SCHLICHT SOLUTIONS OF $W'' + \rho W = 0$

E

M. S. ROBERTSON

1. Introduction. Let

$$(1.1) z^2 p(z) = p_0 + p_1 z + \cdots + p_n z^n + \cdots$$

be regular for |z| < 1. For the differential equation

(1.2)
$$\frac{d^2W}{dz^2} + p(z)W = 0,$$

the origin is a regular singular point (or an ordinary point when p_0 and p_1 are both zero), and the indicial equation is

$$(1.3) \lambda^2 - \lambda + p_0 = 0,$$

with roots α and β , $\alpha+\beta=1$, $\Re\alpha\geq 1/2\geq \Re\beta$. Corresponding to the root α with the larger real part (or to either root if the real parts are equal), there exists a unique solution of the form

(1.4)
$$W = W(z) = z^{\alpha} \sum_{n=0}^{\infty} a_n z^n, \qquad a_0 = 1,$$

valid in the unit circle |z| < 1. Let F(z) be defined as

(1.5)
$$F(z) = \{W(z)\}^{1/\alpha} = z + \cdots,$$

where that branch of the function is chosen for which F'(0) = 1. In this paper we shall obtain sufficient conditions on p(z), of a fairly general nature, so that F(z) is schlicht in |z| < 1 (F(z) takes on no value more than once in the unit circle).

It will be observed immediately that every analytic function f(z), schlicht in |z| < 1,

$$f(z) = z + \mu_2 z^2 + \cdots + \mu_n z^n + \cdots,$$

satisfies an equation of the form (1.2) where

$$zp(z) = \frac{-zf''(z)}{f(z)}$$

is regular for |z| < 1. In this case, $p_0 = 0$ and $\alpha = 1$. It follows then, for the special instance $\alpha = 1$, that our sufficiency conditions on p(z) can be rephrased in terms of f(z) and f''(z) to give many new tests for an arbitrary analytic function f(z) for which f(0) = 0, f'(0) = 1, to be schlicht in |z| < 1.

Presented to the Society, September 3, 1953; received by the editors February 28, 1953.

A related problem was recently solved by Nehari [5], who showed that in the special case $p_0 = p_1 = 0$, $\alpha = 1$, no solution of (1.2) can take on the value zero more than once in |z| < 1, provided either

(i)
$$|p(z)| \le (1 - |z|^2)^{-2}, |z| < 1,$$

or

(ii)
$$|p(z)| \leq \pi^2/4, \qquad |z| < 1.$$

In either of these two cases the ratio of two independent solutions of (1.2) is schlicht in |z| < 1. The conditions (i) and (ii) may be replaced by

$$|p(z)| \le \begin{cases} 2^{3\lambda - 2} \pi^{2(1-\lambda)} (1 - |z|^2)^{-\lambda}, & \text{for } 0 \le \lambda \le 1, \\ 2^{2-\lambda} (1 - |z|^2)^{-\lambda}, & \text{for } 1 \le \lambda \le 2, \end{cases}$$

a refinement of Nehari's result due to Pokornyi [6]. A condition analogous to (ii) applied to analytic functions in a convex domain was obtained recently by Ryll-Nardzewski [8]. The problem at hand now, however, is to find sufficient conditions on p(z) so that certain individual solutions can take on no value more than once in |z| < 1 (even when p_1 is different from zero). The "Green's Transform" of (1.2), used so successfully by Nehari [5] and of fundamental importance in the earlier papers of Hille [1; 2; 4] on the existence of zero-free regions for solutions of (1.2), also plays an important role in this investigation.

Our aim is to derive a fairly general "parent" theorem, involving a somewhat arbitrary function $p^*(z)$, whose "offspring" will be theorems corresponding to each selected function $p^*(z)$. Each such $p^*(z)$ will have associated with it a universal constant $A = A(p^*)$ (often times a root of a transcendental equation) which will give a sharp character to the corresponding theorem. By varying $p^*(z)$ innumerable tests for the univalency of F(z) of (1.5) may be obtained. A few of these examples will be explored in §7 of this paper. Because of the length of a satisfactory and complete statement of the main theorem, we postpone this until the proof is at hand in §6.

2. Preliminary definitions. Let

(2.1)
$$f(z) = z + \mu_2 z^2 + \cdots + \mu_n z^n + \cdots$$

be regular for |z| < 1. We denote by S the class of functions f(z), f(0) = 0, f'(0) = 1, given by (2.1), which are schlicht, or univalent, in |z| < 1. Let $S(\gamma)$ be the subclass of S whose members f(z) satisfy, for some real constant γ ($|\gamma| \le \pi/2$) and |z| < 1, the inequality

$$\Re\left\{e^{i\gamma} \frac{zf'(z)}{f(z)}\right\} \ge 0.$$

It was shown by Špaček [9] that the inequality (2.2) is a sufficient condition

(when $f'(0) \neq 0$) for f(z) of (2.1) to be schlicht in |z| < 1. In general, a member of $S(\gamma)$ maps |z| < 1 onto a spiral-like domain. We shall call f(z) "spiral-like" if it is a member of $S(\gamma)$.

The subclass S(0) of $S(\gamma)$, corresponding to $\gamma = 0$, contains only those members of S which are star-like with respect to the origin. Each member f(z) of S(0) maps |z| < 1 onto a star-domain, one which has the property that every ray from the origin contains an open segment, from the origin to a boundary point, which lies entirely within the domain. We shall call f(z) "star-like" if it is a member of S(0). Every star-like function is also spirallike since $S(0) \subset S(\gamma)$.

We shall denote by K the subclass of S(0) whose members f(z) map |z| < 1 onto a convex domain, one which has the property that, if W_1 and W_2 are points within the domain, the line segment joining W_1 and W_2 lies entirely within the domain. It is well known that f(z), with f(0) = 0 and f'(0) = 1, is convex in |z| < 1 if, and only if, zf'(z) is star-like in |z| < 1. Since (2.2), with $\gamma = 0$, is both necessary and sufficient for f(z) to be star-like in |z| < 1, it follows (as is well known) that the necessary and sufficient condition that f(z) (with again f(0) = 0, f'(0) = 1) be convex in |z| < 1 is that

$$\Re\left\{1+\frac{zf''(z)}{f'(z)}\right\} > 0 \qquad \text{for } |z| < 1.$$

Another important subclass of S, to be denoted by K^* , is the class whose members f(z) are real on the real axis and each f(z) maps |z| < 1 onto a domain which is convex in the direction of the imaginary axis. This means that if W_1 is any point within the domain, then the line segment joining W_1 and its conjugate point \overline{W}_1 lies entirely within the domain. It is known that the necessary and sufficient condition for f(z) to belong to K^* is that zf'(z) = g(z) be typically-real for |z| < 1. Following Rogosinski [7] we say g(z) (g(0) = 0, g'(0) = 1) is typically-real for |z| < 1 if g(z) is regular in |z| < 1, is real on the real axis, and if the imaginary part of g(z) vanishes for |z| < 1 only when z is real. We shall speak of f(z) as being "convex in the direction of the imaginary axis" if it is a member of K^* .

Let f(z) be a member of S, and let Cf(z) (C any constant not zero) map |z| < 1 onto a simply-connected domain D. Let h(z) be regular in |z| < 1, and h(0) = 0. We shall say that h(z) is "subordinate" to Cf(z) in |z| < 1, and write

$$h(z) \prec \prec Cf(z)$$

whenever h(z) lies within D for all z, |z| < 1.

