
SCHLICHT SOLUTIONS OF W"+pW=0

BY

M. S. ROBERTSON

1. Introduction. Let

(1.1) z2piz) = po + piz + ■ ■ ■ + pnzn + ■ ■ ■

be regular for \z\ < 1. For the differential equation

d2W
(1.2) — + P(z)W = 0,

dz'

the origin is a regular singular point (or an ordinary point when p0 and pi

are both zero), and the indicial equation is

(1.3) \2-\ + p0 = 0,

with roots a and ß, a+ß = l, 9îaèl/2^2îj3. Corresponding to the root a

with the larger real part (or to either root if the real parts are equal), there

exists a unique solution of the form

00

(1.4) W = W(z) = z"Z anz", a0 = 1,
71=0

valid in the unit circle \z\ <1. Let F(z) he defined as

(1.5) F(z) =  [W(z)Y<- = z+ ••• ,

where that branch of the function is chosen for which £'(0) = 1. In this paper

we shall obtain sufficient conditions on p(z), of a fairly general nature, so

that F(z) is schlicht in \z\ <1 (F(z) takes on no value more than once in the

unit circle).

It will be observed immediately that every analytic function/(z), schlicht

in |*| <1,

(1.6) f(z) = z + piz2+ ■■■ +pnz" +

satisfies an equation of the form (1.2) where

- */'(*)
(1.7) zp(z) =

m
is regular for \z\ <1. In this case, ¿>o = 0 and a=l. It follows then, for the

special instance a = l, that our sufficiency conditions on p(z) can be re-

phrased in terms of f(z) and f"(z) to give many new tests for an arbitrary

analytic function/(z) for which/(0) =0,/'(0) = 1, to be schlicht in  \z\ <l.
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A related problem was recently solved by Nehari [5], who showed that

in the special case po = pi = 0, a = 1, no solution of (1.2) can take on the value

zero more than once in \z\ < 1, provided either

(i) \p(z)\^(l-\z\2)-2, \z\ <1,

or

(ii) | p(z) \ ^ x2/4, | z | < 1.

In either of these two cases the ratio of two independent solutions of (1.2)

is schlicht in \z\ <1. The conditions (i) and (ii) may be replaced by

/23X-2x2(1-x>(l -  |z[2)-\ for0<X<l,

íto    =1 ii
11        l22"x(l - | z |2)-\ for 1 ^ X ^ 2,

a refinement of Nehari's result due to Pokornyi [6]. A condition analogous

to (ii) applied to analytic functions in a convex domain was obtained recently

by Ryll-Nardzewski [8]. The problem at hand now, however, is to find suffi-

cient conditions on p(z) so that certain individual solutions can take on no

value more than once in \z\ <1 (even when pi is different from zero). The

"Green's Transform" of (1.2), used so successfully by Nehari [5] and of

fundamental importance in the earlier papers of Hille [l ; 2; 4] on the exist-

ence of zero-free regions for solutions of (1.2), also plays an important role in

this investigation.

Our aim is to derive a fairly general "parent" theorem, involving a some-

what arbitrary function p*(z), whose "offspring" will be theorems cor-

responding to each selected function p*(z). Each such p*(z) will have asso-

ciated with it a universal constant A =A(p*) (often times a root of a trans-

cendental equation) which will give a sharp character to the corresponding

theorem. By varying p*(z) innumerable tests for the univalency of F(z) of

(1.5) may be obtained. A few of these examples will be explored in §7 of this

paper. Because of the length of a satisfactory and complete statement of the

main theorem, we postpone this until the proof is at hand in §6.

2. Preliminary definitions. Let

(2.1) f(z) = z + piz2 + ■ ■ ■ + pnz" + ■■■

he regular for \z\ <1. We denote by 5 the class of functions/(z), /(0)=0,

/'(0) = 1, given by (2.1), which are schlicht, or univalent, in \z\ <l. Let

S(y) he the subclass of 5 whose members/(z) satisfy, for some real constant y

(\y\ =x/2) and \z\ <l, the inequality

(2.2) 9c J«iT_iJ_l  ^ 0.
I       f(z) /

It was shown by Spacek [9] that the inequality (2.2) is a sufficient condition
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(when /'(O) ^0) for f(z) of (2.1) to be schlicht in \z\ <1. In general, a mem-

ber of S(y) maps \z\ <1 onto a spiral-like domain. We shall call /(z) "spiral-

like" if it is a member of 5(7).

