is a sphere and df2 has a pole at a single point

arises in the coefficient problem for schlicht functions. It is a consequence of

the Teichmüller lemma [9], and shows the uniqueness of the extremal func-

tions. The special case in which all poles are simple arises in the interpolation

problem for schlicht functions [5] and again serves to prove the uniqueness of

the extremal functions. In the interpolation problem this uniqueness has im-

portant consequences.

Condition (i) of the theorem is redundant where there are poles in the

interior of F2. However, from the case in which F is a torus and V\ a region

on it bounded by a piece of a trajectory of one of the Abelian differentials of

V, this condition is seen to be necessary in the absence of poles. A more com-

plicated example shows that the fixed point requirement cannot be omitted

for surfaces of Euler characteristic other than zero either, although the pairs

V and Fi for which the theorem fails without it are in a sense degenerate.

The proof of the theorem is a modification of the length area principle of

Grötzsch [2], but is extremely simplified by the use of the uniqueness of

geodesies on saddle surfaces.

The theorem is proved by a series of lemmas. We introduce a metric by

defining the length of a curve a to be

f 1*1.
J a

and the distance between two points to be the greatest lower bound of the

lengths of all curves joining them. A spheroid of radius e about a point p

is the set of all points whose distance from p is less than e.

Lemma 1. We may choose the deformation <f>ip, t) of f to the identity so that

the lengths of the curves {0(z, t):0¿t^l} are 0(|z|*/2) uniformly in terms

of a fixed uniformizer z at a kth order pole of df2 which lies in the interior of Vi.

Proof. Let p* be such a pole and let

r.v[ XI-+V'

be the given deformation of /, and let W be the universal covering surface

of V", the surface formed by deleting from F all poles of df2 other than p*.

Taking a point p' E W which covers £* we form the universal covering surface
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W of W punctured at all points lying over p* except p'. Let w be a uni-

formizer mapping W onto the unit circle \w\ <1 so that the point w = 0 lies

over p*.

If U is a simply connected neighborhood of p*, there is a unique con-

formal mapping g of U onto a region Ü of W such that gip*)=0 and the

projection of gip*) is p. Upon a little reflection it can be seen that \¡/ defines a

mapping

$: Ü X I-+W

with the property that the projection to V" of íp o g is t¿\ Similarly the map-

ping / defines a conformai mapping f oí 0 into IF.

Choosing r so small that the circle K: {\w\ ^r} lies in U and taking

r' <r, we define a mapping

4>:K X /-»IF

as follows:

<£(w, 0 = tw + (1 - /)/(w)

for \w\ <ru and

_ r — \ w\   . _      ,        I w I — r' ~
*(w, /) =-—- [tw + (1 - /)/(»)] +-— *(w, I)

r — r r — r

for r'^ | w| ^r. Clearly <f> is continuous in KX.I and agrees with ^ on the

boundary of KXl- Thus the function defined on V"XI as the projection of

0 o g in the projection of KXl and as ^ elsewhere is continuous. Since/ has

the form

/(w) = w + a'wk + • • • ,

and df2 has the form

f-T + • • • ) ¿w2'
\ w* /

the dfMength of the curve {$(w, /):0^/^l} is uniformly Oi\w\kl2). The

curve [<j>iz, /) :0^i ^ 1} is the projection of this and has the same length.

Since projection is a conformai mapping, this length is uniformly 0(|z]*/2).

Repeating this process for the other poles of df2 completes the proof of

the lemma.

Lemma 2. Without loss of generality we may assume that df2 has no simple

poles.

Proof. Lemma 1 shows the deformation <j>ip, t) to have the property that

as p approaches a simple pole p* in the interior of Fi we have (bip, t)-+p*.
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Let F be a two-sheeted covering surface i1) of F which has simple branch

points at the simple poles of df2. On V, df2 becomes a differential without

simple poles, and there is a dense subregion Vi on F bounded by pieces of

trajectories of df2. The mapping/defines a conformai mapping /of Vi into V

satisfying the hypotheses of Theorem 1, since <f>ip, t) defines a deformation of

4> to the identity in F punctured at the multiple poles of df2. But the conclu-

sion of Theorem 1 for/implies the same conclusion for/.