3. Green's transform. Following Hille [2], we adjoin to the differential equation

(3.1)
$$W'' + p(z)W = 0, \qquad \left(W'' = \frac{d^2W}{dz^2}\right),$$

the "Green's transform" of (3.1) obtained as follows. We multiply (3.1) by $\overline{W}dz$ and integrate from 0 to z, |z| < 1. This gives

(3.2)
$$\int_0^z \overline{W}(z)W''(z)dz + \int_0^z p(z) |W(z)|^2 dz = 0,$$

where p(z) is given as in (1.1) and W = W(z) is the solution (1.4), $\Re \alpha \ge 1/2$. For the present we shall assume $\Re \alpha > 1/2$ (the case $\Re \alpha = 1/2$ will be considered separately). Since $\Re \alpha > 1/2$ the integrals appearing in (3.2) exist. Integrating by parts, we obtain

$$(3.3) \qquad \left[\overline{W}(z) W'(z) \right]_0^z - \int_0^z |W'(z)|^2 dz + \int_0^z p(z) |W(z)|^2 dz = 0.$$

Let the path of integration in (3.3) be the straight line segment, $\theta = \text{constant}$, joining the origin to the point $z = re^{i\theta}$, r < 1. Now multiply (3.3) by $ze^{i\gamma}$ and equate the real part of the resulting equation to zero. We then have

(3.4)
$$|W(z)|^{2} \Re \left\{ e^{i\gamma} \frac{zW'(z)}{W(z)} \right\}$$

$$= r \cos \gamma \int_{0}^{r} |W'|^{2} d\rho - r \int_{0}^{r} \Re \left\{ e^{i\gamma} z^{2} p(z) \right\}_{|z|=\rho} \frac{|W|^{2} d\rho}{\rho^{2}},$$

where $\Re F(z)$ denotes the real part of F(z). The Green's transform, written in the form (3.4), will be of fundamental importance in the paragraphs to follow.

4. A fundamental inequality of integrals. Let

$$(4.1) z^2 p^*(z) = p_0^* + p_1^* z + \cdots + p_n^* z^n + \cdots$$

be regular for |z| < 1, real on the real axis, and $p_0^* \le 1/4$. If C is any non-negative constant, the differential equation

(4.2)
$$\frac{d^2W}{dz^2} + \left\{ C \left(p^*(z) - \frac{p_0^*}{z^2} \right) + \frac{p_0^*}{z^2} \right\} W = 0$$

has its indicial equation

$$(4.3) \qquad \qquad \lambda^2 - \lambda + p_0^* = 0$$

independent of C. Let α^* , β^* be the roots of (4.3). Since $p_0^* \le 1/4$, α^* and β^* are real and so we have $\alpha^* \ge 1/2 \ge \beta^*$, $\alpha^* + \beta^* = 1$, where

$$(4.4) 2\alpha^* = 1 + (1 - 4p_0^*)^{1/2}, 2\beta^* = 1 - (1 - 4p_0^*)^{1/2}.$$

Let

(4.5)
$$W_C = W_C(z) = z^{\alpha^*} \sum_{n=0}^{\infty} a_n^*(C) z^n, \qquad a_0^*(C) = 1,$$

be the unique solution of (4.2), corresponding to the real root α^* of (4.3), and depending upon the non-negative parameter C. The coefficients $a_n^* = a_n^*(C)$, all real, are determined from the recurrence relation

$$a_n^* = -\frac{C[p_n^* + p_{n-1}^* a_1^* + \dots + p_1^* a_{n-1}^*]}{n(n+2\alpha^*-1)}, \qquad n \ge 1.$$

From (4.6) it is readily seen that $a_n^*(C)$ is a polynomial in C of degree not exceeding n, and, in particular, a continuous function of C for $\alpha^* > 0$.

We shall show now that $W_c(z)$ is continuous in each of the three variables C, α^* , and z for $C \ge 0$, $\alpha^* > 0$, |z| < 1. If all the coefficients p_k^* , $k = 1, 2, \cdots$, in the expansion (4.1) are replaced by their absolute values, and if p_0^* is replaced by $\epsilon - \epsilon^2$, ϵ arbitrarily small and positive, we have a new function which we shall call $\tilde{p}(z)$ and

(4.7)
$$z^{2}\widetilde{p}(z) = \epsilon - \epsilon^{2} + \sum_{k=1}^{\infty} |p_{k}^{*}| z^{k}.$$

Let $C_0 > 0$ be chosen arbitrarily large. Then the differential equation

$$(4.8) \frac{d^2W}{dz^2} + \left\{ -C_0 \left(\tilde{p}(z) - \frac{\epsilon - \epsilon^2}{z^2} \right) + \frac{\epsilon - \epsilon^2}{z^2} \right\} W = 0$$

has the unique solution

(4.9)
$$\widetilde{W}_{C_0}(z) = z^{\epsilon} \sum_{n=0}^{\infty} A_n(C_0) z^n, \qquad A_0(C_0) = 1,$$

corresponding to the smaller root $\epsilon > 0$ of the indicial equation. Since $z^2 \tilde{p}(z)$ is regular in |z| < 1 whenever $z^2 p^*(z)$ is, the series for $\tilde{W}_{C_0}(z)$ converges for |z| < 1 for all C_0 . Moreover, the coefficients $A_n(C_0)$ are determined by the recurrence relation

$$(4.10) n(n+2\epsilon-1)A_n(C_0) = C_0[|p_n^*|+|p_{n-1}^*|A_1+\cdots+|p_1^*|A_{n-1}].$$

For $0 \le C \le C_0$, $\alpha^* > \epsilon > 0$, it is readily seen that the coefficients $a_n^*(C)$ determined by (4.6) satisfy

$$(4.11) \quad n(n+2\epsilon-1) \mid a_n^*(C) \mid < C_0 \left[\mid p_n^* \mid + \mid p_{n-1}^* a_1^* \mid + \cdots + \mid p_1^* a_{n-1}^* \mid \right],$$

(4.12)
$$|a_1^*(C)| < \frac{C_0 |p_1^*|}{2\epsilon} = A_1(C_0).$$

Thus

$$|a_n^*(C)| < A_n(C_0)$$
 for $n \ge 1, 0 \le C \le C_0, \alpha^* > \epsilon.$

Since the series $\sum_{n=0}^{\infty} A_n(C_0)z^n$ converges uniformly in z for |z| < R < 1, it follows that the series $\sum_{n=0}^{\infty} a_n^*(C)z^n$ converges uniformly in the three vari-

ables C, α^* , and z for $0 \le C \le C_0$, $\alpha^* > \epsilon > 0$, and |z| < R < 1. A similar statement holds for the derived series $\sum_{n=0}^{\infty} (n+\alpha^*)a_n^*(c)z^n$ if α^* is bounded above. Since the coefficients $a_n^*(C)$ are continuous functions of C and α^* and the series $\sum_{n=0}^{\infty} a_n^*(C)z^n$ converges uniformly in C, α^* , and z, it follows that $W_C(z)$ and its derivatives with respect to z are continuous functions of C, α^* , and z for $C \ge 0$, $\alpha^* > 0$, |z| < 1. Similar arguments apply to W(z) if $\Re \alpha > 0$ in (1.4).

Now that we are dealing with a function $W_c(z)$ continuous in C, and because, for $n \ge 1$, $a_n^*(0) = 0$, $a_0^*(0) = 1$, it is easily seen that

(4.14)
$$\lim_{C \to 0} W_C(z) = W_0(z) = z^{\alpha^*},$$

uniformly for $|z| \le R$ for any positive R < 1, and $W_0(z)$ is the solution of (4.2) when C = 0. By z^{α} we shall mean exp $(\alpha \log z)$, the principal branch of $\log z$ being chosen.