The subclass 5(0) of S(y), corresponding to 7 = 0, contains only those

members of 5 which are star-like with respect to the origin. Each member

/(z) of 5(0) maps \z\ <l onto a star-domain, one which has the property

that every ray from the origin contains an open segment, from the origin to

a boundary point, which lies entirely within the domain. We shall call f(z)

"star-like" if it is a member of 5(0). Every star-like function is also spiral-

like since 5(0) G 5(7).
We shall denote by K the subclass of 5(0) whose members/(z) map | z\ < 1

onto a convex domain, one which has the property that, if Wi and 1F2 are

points within the domain, the line segment joining Wi and PF2 lies entirely

within the domain. It is well known that/(z), with /(0) =0 and /'(0) = 1, is

convex in \z\ <1 if, and only if, zf'(z) is star-like in \z\ <1. Since (2.2), with

7 = 0, is both necessary and sufficient for/(z) to be star-like in \z\ <1, it fol-

lows (as is well known) that the necessary and sufficient condition that /(z)

(with again/(0) =0,/'(0) = 1) be convex in \z\ <1 is that

(2.3) 9x^1 + ---}  > 0 for    z    < 1.
I f'(z)f '

Another important subclass of 5, to be denoted by K*, is the class whose

members f(z) are real on the real axis and each f(z) maps \z\ <l onto a

domain which is convex in the direction of the imaginary axis. This means

that if Wi is any point within the domain, then the line segment joining Wi

and its conjugate point PFi lies entirely within the domain. It is known that

the necessary and sufficient condition for f(z) to belong to K* is that zf'(z)

= g(z) be typically-real for \z\ <1. Following Rogosinski [7] we say g(z) (g(0)

= 0, g'(0) = l) is typically-real for \z\ <1 if g(z) is regular in \z\ <1, is real

on the real axis, and if the imaginary part of g(z) vanishes for \z\ <1 only

when z is real. We shall speak of f(z) as being "convex in the direction of the

imaginary axis" if it is a member of K*.

Let f(z) he a member of 5, and let Cf(z) (C any constant not zero) map

\z\ <l onto a simply-connected domain D. Let h(z) be regular in \z\ <l,and

&(0)=0. We shall say that h(z) is "subordinate" to Cf(z) in \z\ <l,and write

h(z) < < Cf(z)

whenever h(z) lies within D for all z, \z\ <l.

3. Green's transform. Following Hille [2], we adjoin to the differential

equation

/ d2W\
(3.1) W" + p(z)W = 0,        ( W" = —-V
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the "Green's transform" of (3.1) obtained as follows. We multiply (3.1) by

Wdz and integrate from 0 to z, \z\ <1. This gives

(3.2) f   W(z)W"(z)dz + (   p(z) | Wiz) \2dz = 0,

where p(z) is given as in (1.1) and 1F= W(z) is the solution (1.4), IRa^l/2.

For the present we shall assume Oía > 1/2 (the case Ota = 1/2 will be con-

sidered separately). Since Oca > 1/2 the integrals appearing in (3.2) exist.

Integrating by parts, we obtain

(3.3)        [W(z)W'(z))¡-  f    | W'(z) \2dz +  f   p(z) | Wiz) \2dz = 0.
*J 0 "  0

Let the path of integration in (3.3) be the straight line segment, 6 = constant,

joining the origin to the point z = rew, r<l. Now multiply (3.3) by zeiy and

equate the real part of the resulting equation to zero. We then have

| W(z)\2<¡R ieiy

(3.4)

zW'(z)-\

W(z) Ï

/"" i      i CT   i >        I JF|2¿p
| W'\2dp - r I    ^{ei->z2p(z))\1\=p--•—,

o                              «Jo                                            P2

where 9tF(z) denotes the real part of F(z). The Green's transform, written in

the form (3.4), will be of fundamental importance in the paragraphs to follow.