Thus for the remainder of the proof we assume that df2 has no simple

poles. We say that two arcs are homotopic if they have the same beginning

and end points and are homotopic in V.

It is a routine matter to give a triangulation of V such that the function

f = f idp)m

maps each triangle into a unique (except for translation and reflection)

Euclidean triangle in the f-plane. Moreover, the sum of the angles at a vertex

of the triangulation is not less than 2x. By a geodesic is meant a curve y

which is a straight line in each triangle and which has the property that at

any point of y the angle sum on each side of y is not less than x. If a point of

7 is a boundary point of V, the angle sum at that point is defined on only one

side of 7, but y is still called geodesic if the angle sum on that side is not

less than x.

Lemma 3. In each homotopy class of curves joining two points together there

is a unique geodesic, and it has shorter length than any other curve in the

homotopy class. Also there is a unique geodesic in each nontrivial homotopy class

of curves joining a point with itself.

Proof. Let p and q be the points, and let p and q be points lying over

them on the universal covering surface of V and such that an arc joining

p and q projects into an arc belonging to the proper homotopy class. There

are only a finite number of triangles of the covering surface which contain

points closer to p than q is. Hence there is a simply-connected region Í2 on the

covering surface containing only a finite number of triangles and containing

all points as close to p as q is. Since ß is now a simply-connected saddle poly-

hedron, there is(2) by Theorem 1 of [8] a unique geodesic (of ß) joining p and

q, and it is shorter than any other arc joining p with q. Since the boundary of

Í2 relative to the universal covering surface of V is farther from p than the

length of this geodesic, this geodesic does not meet the boundary of £2 and

thus projects into a geodesic on V. Similarly for nontrivial homotopy classes

(') If V is compact and áf2 has an odd number of simple poles, then we may first take an

unbranched two-sheeted covering surface of V and let F be a two-sheeted covering surface of

that.

(2) The method used in [8] was already invented by Teichmüller in [9].
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of arcs joining a point with itself.

Since every trajectory is a geodesic, it must have shorter length than any

path homotopic to it. Hence we have the following lemma.

Lemma 4. Let abe a piece of a trajectory o/df2. Then for any arc ß homotopic

to a we have

f l*Uf 1*1.
J ß Ja

with equality only if ß is a.

Lemma 5. If K is a compact subset of the interior of Vi, then there is a con-

stant lo = hiK) such that for each pEK there is an arc yp of length less than lo

and with the property that the arc yP+fia) — yq is homotopic to a for any arc a

lying in Vi and having end points p, qEK-

Proof. Let 6P be the curve {(bip, t) :0^¿g 1}. Then dp+fia) -Bq is homo-

topic to a. Let yP be the geodesic homotopic to 6P. Then yP+fia) —yq is

homotopic to a, and it suffices to show that the length lip) of yp is bounded

for pEK. Lemma 1 shows that / is bounded near the poles of df2. Thus we

need only show that / is continuous in K(~\ V.

Given pEKCW, let U be a spheroid about fip) whose diameter is less

than e and so small that U is simply-connected, and let Z/i be a spheroid

about p whose diameter is less than e and so small that /( Ui) C U. For

qEUi the geodesies n and rj* which join q with p and/(g) with/(£), respec-

tively, lie in Ui and Ui, respectively, and have lengths less than e. Since Ui

is simply connected, n* is homotopic tofirj), and we have

yP — n* - 7S + v

homotopic to zero. By the minimal length property of yp and yq we have

| lip) - liq) | < 26.

Thus lip) is continuous and the lemma follows.