Although $W_C(z)$ is in general not single-valued in the neighborhood of the origin, the logarithmic derivative $W'_C(z)/W_C(z)$ is single-valued and has a simple pole at the origin. Since the coefficients are all real and $a_0^*(C) = 1$, $\alpha^* > 0$ in (4.5), it is seen that for each $C \ge 0$ we have

$$(4.15) W_C'(\rho) > 0 \text{for a range } 0 < \rho < r(C),$$

and for the same range at least we also have

(4.16)
$$W_{c}(\rho) = \int_{0}^{\rho} W_{c}'(\rho) d\rho > 0.$$

Thus

$$\frac{\rho W_{c}'(\rho)}{W_{c}(\rho)} > 0 \qquad \text{for } 0 \leq \rho < r \leq 1,$$

where for C fixed, r is the smallest positive zero of $W_c'(\rho)$ (as a function of ρ) or one, whichever is smaller. By taking C sufficiently small we may obviously have r as near to one as we like. We shall see later that, under certain restrictions (not very severe) on $p^*(z)$, by taking C = C(R) sufficiently large we can make $W_c'(R)$ vanish for any given R < 1.

We are now ready to prove the following inequality of integrals which is of fundamental importance in the proof of our main theorem. We state the inequality as a lemma.

LEMMA. Let $y(\rho)$, $dy(\rho)/d\rho = y'(\rho)$ be real functions, continuous in the real variable ρ for $0 < \rho < 1$. For small values of ρ let

$$y(\rho) = O(\rho^{\delta}), \qquad y'(\rho) = O(\rho^{\delta-1}), \qquad \qquad \delta > 1/2.$$

Then

(4.18)
$$\int_{0}^{r} \left\{ C(\rho^{2}p^{*}(\rho) - p_{0}^{*}) + p_{0}^{*} \right\} y^{2}(\rho) \frac{d\rho}{\rho^{2}} \\ \leq \int_{0}^{r} \left\{ y'(\rho) \right\}^{2} d\rho - \frac{W_{c}'(r)}{W_{c}(r)} \cdot y^{2}(r), \quad 0 < r < 1,$$

where $W_c(z)$ is the solution (4.5) of (4.2), and where $C(\geq 0)$ is chosen small enough so that (4.17) holds. Equality in (4.18) holds if, and only if, $y(\rho) = kW_c(\rho)$, $\alpha^* > 1/2$, where k is an arbitrary real constant.

The conditions $y(\rho) = O(\rho^{\delta})$, $y'(\rho) = O(\rho^{\delta-1})$, $\delta > 1/2$ guarantee the existence of the integrals involved. The lemma is proved with the use of the following identity and partial integration.

$$\int_{0}^{r} \left[y'(\rho) - \frac{W_{C}'(\rho)}{W_{C}(\rho)} y(\rho) \right]^{2} d\rho \\
= \int_{0}^{r} \left\{ y'(\rho) \right\}^{2} d\rho - \int_{0}^{r} 2 y'(\rho) y(\rho) \frac{W_{C}'(\rho)}{W_{C}(\rho)} d\rho \\
+ \int_{0}^{r} \left\{ \frac{W_{C}'(\rho)}{W_{C}(\rho)} \right\}^{2} y^{2}(\rho) d\rho \\
= \int_{0}^{r} \left\{ y'(\rho) \right\}^{2} d\rho - \left[y^{2}(\rho) \frac{W_{C}'(\rho)}{W_{C}(\rho)} \right]_{0}^{r} \\
+ \int_{0}^{r} y^{2}(\rho) \left[\frac{d}{d\rho} \left(\frac{W_{C}'}{W_{C}} \right) + \left(\frac{W_{C}'}{W_{C}} \right)^{2} \right] d\rho \\
= \int_{0}^{r} \left\{ y'(\rho) \right\}^{2} d\rho - y^{2}(r) \frac{W_{C}'(r)}{W_{C}(r)} + \int_{0}^{r} \frac{W_{C}''(\rho)}{W_{C}(\rho)} y^{2}(\rho) d\rho \\
= \int_{0}^{r} \left\{ y'(\rho) \right\}^{2} d\rho - y^{2}(r) \frac{W_{C}'(r)}{W_{C}(r)} \\
- \int_{0}^{r} \left\{ C(\rho^{2} p^{*}(\rho) - p^{*}) + p^{*} \right\} y^{2}(\rho) \frac{d\rho}{\rho^{2}} .$$

Since the left-hand side of the identity (4.19) is non-negative, and zero only if $y(\rho) = kW_c(\rho)$, the inequality (4.18) follows. When equality exists in (4.18) it is necessary that $\alpha^* > 1/2$, $p_0^* < 1/4$. However, the inequality holds for $\alpha^* \ge 1/2$ if $\delta > 1/2$. This completes the proof of the lemma.

5. Some new universal constants. Let $z^2p(z)$ be regular in |z| < 1 and be given as in (1.1). Let

(5.1)
$$W = W(z) = z^{\alpha} \sum_{n=0}^{\infty} a_n z^n, \qquad a_0 = 1, |z| < 1,$$

be the solution (1.4) of the differential equation (1.2) associated with a given p(z). We have a (1-1) correspondence between the function p(z) of (1.1) and the solution W(z) of (1.4). Similarly, we have a (1-1) correspondence between the function $p^*(z)$ of (4.1) and the associated solution $W_c(z)$ in (4.5) of the differential equation (4.2).

We shall now restrict p(z) by making it satisfy an inequality involving $p^*(z)$ ($p^*(z)$ regarded as a given fixed function). Then we shall deduce an inequality involving the associated functions W(z) and $W_c(z)$.

Let $C \ge 0$, γ ($|\gamma| \le \pi/2$) be assigned constants. Let p(z) be restricted so that

$$\Re\{e^{i\gamma}z^2p(z)\} \leq \cos\gamma[C\{|z|^2p^*(|z|) - p_0^*\} + p_0^*]$$

for |z| < 1, and let $\Re \alpha > 1/2$. Let C be chosen small enough so that (4.17) holds. Taking z = 0, we note that (5.2) implies in particular that

$$\Re(e^{i\gamma}p_0) \leq p_0^* \cos \gamma \leq (1/4) \cos \gamma.$$

We prove now the following preliminary theorem, comparing the solutions W(z) and $W_c(z)$.