4. A fundamental inequality of integrals. Let

(4.1) z2p*(z) = po* + pi*z+ ■ ■ ■ + p*z" + ■ ■ ■

be regular for \z\ <1, real on the real axis, and />o*^l/4. If C is any non-

negative constant, the differential equation

d2W       I   / po*\      po*)(4.2, — + {c(^(,)- L-) + f~) W-0

has its indicial equation

(4.3) \2-\ + p0* = 0

independent of C. Let a*, ß* he the roots of (4.3). Since p*^ 1/4, a* and ß*

are real and so we have a*^ 1/2^/3*, a*+ß* = l, where

(4.4) 2a* = 1 + (1 - 4po*)112,        2ß* - 1 - (1 - 4/>o*),/2-

Let

(4.5) IFc = Wc(z) = z**Z a*(C)z",       a0*(C) = 1,
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be the unique solution of (4.2), corresponding to the real root a* of (4.3), and

depending upon the non-negative parameter C. The coefficients a* = a*(C),

all real, are determined from the recurrence relation

C[pn* + P»Ua? + ■■■ + Pi*a*_il
(4.6) crn* =-, n è 1.

n(n + 2a* - I)

From (4.6) it is readily seen that a*(C) is a polynomial in C of degree not

exceeding n, and, in particular, a continuous function of C for a*>0.

We shall show now that Wciz) is continuous in each of the three variables

C, a*, and z for C^0,a*>0, \z\ <1. If all the coefficients pk*,k = l, 2, ■ ■ ■ ,

in the expansion (4.1) are replaced by their absolute values, and if p* is

replaced by e — e2, e arbitrarily small and positive, we have a new function

which we shall call p(z) and

00

(4.7) z2p(z) = e - e2 + Z I Pi I **•
*—i

Let Co>0 be chosen arbitrarily large. Then the differential equation

d2W
(4.8) +  {-Co(?(z)-^) + ^}fF = 0

¿z2

has the unique solution

00

(4.9) Wc,iz) = z'^2 An(C0)z",       A0(Co) = 1,
n=0

corresponding to the smaller root e>0 of the indicial equation. Since z2p(z) is

regular in \z\ <1 whenever z2p*(z) is, the series for Wc0(z) converges for

|z| <1 for all C0. Moreover, the coefficients ^4„(C0) are determined by the

recurrence relation

(4.10) n(n + 2i - 1M»(C0) = C„[ | pn* | + | pn*-i \ Ax + ■ ■ ■ + \ pf \ An-i].

For O^C^Co, a*>6>0, it is readily seen that the coefficients a„*(C) de-

termined by (4.6) satisfy

(4.11) n(n + 2e - 1) | a*(C) | < C0[ | pn* \ + \ pi-ia? \ + ■ ■ ■ + \ Pi*a*_i \ ],

(4.12) | ai*(C) | < (hlhl = Al(Co).
2e

Thus

(4.13) | a*(C) | < AniCo) for # ê 1, 0 g C £ C0, a* > e.

Since the series Z"-o An(CQ)zn converges uniformly in z for \z\ <R<1, it

follows that the series Zn=o a^(C)zn converges uniformly in the three vari-
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ables C, a*, and z for 0:SC5íCo, a*>e>0, and \z\ <R<1. A similar State-

ment holds for the derived series Zn-o (n+a*)a*(c)zn ii a* is bounded

above. Since the coefficients a*(C) are continuous functions of C and a* and

the series Zm=o a*(C)z" converges uniformly in C, a*, and z, it follows that

Wc(z) and its derivatives with respect to z are continuous functions of C, a*,

and z for C^O, a*>0, \z\ <1. Similar arguments apply to W(z) if 2ca>0 in

(1.4).
Now that we are dealing with a function Wc(z) continuous in C, and be-

cause, for «Sil, an*(0)=0, a0*(0) = l, it is easily seen that

(4.14) lim  Wc(z) = IFo(z) = z"',

uniformly for \z\ ^R for any positive R<1, and W0(z) is the solution of

(4.2) when C = 0. By z" we shall mean exp (alogz), the principal branch of log z

being chosen.