Lemma 6. Let M be a measure space with finite measure, E a measurable

subset of M, and T a measure preserving transformation of M onto itself. Then

for almost all points xEE, Tnx belongs to E for arbitrarily large positive and

negative values of n.

Proof. Without loss of generality we may assume that T is metrically

transitive, for otherwise M decomposes into a countable number of sub-

spaces on each of which T is metrically transitive. We may also assume mE

>0. With T metrically transitive the lemma is a simple consequence of the

ergodic theorem (cf. [4, p. 49]). For, letting x(x) be the characteristic func-

tion of E, we see by the ergodic theorem that for almost all xEE
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1   » miE)
iim-Ex(r-*) =-hr>o,

N n=0 m(M)

which would be impossible were Tnx to belong to E for only a finite number

of n. Similarly for negative values of n.

Choosing a fixed set of uniformizers, one for each pole of df2, we denote

by V, the region obtained by deleting a circle of radius e about each pole of

df2 relative to the fixed uniformizer there.

Considering / as a mapping from the f-plane to the f-plane, we use /' to

designate its derivative. Thus /' is uniquely defined except for sign at each

point of Fi, and for any region QCFi

ff   l*l*-ff l/N*l'.
J   J /(Q) tJ   J fi

while for any arc a lying in Fi

r i*i-/i/i
t¡ /(a) J a

*

We define a measure space M the elements of which are directed hori-

zontal line segments lying in some one of the triangles of Fi which meet

V,. We require the end points of one of these line segments to be either on

an edge of the triangle containing it or else on the boundary B of V, relative

to V. If E is a subset of M lying in a single triangle, we define ve(v) to be the

number of elements of E which project into r\ (counting, of course, a line

segment directed from right to left as distinct from the same segment di-

rected from left to right). The function ve(i]) is bounded since both B and

the sides of the triangle are analytic arcs on F. We call E measurable if vg

is and define the measure of E by

-/
m(E) - I vB(v)dri.

This measure extends to arbitrary subsets of M by additivity.

Lemma 7. We have

ff   \f\\<%\2^ff   |df|2 + 0(e).

Proof. Each element of M is a piece of a directed trajectory of df2. As we

prolong the trajectory in the given direction we either come to a zero of df2,

come to the boundary of Fi, come to B, or are able to prolong the trajectory

indefinitely. This leads us to partition the elements of M into the five sub-

sets Mo, Mi, Mi, Mi, Mi accordingly as the element is part of a trajectory
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which passes through a zero of df2 or comes to the boundary of Fi, which

begins and ends on B, which begins on B but has no end, which ends on B

but has no beginning, or which has neither beginning nor ending. Since

Mo is countable, it has measure zero.

On M we define two non-negative measurable functions

g(x) = r i df i
J  X

and

h(x) - r i/'iidfi.
J X

Now

J   J V, I   t) M

and

ff l/'IUfl2 = 4f *(*)•
Thus proving the lemma is equivalent to proving

r *(*) ̂ r g(x)+o(e).
J M J M

Letting M' consist of those elements of M which neither belong to M0 nor

end on B, we define a one-to-one transformation

T-.M'^-M

which takes an element x of M' into that element of M which follows x on

the directed trajectory of which x is a part. Since T is piecewise linear on a

natural representation of M, it is measure preserving.

The set Mi is the union of the disjoint subsets M(p*, q*) consisting of those

x lying on trajectories beginning on Kp-, the circle of B enclosing the pole p*,

and ending on Kq>, the circle enclosing the pole q* (not necessarily distinct

from p*). Assume that p* is a pole of order k and q* a pole of order not less

than k. Let E be the set of those xEM(p*, q*) which begin on the circle Kp:

Then

»(£) g  f    | Im df | g  f    | df | = CKe1-*'2).
J Kp' J Kp'