THEOREM A. Let $z^2p(z)$ be regular in |z| < 1 and satisfy (5.2). Let the root α of (1.3) be the one for which $\Re \alpha \ge 1/2$. Let

$$W(z) = z^{\alpha} \sum_{n=0}^{\infty} a_n z^n,$$
 $a_0 = 1, |z| < 1,$

be the unique solution of (1.2) corresponding to α . Let $z^2p^*(z)$ be regular in |z| < 1 and real on the real axis with $\lim_{z\to 0} z^2p^*(z) = p_0^* \le 1/4$. Let

$$W_C(z) = z^{\alpha^*} \sum_{n=0}^{\infty} a_n^*(C) z^n,$$
 $a_0^*(C) = 1,$

be the solution of (4.2) where α^* is given by (4.4), $\alpha^* \ge 1/2$. Then

$$\Re\left\{e^{i\gamma}\frac{zW'(z)}{W(z)}\right\} \geq \frac{\left|z\right|W_{c'}(\left|z\right|)}{W_{c}(\left|z\right|)}\cos\gamma \geq 0, \quad \left|z\right| \leq R < 1,$$

for those values C, $0 \le C \le C(R)$, for which

$$(5.5) W_C'(r) > 0 in 0 < r < R.$$

If we assume further that

(5.6)
$$\max_{|z|=r<1} \Re \{z^2 p^*(z)\} = r^2 p^*(r),$$

then

$$\Re\left\{\frac{zW_{c}'(z)}{W_{c}(z)}\right\} \geq \frac{\left|z\right|W_{c}'(\left|z\right|)}{W_{c}(\left|z\right|)} > 0, \qquad \left|z\right| < R < 1,$$

 $0 \le C \le C(R)$, and $rW_{c'}(r)/W_{c}(r)$ is a nonincreasing positive function of r for $0 \le r \le R$ when $0 \le C \le C(R)$, and for C = C(R) decreases from α^* to zero as r increases from 0 to R < 1.

To prove Theorem A we use the Green's transform as given in the form (3.4), and assume $\Re \alpha > 1/2$ to begin with. From (3.4), (5.2), and (4.18) of the fundamental lemma we have for $z = re^{i\theta}$, r < 1, θ constant,

$$|W(z)|^{2}\Re\left\{e^{i\gamma}\frac{zW'(z)}{W(z)}\right\}$$

$$(5.8) \qquad \geq r\cos\gamma\int_{0}^{r}|W'|^{2}d\rho - r\cos\gamma\int_{0}^{r}\frac{C\{\rho^{2}p^{*}(\rho) - p_{0}^{*}\} + p_{0}^{*}}{\rho^{2}}|W|^{2}d\rho$$

$$\geq \frac{rW_{c}'(r)}{W_{c}(r)}\cos\gamma|W(z)|^{2},$$

which gives (5.4) when $\Re \alpha > 1/2$. But (5.4) holds also when $\Re \alpha = 1/2$ since, as we have seen previously, zW'(z)/W(z) is a continuous function of α when $\Re \alpha > 0$.

In particular, if p(z) is chosen so that

$$(5.9) z^2 p(z) \equiv C \{ z^2 p^*(z) - p_0^* \} + p_0^*,$$

and if $p^*(z)$ is chosen so that (5.6) holds, then it follows that the condition (5.2) is satisfied when $\gamma = 0$. Furthermore, the solution W(z) of (1.2) given in (1.4) becomes identical with the solution $W_c(z)$ of (4.2) given in (4.5). Thus we may replace W(z) by $W_c(z)$ in (5.4) when $\gamma = 0$ and obtain (5.7). Obviously, equality occurs in (5.7) when z is positive. Thus (5.7) shows that

$$\min_{|z|=r} \Re \frac{zW_{c}'(z)}{W_{c}(z)} = \frac{rW_{c}'(r)}{W_{c}(r)} \cdot$$

Because the minimum of a harmonic function does not occur at an interior point of a domain, it follows that $rW'_C(r)/W_C(r)$ is a nonincreasing positive function of r for $0 \le r \le R < 1$. We shall see a little later that this function for C = C(R) decreases from α^* to zero as r increases from 0 to R < 1.

We have seen that for a given R < 1 there exists a range for $C, 0 \le C \le C(R)$, for which

(5.10)
$$W_c'(r) > 0$$
 in $0 < r < R$.

We shall now show that (5.10) cannot hold for sufficiently large values of C whenever (5.6) holds, and when $z^2p^*(z)$ is not identically a constant. Because of (5.7)

(5.11)
$$\phi(z) \equiv \frac{zW_C'(z)}{W_C(z)} = \alpha^* + b_1 z + \cdots + b_n z^n + \cdots$$

has a positive real part for |z| < R < 1. Hence the coefficients b_n satisfy the inequalities

$$\left| b_n \right| \leq \frac{2\alpha^*}{R^n}, \qquad n = 1, 2, \cdots.$$

We conclude from (5.12) that $|b_n|$ is a bounded function of C. On the other hand b_n is a polynomial in C with coefficients which are functions of the coefficients p_k^* , $k \ge 1$, and $\alpha^* \ge 1/2$. For example,

$$b_1 = a_1^*(C) = -\frac{Cp_1^*}{2\alpha^*}, \qquad b_2 = 2a_2^*(C) - (a_1^*(C))^2 = -\frac{\left[C^2p_1^{*2} + 4\alpha^2Cp_2^*\right]}{4\alpha^2(2\alpha + 1)}$$

It follows from this point of view that $|b_n|$ cannot be a bounded function of C unless $p_k^* = 0$ for $k \ge 1$. The apparent contradiction is eliminated only if either

(5.13) (i) $W'_c(r) > 0$ for all r in the interval 0 < r < R < 1 whenever $0 \le C$ $\le C(R) < \infty$, while at the same time $W'_c(r) < 0$ for some value of r < R and for every C such that $C(R) < C < C(R) + \delta$, $\delta > 0$ arbitrarily small;

or

(5.14) (ii) $z^2p^*(z)$ is identically a constant.

In the second case $(z^2p^*(z) = \text{constant } p_0^*)$ the solution $W_C(z)$ of (4.2) is the same as $W_0(z)$ (C=0) which we have seen in (4.14) to be z^{α^*} . For this function $W'_C(r) > 0$ for arbitrary $C \ge 0$ and all positive r. Thus $C(R) = \infty$. In all other cases C(R) is finite. In what follows we shall suppose that this trivial case is ruled out.

We shall show now that for any fixed R in the range 0 < R < 1

$$(5.15) W'_{C(R)}(R) = 0.$$

Thus it is possible to determine the value of C(R) by finding, for fixed R, the smallest positive root C = C(R) of the equation $W'_{C}(R) = 0$.

To prove (5.15) we note by (5.13) that for each $\delta > 0$, and for some $r = r(\delta)$, $0 < r(\delta) < R$, we have $W'_{C(R)+\delta}\{r(\delta)\} \le 0$. Let $\{\delta_n\}$ be a sequence of values of δ for which $\delta_n > 0$, $\lim_{n \to \infty} \delta_n = 0$, $\lim_{n \to \infty} r(\delta_n) = r_0$ exists. Then, obviously, $0 \le r_0 \le R$. We have already seen that $W'_C(r)$ is continuous in C and r. Consequently, since $W'_{C(R)+\delta_n}\{r(\delta_n)\} \le 0$, we have in the limit as $\delta_n \to 0$ the inequality $W'_{C(R)}(r_0) \le 0$. But $W'_{C(R)}(r) > 0$ for 0 < r < R, so that in particular $W'_{C(R)}(r_0) \ge 0$. We must conclude, therefore, that not only does $W'_{C(R)}(r_0) = 0$, but $r_0 = 0$ or R. However, $\lim_{r \to 0} W'_{C(R)}(r)$ is never zero if $\alpha^* > 0$. This implies then that $r_0 \ne 0$. Thus $r_0 = R$ and $W'_{C(R)}(R) = 0$.

We note then by Theorem A and equality (5.15) that the function $[rW'_{C(R)}(r)/W_{C(R)}(r)]$ decreases from α^* to 0 as r increases from 0 to R < 1.