Although Wc(z) is in general not single-valued in the neighborhood of the

origin, the logarithmic derivative W¿(z)/Wc(z) is single-valued and has a

simple pole at the origin. Since the coefficients are all real and a*(C) = 1, a*

>0 in (4.5), it is seen that for each C^O we have

(4.15) Wc' (p) > 0 for a range 0 < p < r(C),

and for the same range at least we also have

(4.16) Wc(p) =  f   Wc'(P)dp > 0.

Thus

pWd (p)
(4.17) -— >0 for0<p<r<l,

TFc(p)

where for C fixed, r is the smallest positive zero of Wc (p) (as a function of p)

or one, whichever is smaller. By taking C sufficiently small we may obviously

have r as near to one as we like. We shall see later that, under certain re-

strictions (not very severe) on p*(z), by taking C=C(R) sufficiently large

we can make W¿iR) vanish for any given R<1.

We are now ready to prove the following inequality of integrals which is

of fundamental importance in the proof of our main theorem. We state the

inequality as a lemma.

Lemma. Let yip), dyip)/dp=y'ip) be real functions, continuous in the real

variable p for 0 <p < 1. For small values of p let

y(p) = Oips),        y'ip) = CKp5"1), Ô > 1/2.

Then
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dp

P2
['' {Cip2p*ip)   -p0*)+pQ*}y*ip)"  0

(4.18)
C ' Wc ir)

è\     {y'(p))2dP-—^--y2(r),      0<r<l,
J o Wc(r)

where Wc(z) is the solution (4.5) of (4.2), and where C(^0) is chosen small

enough so that (4.17) holds. Equality in (4.18) holds if, and only if, y(p)

— hWc(p), a*>l/2, where k is an arbitrary real constant.

The conditions y(p)=0(ps), y'(p)=0(ps~1), ô> 1/2 guarantee the exist-

ence of the integrals involved. The lemma is proved with the use of the fol-

lowing identity and partial integration.

C'Y Wc'(p)        "l2

/•<■ cT Wc (p){y'iP)}2dp-        2y'(p)y(p) —-~{ dp
o J o Wcip)

r\     ,      r     Wc'(p)ir

C ' . . Wc'(r)        rT  Wc" (p)
=       Í y'ip)} 2¿p - yKr) —-f + I    -—— f(p)dP

J o Wc(r)       J o     Wc(p)

(4.19)

=  fr{y'(p)}2¿p-y2W
•7 o

Weir)       J o     Wcip)

We (r)

Weir)

dp
- r' [C(p2p*(P)-po*) + pi)y2(p)

Jo P*

Since the left-hand side of the identity (4.19) is non-negative, and zero only if

y(p)=kWc(p), the inequality (4.18) follows. When equality exists in (4.18)

it is necessary that a*>l/2, p0*<l/4. However, the inequality holds for

a*^ 1/2 if ô> 1/2. This completes the proof of the lemma.

5. Some new universal constants. Let z2p(z) be regular in \z\ <1 and be

given as in (1.1). Let

00

(5.1) IF = W(z) = z«Z«»zn, a0=lt  | a | < 1,
n=0
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be the solution (1.4) of the differential equation (1.2) associated with a given

p(z). We have a (1-1) correspondence between the function p(z) of (1.1)

and the solution W(z) of (1.4). Similarly, we have a (1-1) correspondence

between the function p*(z) of (4.1) and the associated solution Wc(z) in (4.5)

of the differential equation (4.2).

We shall now restrict p(z) by making it satisfy an inequality involving

p*(z) (p*(z) regarded as a given fixed function). Then we shall deduce an

inequality involving the associated functions IF(z) and Wc(z).

Let C^O, 7 (\y\ ^x/2) be assigned constants. Let p(z) be restricted so

that

(5.2) «{«***V(i)} ^ cos7[C{ \z\2p*(\z\) - p0*} + Po*]

for \z\ <1, and let 2ta>l/2. Let C he chosen small enough so that (4.17)

holds. Taking z = 0, we note that (5.2) implies in particular that

(5.3) ^(e'ypo) ^ po* cos 7 ^ (1/4) cos y.

We prove now the following preliminary theorem, comparing the solu-

tions W(z) and Wc(z).