Let Eo consist of those xEE which end on Kq: The transformation T

is defined on E — E0, and for each xEE — Eo there is some positive integer n
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such that Tnx ends on Kq: Denote the set of x having this property for a

given n by En. The En are all measurable, being in fact countable unions of

intervals in a natural representation of M. For xEEn, the segments

x + Tx + ■ ■ ■ + Tnx

form a geodesic a beginning on Kpt and ending on Kq: Its length is

g(x) + g(Tx) + ■ ■ ■ + g(T'x),

while the length of f(a) is h(x)+h(Tx)+ ■ ■ ■ + h(Tnx). If p and q are the end

points of a, then by Lemma 1 the curves 9P= {(j>(p, t):0^t^l} and 0q

= {(j>(q, t):0^t^l\ have lengths which are uniformly 0(ek/2) and have the

property that Bp+f(a)—9q is homotopic to a. Thus by Lemma 4

/[/(«)] ^ l[a] + 0(*k>2),

where /[ ] denotes "length of." Thus

E g(T*x) è ¿ *(r**) + 0(ek'2)
1=0 i_0

uniformly in x. Integrating over En and remembering that T is measure pre-

serving,

f ,      g(x) á  r .      *(*) + m(En)0(tk'2)
J Ur>gn J Ur'\B„

uniformly in w. Since

M(p*, q*) =   U     U   T'£n,
n=0     £=0

we have

f g(ic) ̂   f h(x) + m(E)0(ek'2)
J M(p',q') J M(p*, 5*)

or

r   g(») ^ r    ä(*)+o(«).
«'A/(p*,î*) J M(.P'.q'l

We dispose similarly of the case in which the order of q* is less than that

of p*. Adding over all possible combinations of poles, we have

f   g(x) S  f
J Mi J Mi

h(x) + 0(e).
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The transformation J" is a measure preserving mapping of the set Mi into

itself, and so by the ergodic theorem the averages

1       N
g(x) =   lim —— E g(T"x)

i\r->» N + 1 „_o

and

hix) =   lim ——- E HT'x)
AT-*» N +  1 „_o

exist for almost all x£Af2.

Let K be a finite collection of (compact) arcs lying in the interior of V, and

having the property that the length of the projection on the rç-axis of those K

lying in a triangle differs from the length of the projection of the triangle by

less than 5 divided by the number of triangles meeting V,. Let E be the set of

xEMi which intersect K. Then the measure of Mi — E is less than 25. By

Lemma 6 there are, for almost all xEE, arbitrarily large values of N for

which TNxEE. Let r be a piece of trajectory which begins at an intersection

of x with K and ends with an intersection of TNx with K. Then

/He ¿i(2"*).
n-l

Also

/[/«] Ú E hiT'x).
n-0

From Lemmas 4 and 5

l[r] á l[fir)] + 2/o

where h is the constant of Lemma 5 and depends only on K, not on N. Thus

Ê g(T"x) á E *(r"*) + 2io,
n—1 n—0

whence

for almost all xEE, and, since 5 was arbitrary, for almost all xEMi. By the

ergodic theorem

I    g(x) =  I    i(«)    and      |    A(*) =  I    hix).
J Mi J M, J M, J M,

Hence
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f   g(x) ^   f    *(*).
J M. J M.'M,

Similarly for Ms and Mit proving the lemma, since M0 has measure zero and

contributes nothing.

Lemma 8. // |/'| is not constant on Vi, there is a constant ô>0 such that for

all sufficiently small e

ff    Ufl2> ff Mr I2+ 5.
J J fiy,) J J re

Proof. If l/'l is not constant, then there are regions Qi and ß2 both of

measure greater than some positive h on which |/'| >M and |/'| <m, re-

spectively, with M>m. If e is so small that V, contains ßi and Q2, then by

an elementary sharpening of the Schwarz inequality

//¡rl'l*r-//l*r

all integrals being over V,. By Lemma 7

JJ|/'||df|2eJJ|df|2 + 0(e),

whence

Thus

Since

{//l/ll«l'}'ï{//l#l"}'+{//l*lfo(.).