Since it is possible to determine C(R), and since C(R) is obviously a non-

increasing function of R bounded below by zero, it is natural to seek the onesided limit of C(R) as $R \rightarrow 1-0$. Thus, to each given function $z^2p^*(z)$ there corresponds a universal constant $A = A(p^*)$ defined as

(5.16)
$$A = A(p^*) = \lim_{R \to 1-0} C(R)$$

which is finite, except when $z^2p^*(z) \equiv \text{constant } p_0^*$ in which case $A = \infty$. In other words, A is the largest value of C for which $W_C'(r) > 0$ for all values of r in the interval 0 < r < 1. To see this we note from (5.13) that $W_C'(r) > 0$ for all r in 0 < r < R < 1 when $0 \le C \le C(R)$, and in particular $W_C'(r) > 0$ for all r in 0 < r < R < 1 when $0 \le C \le A$. Since A is independent of R and R may be taken as near to 1 as we like, we have $W_C'(r) > 0$ for all r in 0 < r < 1 for $0 \le C \le A$. Thus

(5.17)
$$W'_A(r) > 0$$
 for all r in $0 < r < 1$.

On the other hand, we have, from (5.13), $W'_{C}(r) \leq 0$ for $C(R) < C < C(R) + \delta$ for all small $\delta > 0$ for at least one value of r in 0 < r < 1. It follows then that for small δ and R near enough to 1 we have, for all $\epsilon > 0$ arbitrarily small,

$$A \leq C(R) < A + \epsilon < C(R) + \delta$$

in which case

$$(5.18) W_C'(r) \leq 0 \text{for } C = A + \epsilon$$

for all small $\epsilon > 0$ for some r in 0 < r < 1. Because of (5.17) and (5.18) we have shown that for each $\epsilon > 0$ there exists some $r = r(\epsilon)$ in 0 < r < 1 for which

(5.19)
$$W'_{A}(r) > 0, \qquad W'_{A+\epsilon}(r) \leq 0.$$

(5.17) and (5.19) show that A is the largest value of C for which $W'_{C}(r) > 0$ for all r in 0 < r < 1.

We remark also that for every $\delta_1 > 0$, there exists a $\delta \le \delta_1$ for which $C(R) = A + \delta$ for some R in 0 < R < 1, in which case $W'_{A+\delta}(R) = 0$. If this were not so, since C(R) is nonincreasing and $A = \lim_{r \to 1-0} C(R)$ we would have C(R) = A for an interval $1 - \epsilon < R < 1$. In that case $W'_A(R) = 0$ for an R < 1. This contradicts the fact that $W'_A(r) > 0$ for all r in 0 < r < 1 as we have shown above by (5.17). We conclude then that A is the largest value of C for which $|z| W'_C(|z|) / W_C(|z|) > 0$, when $z^2 p^*(z)$ is not a constant, and |z| < 1.

We shall presently give examples of functions $p^*(z)$ for which positive constants $A(p^*)$ are determined.

It is clear also that Theorem A may be restated with $A(p^*)$ replacing C, and inequalities (5.4), (5.5), and (5.6) then hold for |z| < 1 with $C = A(p^*)$.

6. The main theorem. Let us now define F(z) as in (1.5)

(6.1)
$$F(z) = \{W(z)\}^{1/\alpha} = z + \cdots.$$

Similarly, we write

(6.2)
$$F_A(z) = \{W_A(z)\}^{1/\alpha^*} = z + \cdots.$$

Then both F(z) and $F_A(z)$ are regular and single-valued in |z| < 1. Furthermore,

(6.3)
$$\Re\left\{\alpha e^{i\gamma} \frac{zF'(z)}{F(z)}\right\} = \Re\left\{e^{i\gamma} \frac{zW'(z)}{W(z)}\right\},\,$$

$$\alpha^* \Re \left\{ \frac{z F_A'(z)}{F_A(z)} \right\} = \Re \left\{ \frac{z W_A'(z)}{W_A(z)} \right\}.$$

By Theorem A we have

(6.5)
$$\Re\left\{\alpha e^{i\gamma} \frac{zF'(z)}{F(z)}\right\} \geq \frac{\left|z\right| W_A'(\left|z\right|)}{W_A(\left|z\right|)} \cos \gamma \geq 0, \qquad \left|z\right| < 1,$$

$$\Re\left\{\frac{zF_{A}'(z)}{F_{A}(z)}\right\} \geq \frac{1}{\alpha^{*}} \frac{\left|z\right|W_{A}'(\left|z\right|)}{W_{A}(\left|z\right|)} > 0, \qquad \left|z\right| < 1.$$

Thus, F(z) is schlicht and spiral-like in |z| < 1 for $R\alpha \ge 1/2$. Furthermore, $F_A(z)$ is schlicht and star-like in |z| < 1 for $\alpha^* \ge 1/2$. Since equality signs hold in (6.6) when z is positive, and since we have seen that $W'_{A+\epsilon}(R) = 0$ for some R in 0 < R < 1 and arbitrarily small but positive ϵ , we conclude that $F_{A+\epsilon}(z)$ is not schlicht no matter how small $\epsilon > 0$ is taken.

We shall show now that, if $A(p^*)>0$ and $z^2p^*(z)$ is not identically a constant, then the radius of univalency (defined to be the largest circle with center at the origin within which the function is both regular and schlicht) of $F_A(z)$ is precisely one. To begin with, let us suppose that $p^*(z)$ has a singularity on |z|=1 and $A(p^*)>0$. From the differential equation (6.10) below it follows that $W_A''(z)/W_A(z)$ also has a singularity on |z|=1. Thus $W_A(z)$ either has a zero or a singularity on |z|=1. In either case $F_A(z)$ cannot be both regular and schlicht in any circle containing the unit circle |z|=1. In the second place, if $p^*(z)$ is regular on |z|=1, then so is the function $W_A(z)$. In this case, assuming $A(p^*)>0$ and $z^2p^*(z)$ not a constant, we may take R=1 in Theorem A, $A(p^*)=C(1)$, and $W_A'(1)=W_{C(1)}'(1)=0$. Thus, in this second case, the derivative of $F_A(z)$ vanishes on the unit circle. In either of the two cases we conclude that the radius of univalency for $F_A(z)$ is one.

It seems desirable at this point to summarize our conclusions in the following theorem, the principal object of this paper.

THE MAIN THEOREM. Let the nonconstant function

(6.7)
$$z^{2}p^{*}(z) = p_{0}^{*} + p_{1}^{*}z + \cdots + p_{n}^{*}z^{n} + \cdots$$

be regular for |z| < 1, real on the real axis and $p_0^* \le 1/4$. Let

(6.8)
$$\Re\{z^2 p^*(z)\} \leq |z|^2 p^*(|z|) \qquad \text{for } |z| < 1.$$

Let $A = A(p^*)$ be the universal constant associated with $p^*(z)$ as determined by (5.15) and (5.16). Let

(6.9)
$$W_A(z) = z^{\alpha^*} \sum_{n=0}^{\infty} a_n^* z^n, \qquad a_0^* = 1, |z| < 1,$$

be the unique solution of

(6.10)
$$W'' + \left\{ A \left(p^*(z) - \frac{p_0^*}{z^2} \right) + \frac{p_0^*}{z^2} \right\} W = 0$$

corresponding to the larger root α^* of the indicial equation. Then the function

(6.11)
$$F_A(z) = \{W_A(z)\}^{1/\alpha^*} = z + \cdots$$

is regular, single-valued, schlicht and star-like with respect to the origin in |z| < 1, and is not both regular and schlicht in any larger circle whenever $A(p^*) > 0$, and $z^2p^*(z)$ is not a constant. For arbitrarily small and positive ϵ the function $F_{A+\epsilon}(z)$ is not schlicht in |z| < 1.