Theorem A. Let z2p(z) be regular in | z\ < 1 and satisfy (5.2). Let the root a

of (1.3) be the one for which 3ca£: 1/2. Let

00

W(z) = z«Z ««2"- «0=1, | z| < 1,
n=0

be the unique solution of (1.2) corresponding to a. Let z2p*(z) be regular

in \z\ < 1 and real on the real axis with lim^o z2p*(z) =p0*is 1/4. Let

00

Wciz) = z<f£ a*iQz*, ao*(C) = l,
n=0

be the solution of (4.2) where a* is given by (4.4), a*^ 1/2. Then

(      zW'(z))        \z\Wc'(\z\) ,    .
(5.4) 9îV»-—>>-J—!-,        '    cos 7 > 0, z   g R < 1,

I       W(z) ) Wc(\z\) - '    '

for those values C, 0 ̂  C ̂  C(R), for which

(5.5) Wc' (r) > 0 in 0 < r < R.

If we assume further that

(5.6) max   dî{z2p*(z) \ = r2p*(r),
|«|-r<l

then

IzWé (z)\        \z\Wei\z\) ,    ,
(5.7) 9tJ }• ̂  '    '      , >0, z   <it<l,

I TFcW Í Wc(\z\)
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0^ C^ C(R), and rWc (r)/Wc(r) is a nonincreasing positive function of r for

O^r^LR when O^C^C(R), and for C=C(R) decreases from a* to zero as r

increases from 0 to R<1.

To prove Theorem A we use the Green's transform as given in the form

(3.4), and assume 9ta>l/2 to begin with. From (3.4), (5.2), and (4.18) of the

fundamental lemma we have for z = rew, r<l, 0 constant,

,      (      zW'(z))
W(s) *9t<e<T-ï

1      U|      I        W(z) )

(5.8)
f'lllHu                          CrC\p2P*(p)-Po*\  +fr*|„,|,J

Si r cos 7 |      | W 12dp — r cos y I     -| IF 12¿p
«To Jo P2

rWc1 (r)

C[p2p*(p) - Po*\ +Po*
r cos 7 I

J o

cos 7 I W(z) \2,
Wc(r)

which gives (5.4) when 3ca>l/2. But (5.4) holds also when $Ra = 1/2 since, as

we have seen previously, zW'(z)/W(z) is a continuous function of a when

9ca>0.
In particular, if p(z) is chosen so that

(5.9) z2p(z) =- C{z2p*(z) - Po*) + Pi,

and if p*(z) is chosen so that (5.6) holds, then it follows that the condition

(5.2) is satisfied when 7 = 0. Furthermore, the solution W(z) of (1.2) given

in (1.4) becomes identical with the solution Wc(z) of (4.2) given in (4.5).

Thus we may replace W(z) by Wc(z) in (5.4) when 7 = 0 and obtain (5.7).

Obviously, equality occurs in (5.7) when z is positive. Thus (5.7) shows that

zIFc' (z)       rWc' (r)
min Üí

Wc(z) Weir)

Because the minimum of a harmonic function does not occur at an interior

point of a domain, it follows that rWc(r)/Wc(r) is a nonincreasing positive

function of r for 0^r^R<l. We shall see a little later that this function for

C= C(R) decreases from a* to zero as r increases from 0 to R < 1.

We have seen that for a given R < 1 there exists a range for C, 0 g CjS C(R),

for which

(5.10) Wc'(r) > 0 in 0 <r < R.

We shall now show that (5.10) cannot hold for sufficiently large values of C

whenever (5.6) holds, and when z2p*(z) is not identically a constant. Because

of (5.7)

zW¿ (z)
(5.11) (piz) =--— = a* + biz + ■ ■ ■ + bnz" + ■ ■■

Wciz)
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has a positive real part for \z\ <R<1. Hence the coefficients b„ satisfy the

inequalities

,      ,       2a*
(5.12) \bn\ ^-, n = 1, 2, • • •  .