// |/'N¿f|2a// \dï\2 + -(M-m)2 + 0(e).

ff    l/'|2Ur|2=   ff       |df|2,
J J v J J f(V 1V« ^   >> /(F.)

we have

^|df|2^  ff    |df|2+5
f<y,3 J J ve

for all sufficiently small e, proving the lemma.
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Lemma 9. We have \f'\ identically constant on V\.

Proof. Near a pole p* of order k the symmetric difference of V, and/(F€)

is contained in an annulus of radius 0(e) and width 0(ek) in the z-plane. Thus

the total f-area of this symmetric difference is 0(e) since dC2 = dz20(e~k). Thus

ff   Ufl2= ff     1*1*+ o(0.
J J ve J J }<y,)

This and Lemma 8 imply the present lemma.

Lemma 10. The mapping f is the identity.

Proof. If df2 has a multiple pole, /' must be identically one near the pole

since it is constant in a neighborhood of the pole (|/'| being constant there)

and approaches one as we approach the pole. Thus / is the identity near the

pole and must be the identity everywhere on Fi by analytic continuation.

Suppose, on the other hand, that df2 is everywhere regular. Then in the

neighborhood of the fixed point p oí f we have

| f'(z) | = const.

or

f(z) = cz

where z is that uniformizer at p which is of the form

«- [f-f (JO h

Since/ is a linear mapping (in terms of f) in the neighborhood of each point,

it takes geodesies into geodesies. Since df2 is regular, Fi cannot be simply

connected, and so there is by Lemma 3 a nontrivial geodesic y joining p

with itself. Since y is unique in its homotopy class, f(y) must be y, and conse-

quently 7 and f(y) have the same length, and thus the constant value of

|/'| is one. There must now be a point q in the interior of y for which/(g) =q.

Let y' be a geodesic from p to q. Since f(y') =y', the direction of y' at p is

preserved by/. Thus

f(z) = z

near p, and so / is the identity everywhere on  Fi by analytic continuation.

Bibliography

1. L. Ahlfors and A. Beurling, Invariants conformes et problèmes extrêmaux, Dixième Con-

grès des Mathématiciens Scandinaves, 1946.

2. H. Grötzsch, Über die Verzerrung bei schlichter konformer Abbildung mehrfach-zusam-

menhängender schlichter Bereiche, Berichte über die Verhandlung der Sächsichen Akademie der

Wissenschaften zu Leipzig. Mathematisch-physiche Klasse vol. 83 (1931) pp. 283-297.



1954] CONFORMAL RIGIDITY OF CERTAIN SUBDOMAINS 25

3. J. A. Jenkins and D. C. Spencer, Hyperelliptic trajectories, Ann. of Math. vol. 53 (1951)

pp. 4-35.
4. E. Hopf, Ergodentheorie, Berlin, 1937.

5. H. L. Royden, The interpolation problem for schlicht functions, to appear.

6. A. C. Schaeffer and D. C. Spencer, Coefficient regions for schlicht functions, Amer. Math.

Soc. Colloquium Publications, vol. 35, 1950.

7. M. Schiffer and D. C. Spencer, Functionals of finite Riemann surfaces, Princeton, 1952.

8. M. Shiffman, On the isoperimelric inequality for saddle surfaces with singularities, Cou-

rant Anniversary Volume, New York, 1948, pp. 383-394.

9. O. Teichmüller, Ungleichungen zwischen den Koeffizienten schlichter Funktionen, Preuss.

Akad. Wiss. Sitzungsber. (1938) pp. 363-375.
10. -, Extremale quasikonforme Abbildungen und quadratische Differentiale, Abhand-

lungen Preussischen Akademie der Wissenschaften. Mathematisch-Naturwissenschaftliche

Klasse (1940) pp. 1-197.

Stanford University,

Stanford, Calif.