Let $z^2p(z)$ be regular for |z| < 1, and γ a real constant $(|\gamma| \le \pi/2)$ for which in |z| < 1

$$(6.12) \Re \left\{ e^{i\gamma} z^2 p(z) \right\} \le \cos \gamma \left\{ A(|z|^2 p^* (|z|) - p_0^*) + p_0^* \right\}$$

where $A = A(p^*)$. Let

(6.13)
$$W(z) = z^{\alpha} \sum_{n=0}^{\infty} a_n z^n, \qquad a_0 = 1, |z| < 1,$$

be the unique solution of

$$(6.14) W'' + p(z)W = 0$$

corresponding to the root α , with the larger real part, of the indicial equation. Then the function

(6.15)
$$F(z) = \{W(z)\}^{1/\alpha} = z + \cdots$$

is regular, single-valued, schlicht and spiral-like in |z| < 1. The constant $A = A(p^*)$ is the largest possible one.

We remark that if $z^2p^*(z)$ is a constant p_0^* , then $A(p^*) = \infty$ and, for all C, $W_C(z) = z^{\alpha^*}$, $2\alpha^* = 1 + (1 - 4p_0^*)^{1/2}$, in which case the function (6.11) is the trivial function z. However, in this case the right-hand side of (6.12) is indeterminate, as indeed is (6.10). If it should happen that for some functions p(z) the real part of $\{e^{i\gamma}z^2p(z)\}$ is bounded above by some constant K, then we may deduce from the theory of functions with bounded real part that

(6.16)
$$\Re\left\{e^{i\gamma}z^{2}p(z)\right\} \leq \frac{2K|z|}{1+|z|} + \frac{1-|z|}{1+|z|} \cdot \Re(p_{0}e^{i\gamma}), \qquad |z| < 1.$$

In this case, rather than take $z^2p^*(z)$ a constant in our theorem above we may take $z^2p^*(z) = z(1+z)^{-1} + p_0^*$, and the value of $A(p^*)$ which goes with this choice. In this way an appropriate value for K is determined.

COROLLARY 1. The main theorem holds in particular if (6.8) is replaced by the condition that $\{z^2p^*(z)-p_0^*\}$ be convex in the direction of the imaginary axis for |z| < 1, and if (6.12) is replaced by the conditions that the function $\{z^2p(z)-p_0\}$ be subordinate to the function $A(p^*)\{z^2p^*(z)-p_0^*\}$ in |z| < 1 and that $\Re p_0 \leq p_0^*$.

Since $\{z^2p^*(z)-p_0^*\}$ is to be convex in the direction of the imaginary axis, and real on the real axis, it follows that the $\max_{|z|=r} \Re\{z^2p^*(z)\}$ occurs for z=r and (6.8) then holds. If also

$$\{z^2p(z)-p_0\} \prec \prec A(p^*)\{z^2p^*(z)-p_0^*\},$$

and if $\Re p_0 \leq p_0^*$, we have

$$\Re\{z^2 p(z) - p_0\} \le A(p^*) \{r^2 p^*(r) - p_0^*\}$$

and

(6.19)
$$\Re\{z^2p(z)\} \leq A(p^*)\{r^2p^*(r) - p_0^*\} + p_0^*.$$

Thus (6.12) holds for $\gamma = 0$. This completes the proof of Corollary 1.

7. Illustrative examples. Since $z^2p^*(z)$ was chosen to be not a constant in the main theorem, we shall take the next simplest case for our first illustration.

Example 1. Let $z^2p^*(z) = p_0^* + z$, $p_0^* \le 1/4$. It will be convenient to write

$$p_0^* = \alpha^* - \alpha^{*2}, \qquad \alpha^* \ge 1/2.$$

Equation (4.2) becomes

(7.1)
$$\frac{d^2W}{dz^2} + \left(\frac{C}{z} + \frac{\alpha^* - \alpha^{*2}}{z^2}\right)W = 0.$$

The solution (4.5) of (7.1) is

(7.2)
$$W_C(z) = \Gamma(2\alpha^*)z^{\alpha^*} \sum_{n=0}^{\infty} \frac{(-Cz)^n}{n!\Gamma(n+2\alpha^*)},$$

(7.3)
$$W_{c}(z) = \frac{\Gamma(2\alpha^{*})}{C^{\alpha^{*}}} (Cz)^{1/2} J_{2\alpha^{*}-1}(2(Cz)^{1/2}).$$

The equation $W'_{C}(R) = 0$ leads to

$$J_{2\alpha^*-1}(2(CR)^{1/2}) + 2(CR)^{1/2}J'_{2\alpha^*-1}(2(CR)^{1/2}) = 0.$$

Thus

(7.5)
$$C(R) = \frac{X_1^2(\alpha^*)}{4R},$$

where $X_1 = X_1(\alpha^*)$ is the smallest positive root of the equation

$$J_{2\alpha^*-1}(X) + XJ'_{2\alpha^*-1}(X) = 0.$$

(7.7)
$$A = A(p^*) = \lim_{R \to 1-0} C(R) = \frac{X_1^2(\alpha^*)}{4}.$$

$$(7.8) W_A(z) = \left(\frac{2}{X_1}\right)^{2\alpha^*-1} \Gamma(2\alpha^*) z^{1/2} J_{2\alpha^*-1}(X_1 z^{1/2}).$$

$$(7.9) F_A(z) = \left[\left(\frac{2}{X_1} \right)^{2\alpha^{\bullet} - 1} \Gamma(2\alpha^{\bullet}) z^{1/2} J_{2\alpha^{\bullet} - 1}(X_1 z^{1/2}) \right]^{1/\alpha^{\bullet}} = z + \cdots.$$

The function $F_A(z)$ of (7.9) is schlicht and star-like in $|z| \le 1$, and its derivative vanishes at z = 1. Thus the radius of univalency of $F_A(z)$ has the value 1.

If $\alpha^* = 1$ $(p_0^* = 0)$, we have as a special case the result that the function

(7.10)
$$\phi(z) = \frac{2}{X_1} z^{1/2} J_1(X_1 z^{1/2}) = z + \cdots,$$

where X_1 is the smallest positive zero of $J_0(X)$, $X_1 = 2.405 \cdot \cdot \cdot$, is schlicht and star-like in $|z| \le 1$, but is not schlicht in any larger circle. As a consequence we have the theorem

THEOREM 1. Let zp(z) be regular for |z| < 1, and

$$\Re\{z^2p(z)\} \leq \frac{X_1^2}{4}|z| \qquad for |z| < 1,$$

where X_1 is the smallest positive zero of $J_0(X)$ $(X_1^2/4 = 1.4460 \cdot \cdot \cdot)$. Let

$$W = W(z) = z + a_2 z^2 + \cdots + a_n z^n + \cdots,$$
 $|z| < 1,$

be the unique solution W = W(z), W(0) = 0, W'(0) = 1, of the equation

$$W'' + p(z)W = 0.$$

Then W = W(z) is schlicht and star-like in |z| < 1. The constant $X_1^2/4$ is a best possible one.