Rn

We conclude from (5.12) that |¿>„| is a bounded function of C. On the other

hand b„ is a polynomial in C with coefficients which are functions of the co-

efficients p*, k^l, and a*^1/2. For example,

Cpf [C2p!*2 + ±a2CpÍ]
bi = ai*(C) »-f-.        bi = 2ai*(C) - («f(C))2 = -       \ { J  •

2a* 4a2(2a + 1)

It follows from this point of view that | b„\ cannot be a bounded function of

C unless p* = 0 for k^l. The apparent contradiction is eliminated only if

either

(5.13) (i) IFc(r)>0 for all r in the interval 0<r<R<l whenever O^C

^C(R) < oo, while at the same time W'c(r) <0 for some value of r<R and

for every C such that C(R)<C<C(R)+5, 5>0 arbitrarily small;

or

(5.14) (ii) z2p*(z) is identically a constant.

In the second case (z2p*(z) = constant p0*) the solution Wc(z) of (4.2) is

the same as Wo(z) (C = 0) which we have seen in (4.14) to be z"'. For this

function W'c(r) >0 for arbitrary C^O and all positive r. Thus C(R) = °°. In

all other cases C(R) is finite. In what follows we shall suppose that this trivial

case is ruled out.

We shall show now that for any fixed R in the range 0 <R < 1

(5.15) W'cm(R) = 0.

Thus it is possible to determine the value of C(R) by finding, for fixed R,

the smallest positive root C=C(R) of the equation W'c(R)=0.

To prove (5.15) we note by (5.13) that for each 5>0, and for some r = r(ô),

0<r(b) <R, we have Wc(R)+s{r(o)} ^0. Let {S„} be a sequence of values of

ô for which 5„>0, lim„,oo ô„ = 0, Iim,,^ r(ôn) =r0exists. Then, obviously, 0^r0

^R. We have already seen that W'c(r) is continuous in C and r. Conse-

quently, since Wc(R)+s„{r(on)} ^0, we have in the limit as ô„—»0 the in-

equality W'c<R)(ro)áO. But Wc(R)(r)>0 for 0<r<R, so that in particular

Wc(R)(ro) =^0. We must conclude, therefore, that not only does WC(R)(r0) =0,

but f0 = 0or R. However, limr^0 WC(R)(r) is never zero if a*>0. This implies

then that r0^0. Thus r0 = R and WciS)(R)=0.

We note then by Theorem A and equality (5.15) that the function

[rWc(R)ir)/Wc(R)ir)] decreases from a* to 0 as r increases from 0 to i?<l.

Since it is possible to determine C(i?), and since C(R) is obviously a non-
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increasing function of R bounded below by zero, it is natural to seek the one-

sided limit of C(R) as 2?—»1—0. Thus, to each given function z2p*(z) there

corresponds a universal constant A =A(p*) defined as

(5.16) A = A(p*) =    lim   C(R)
K->l-0

which is finite, except when z2p*(z) = constant po* in which case A = oo. In

■Jther words, A is the largest value of C for which W'c(r) >0 for all values of r

in the interval 0 <r < 1. To see this we note from (5.13) that Wc(r) >0 for all

r in 0<r<i?<l when O^C^C(R), and in particular W¿(r)>0 for all r in

0O<i?<l when O^C^A. Since A is independent of R and R may be

taken as near to 1 as we like, we have W'c(r)>0 for all r in 0<r<l for

O^C^A. Thus

(5.17) WA(r) > 0 for all r in 0 < r < 1.

On the other hand, we have, from (5.13), Wc(r)^0 for C(R) <C<C(R) + ô

for all small ô>0 for at least one value of r in OO<1. It follows then that

for small 5 and R near enough to 1 we have, for all e>0 arbitrarily small,

A ;£ C(R) < A + e < C(R) + Ô

in which case

(5.18) W'cir) ^ 0 forC = A + t

for all small e>0 for some r in 0<r<l. Because of (5.17) and (5.18) we have

shown that for each e>0 there exists some r = r(e) in 0O<l for which

(5.19) WA(r)>0,        WA+e(r)^0.

(5.17) and (5.19) show that A is the largest value of C for which W'c(r)>0

for all r in 0 < r < 1.

We remark also that for every 5i>0, there exists a S^5i for which C(R)

= A+ô for some R in 0<i?<l, in which case W'a+s(R)=0. If this were not

so, since C(R) is nonincreasing and A = limr<i_0 C(R) we would have C(R) =A

for an interval 1—e<i?<l. In that case W'A(R)=0 for an R<1. This con-

tradicts the fact that WA(r)>0 for all r in 0<r<l as we have shown above

by (5.17). We conclude then that A is the largest value of C for which

|z| Wci\z\)/Wci\z\)>0, when z2p*(z) is not a constant, and \z\ <1.