EXAMPLE 2. Let $z^2p^*(z) = z^2$, $\alpha^* = 1$. Equation (4.2) becomes

(7.11)
$$\frac{d^2W}{dz^2} + CW = 0.$$

The solution (4.5) of (7.11) is

$$(7.12) W_C(z) = C^{-1/2} \sin (C^{1/2}z).$$

We find $W'_C(R) = 0$ for $C^{1/2}R = \pi/2$. Thus

(7.13)
$$C(R) = \frac{\pi^2}{4R^2}, \qquad A(p^*) = \frac{\pi^2}{4}.$$

$$(7.14) W_A(z) = \frac{2}{\pi} \sin\left(\frac{\pi}{2}z\right) = z + \cdots.$$

 $W_A(z)$ of (7.14) has a radius of univalency equal to 1 and its derivative vanishes at z=1. We then have the theorem

THEOREM 2. Let zp(z) be regular in |z| < 1 and $\Re\{z^2p(z)\} \le (\pi^2/4)|z|^2$ in |z| < 1. Then the unique solution W = W(z), W(0) = 0, W'(0) = 1 of

$$W'' + \phi(z)W = 0$$

is schlicht and star-like for |z| < 1. The constant $\pi^2/4$ is a best possible one.

EXAMPLE 3. Let $z^2p^*(z) = z/(1+z)$, $\alpha^* = 1$. In this case $z^2p^*(z)$ is a convex function, real on the real axis. Thus for |z| = r < 1

(7.15)
$$\max_{|z|=r} \Re\{z^2 p^*(z)\} = \frac{r}{1+r} = |z|^2 p^*(|z|).$$

The solution $W_C(z)$, $W_C(0) = 0$, $W'_C(0) = 1$ of

(7.16)
$$W'' + \frac{C}{z(1+z)}W = 0$$

is

$$(7.17) W_C(z) = \frac{-1}{C} \sum_{n=1}^{\infty} \prod_{k=1}^{n} \left\{ \frac{(2k-3)^2 - 1}{4} + C \right\} \frac{(-z)^n}{(n-1)!n!},$$

$$(7.18) W_c(z) = zF\left(\frac{1+(1-4C)^{1/2}}{2}, \frac{1-(1-4C)^{1/2}}{2}; 2; -z\right)$$

where $F(\alpha, \beta; \gamma; z)$ is the hypergeometric function

(7.19)
$$F(\alpha, \beta; \gamma; z) = \frac{\Gamma(\gamma)}{\Gamma(\alpha)\Gamma(\beta)} \sum_{n=0}^{\infty} \frac{\Gamma(\alpha + n)\Gamma(\beta + n)}{\Gamma(\alpha + n)n!} z^{n}, \qquad |z| < 1.$$

The equation $W'_{\mathcal{C}}(R) = 0$ leads to

(7.20)
$$F(\alpha, \beta; 2; -R) - RF'(\alpha, \beta; 2; -R) = 0,$$

where

$$(7.21) 2\alpha = 1 + (1 - 4C)^{1/2}, 2\beta = 1 - (1 - 4C)^{1/2}, \alpha + \beta = 1.$$

The equation (7.20) may be written as

$$(7.22) (1-\beta)F(\alpha,\beta;2;-R) + \beta F(\alpha,\beta+1;2;-R) = 0.$$

The series for $F(\alpha, \beta; 2; -1)$ converges absolutely while the series for $F(\alpha, \beta+1; 2; -1)$ converges conditionally for the values of α and β given in (7.21).

Using the integral representation

$$(7.23) \quad F(\alpha, \beta; \gamma; z) = \frac{\Gamma(\gamma)}{\Gamma(\beta)\Gamma(\gamma - \beta)} \int_0^1 t^{\beta - 1} (1 - t)^{\gamma - \beta - 1} (1 - zt)^{-\alpha} dt,$$

valid when |z| < 1, $\Re \gamma > \Re \beta > 0$, in (7.22) we find that the left side of equation (7.22) is positive for $0 < C \le 1/4$. Letting

$$s = \frac{1}{2} (4C - 1)^{1/2} > 0,$$

$$(7.24)$$

$$C = s^2 + \frac{1}{4},$$

and equating to zero the real part of the integral representation of the left side of (7.22) we obtain, after considerable simplification, the equation

(7.25)
$$\int_0^1 \frac{\cos \left[s \log \left((1-t)/(t+Rt^2)\right)\right]}{\left[t(1-t)(1+Rt)\right]^{1/2}} dt = 0.$$

(7.26)
$$A(p^*) = \lim_{R \to 1-0} C(R) = \lim_{R \to 1} s^2(R) + \frac{1}{4} = s_1^2 + \frac{1}{4}$$

where s_1 is the smallest positive zero of the equation (7.25) when R=1. Putting $e^x = (1-t)(t+t^2)^{-1}$ in (7.25) we find that s_1 is the smallest positive zero of the function $\phi(s)$ defined as

(7.27)
$$\phi(s) = \int_0^\infty (3 + \cosh x)^{-1/2} \cos sx dx.$$

By considering the contour integral

(7.28)
$$\oint e^{(si+1/2)z}(e^{2z}+6e^z+1)^{-1/2}dz=0,$$

where the contour is the rectangle with corners at z=0, R, $R+2\pi i$, $2\pi i$ and a slit, parallel to the real axis and joining the points πi and 2 ln $(2^{1/2}+1)+\pi i$, it is possible to show, after letting $R\to\infty$ and taking real parts, that

(7.29)
$$\phi(s) \equiv \operatorname{sech} s\pi \int_0^{2\ln(2^{1/2}+1)} (3 - \cosh x)^{-1/2} \cos sx dx.$$

From (7.29) it can be shown that

$$\phi(s) > 0, \quad 0 \le s \le \frac{\pi}{4} \left[\ln \left(2^{1/2} + 1 \right) \right]^{-1},$$

$$(7.30)$$

$$\phi(s) < 0, \quad \frac{\pi}{2} \left[\ln \left(2^{1/2} + 1 \right) \right]^{-1} < s < \frac{3\pi}{4} \left[\ln \left(2^{1/2} + 1 \right) \right]^{-1}.$$

The existence of the zero s_1 of $\phi(s)$ follows from (7.30). It lies between 1.3 and 1.4. We omit the details of the proof of this statement.

If zp(z) is regular in |z| < 1 and

(7.31)
$$\Re\{z^2 p(z)\} \le A(p^*)/2 \qquad \text{in } |z| < 1,$$

where $A(p^*) = s_1^2 + 1/4$, and s_1 is the smallest positive zero of $\phi(s)$, determined by (7.27) or (7.29), then for |z| < 1

$$\Re\{z^2p(z)\} \leq A(p^*) \frac{|z|}{1+|z|} = A(p^*) |z|^2 p^*(|z|),$$

and (6.12) is satisfied. From this we have the theorem:

THEOREM 3. If zp(z) is regular in |z| < 1, and if

$$\Re\{z^2p(z)\} \leq \frac{1}{2}s_1^2 + \frac{1}{8}, \qquad |z| < 1,$$

where s₁ is the smallest positive zero of the function

$$\phi(s) = \int_0^\infty (3 + \cosh x)^{-1/2} \cos sx dx,$$

then the unique solution W = W(z) of the form

$$W = z + \sum_{n=0}^{\infty} a_n z^n, \qquad |z| < 1,$$

of the equation

$$\frac{d^2W}{dz^2}+p(z)W=0,$$

is schlicht and star-like in |z| < 1. The constant $s_1^2/2 + 1/8$ cannot be replaced by a larger one.

We remark that for $C = A(p^*) = s_1^2 + 1/4$ the hypergeometric function (multiplied by z) in (7.18) is schlicht in $|z| \le 1$ and its derivative vanishes at z = 1. This solution corresponds to a choice of

(7.33)
$$z^2 p(z) = A(p^*) z^2 p^*(z) = A(p^*) z (1+z)^{-1}$$

in which case $p_0 = 0$, $\alpha = 1$.

If $p_0 \neq 0$ and if $z^2 p(z)$ is regular in |z| < 1, Theorem 3 could have been stated in a somewhat more general form provided we assume $\Re p_0 \leq 0$ and use (6.16) with $\gamma = 0$. In this case $\alpha \neq 1$.

EXAMPLE 4. Let

$$(7.34) z^2 p^*(z) = \sum_{n=0}^{\infty} p_n^* z^n, p_0^* \le \frac{1}{4},$$

be regular in |z| < 1 with $p_n^* \ge 0$, $n = 1, 2, \cdots$. Suppose |z| = 1 is a natural boundary for $z^2 p^*(z)$. This is the situation if, for instance, the series has sufficiently large gaps. Since none of the coefficients is negative, the condition

(7.35)
$$\max_{|z|=r} \Re\{z^2 p^*(z)\} = |z|^2 p^*(|z|)$$

of the main theorem is fulfilled. We then determine the constant $A = A(p^*)$ by (5.15) and (5.16). If A > 0 we see from (6.9) and (6.10) that the solution $F_A(z)$ of (6.11) corresponding to our choice of $z^2p^*(z)$ in this example is schlicht and star-like in |z| < 1, and, moreover, has the unit circle as a natural boundary. Thus we have a device for constructing schlicht functions with natural boundaries whenever $A(p^*)$ can be determined in a constructive way, and provided it is not zero.

Example 5. That $A = A(p^*)$ can sometimes be zero is shown by the following illustration. Let

$$(7.36) z^2 p^*(z) = z^2 (1 - z^2)^{-2}.$$

Here $p_0^* = 0$. The solution [3] corresponding to $\alpha^* = 1$ of

$$(7.37) W'' + \frac{C}{(1-z^2)^2} W = 0, C \ge 0,$$

is

$$(7.38) \quad W_C(z) = (1-z^2)^{1/2} \cdot \frac{((1+z)/(1-z))^{\delta/2} - ((1-z)/(1+z))^{\delta/2}}{2\delta},$$

$$\delta = (1 - 4C)^{1/2} \neq 0.$$

$$(7.39) W_{c'}(r) = [(\delta - r)(1+r)^{\delta} + (\delta + r)(1-r)^{\delta}] \div 2\delta(1-r^{2})^{(1+\delta)/2}.$$

Let $y = y(\delta)$ be the numerator of (7.39). For values of r sufficiently close to, but less than, one and for $\epsilon > 0$ arbitrarily small we have

$$y = 2r(1-r)^r > 0 \qquad \text{when } \delta = r < 1,$$

$$y = -\epsilon r(1+r)^{(1-\epsilon)r} + (2-\epsilon)r(1-r)^{(1-\epsilon)r} < 0 \qquad \text{when } \delta = (1-\epsilon)r.$$

Thus y=0 for at least one root $\delta=\delta_0$, $(1-\epsilon)r<\delta_0< r$. As $r\to 1$, $\delta_0\to 1$, since ϵ

may be taken arbitrarily small. In this case $C = C(r) \rightarrow 0$. Thus $A(p^*) = 0$, $W_A(z) \equiv z$.

Although $W_c(z)$ in (7.38) is indeterminate when $\delta = 0$ (C = 1), a limiting process gives

$$(7.40) W_1(z) = \frac{1}{2} (1 - z^2)^{1/2} \log \left(\frac{1+z}{1-z} \right).$$

The derivative of $W_1(z)$ vanishes within the unit circle. Since $W_1(z)$ is therefore not schlicht in |z| < 1, it is sufficient to consider as we did only the range $0 \le C < 1$ for $W_C(z)$ in (7.38) (δ real and positive).

8. Concluding remarks. Throughout this paper we have confined our investigation to the solution of

(8.1)
$$W'' + p(z)W = 0$$
, $z^2p(z)$ regular in $|z| < 1$,

which corresponds to that root α of the indicial equation for solutions about the origin for which the real part of α is the larger (or, if the real parts are both equal, to a solution about the origin which does involve $\log z$). The reason for this is fairly obvious: the integrals in the Green's Transform (3.4) do not exist for $\Re \alpha < 1/2$.

This, however, poses the question as to whether our main theorem may not still have a counterpart for the other root β , if we assume $\Re\beta>0$ and employ a modified method of proof. I am leaving this question open for further investigation, but point out here that the Green's transform may be rewritten so that the integrals exist for $\Re\beta>0$. We multiply (8.1) by $z\overline{W}dz$ and integrate from 0 to z, |z|<1. This gives

(8.2)
$$\int_0^z z\overline{W}(z)W''(z)dz + \int_0^z zp(z) |W(z)|^2 dz = 0.$$

Integrating by parts, we obtain

$$|W(z)|^2 \frac{zW'(z)}{W(z)} = \int_0^z |W'(z)|^2 z\overline{dz} + \int_0^z W'(z)\overline{W}(z)dz$$

$$- \int_0^z zp(z) |W(z)|^2 dz.$$

If the path of integration from 0 to $z=re^{i\theta}$ is a straight line segment, $\theta=$ constant, we have

$$|W(z)|^{2}\Re\left\{\frac{zW'(z)}{W(z)}\right\} = \int_{0}^{r} |W'|^{2}\rho d\rho + \int_{0}^{r} \Re\left\{\frac{zW'}{W}\right\}_{|z|=\rho} |W|^{2} \frac{d\rho}{\rho} - \int_{0}^{r} \Re\left\{z^{2}p(z)\right\}_{|z|=\rho} |W|^{2} \frac{d\rho}{\rho} .$$

It is seen at once that in this modified form Green's transform involves integrals which exist for $\Re\beta > 0$. However, an additional term has been added to the formula which means that some further modifications of attack on the problem are necessary to obtain results for the case $\Re\beta > 0$ analogous to those found in this paper.

REFERENCES

- 1. Einar Hille, Convex distribution of the zeros of Sturm-Liouville functions, Bull. Amer. Math. Soc. vol. 28 (1922) pp. 261-265.
- 2. ——, Oscillation theorems in the complex domain, Trans. Amer. Math. Soc. vol. 23 (1922) pp. 350-385.
- 3. ——, Remarks on a paper by Zeev Nehari, Bull. Amer. Math. Soc. vol. 55 (1949) pp. 552-553.
- 4. ——, On the zeros of Sturm-Liouville functions, Arkiv för Matematik, Astronomi och Fysik vol. 16 (1922) pp. 1-20.
- 5. Zeev Nehari, The Schwarzian derivative and schlicht functions, Bull. Amer. Math. Soc. vol. 55 (1949) pp. 545-551.
- 6. V. V. Pokornyĭ, On some sufficient conditions for univalence, Doklady Akad. Nauk SSSR. N.S. vol. 79 (1951) pp. 743-746.
- 7. W. Rogosinski, Über positive harmonische Entwicklungen und typisch-reelle Potenzreihen, Math. Zeit. vol. 35 (1932) pp. 93-121.
- 8. Czeslaw Ryll-Nardzewski, Une extension d'un théorème de Sturm aux fonctions analytiques, Annales Universitatis Mariae-Curie-Sklodowska, Sect. A, vol. 4 (1950) pp. 5-7.
- 9. Lad. Špaček, Contribution à la théorie des fonctions univalentes, Časopis pro Pěstováni Matematiky a Fysiki vol. 62 (1932) pp. 12-19.

RUTGERS UNIVERSITY,

NEW BRUNSWICK, N. J.