We shall presently give examples of functions p*(z) for which positive

constants A(p*) are determined.

It is clear also that Theorem A may be restated with A(p*) replacing C,

and inequalities (5.4), (5.5), and (5.6) then hold for \z\ <l with C = ^4(^>*).

6. The main theorem. Let us now define F(z) as in (1.5)

(6.1) F(z) =  {W(z)}11" = z+ • • • .

Similarly, we write
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(6.2) FA(z) =  {WaÍz)}1" = z +

Then both F(z) and FA(z) are regular and single-valued in \z\ <1. Further-

more,

Í        zF'(z)) (      zW'(z))
(6.3) 9Nae^-—}   = 3c<^-— }t

I F(a) f I        W(z) )

(zFA'(z)) (zWJiz))
(6.4) a*9i\-—1=9^-ÜA

I FA(z) f I IF^(z) j

By Theorem A we have

(        zF'iz)) \z\WJi\z\)
(6.5) dt<aeiy-—>  ^ LJ-, cos y ^ 0, 0   < 1,

I F(z) J tF-i(   2   ) '

'zF^(z)|       J_   1 z j IFY ( j z 1 )

^(f) /   = «*        IF^( | z | )
(6.6) 9N-}  è — —-,   ', > 0, s   < 1.

Thus, F(z) is schlicht and spiral-like in |z| <1 for Ra^l/2. Furthermore,

FAiz) is schlicht and star-like in \z\ <l for a*2; 1/2. Since equality signs

hold in (6.6) when z is positive, and since we have seen that W'A+fiR) =0 for

some R in 0<ic<l and arbitrarily small but positive e, we conclude that

FA+dz) is not schlicht no matter how small e>0 is taken.

We shall show now that, if Aip*) >0 and z2p*iz) is not identically a con-

stant, then the radius of univalency (defined to be the largest circle with

center at the origin within which the function is both regular and schlicht)

of FAiz) is precisely one. To begin with, let us suppose that p*iz) has a singu-

larity on \z\ =1 and Aip*)>Q. From the differential equation (6.10) below it

follows that W'liz)/WAiz) also has a singularity on \z\ =1. Thus WAiz)

either has a zero or a singularity on \z\ =1. In either case F/Sz) cannot be

both regular and schlicht in any circle containing the unit circle \z\ =1. In

the second place, if p*(z) is regular on \z\ =1, then so is the function WAiz).

In this case, assuming Aip*)>Q and z2p*iz) not a constant, we may take

R = l in Theorem A, ¿(£*) = C(1), and W'Ail) = WC(1)il) =0. Thus, in this

second case, the derivative of FAiz) vanishes on the unit circle. In either of

the two cases we conclude that the radius of univalency for FAiz) is one.

It seems desirable at this point to summarize our conclusions in the fol-

lowing theorem, the principal object of this paper.

The main theorem. Let the nonconstant function

(6.7) z2p*iz) = ¿o* + p?z+ ■ ■ ■ + p*z" + ■ ■■

be regular for \z\ <1, real on the real axis and p*^l/i. Let

(6.8) dt{z2p*iz)\ g |s|y(|*|) for\z\<l.
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Let A=Aip*) be the universal constant associated with p*(z) as determined by

(5.15) and (5.16). Let
00

(6.9) WaÍz) = z«*Z «.**", «0* = 1, I 2 I < 1,

be the unique solution of

(6.10) IF" +  IA (p*(z) - ~\ + ~X W = 0

corresponding to the larger root a* of the indicial equation. Then the function

(6.11) FAiz) = {WAiz)}v«' = z+ ■■■

is regular, single-valued, schlicht and star-like with respect to the origin in \z\ < 1,

and is not both regular and schlicht in any larger circle whenever Aip*)>0,

and z2p*iz) is not a constant. For arbitrarily small and positive e the function

FA+e(z) is not schlicht in \z\ < 1.

Let z2piz) be regular for \z\ <1, and y a real constant i\y\ ^x/'2) for which

in \z\ <l

(6.12) <3t{ei*<z2p(z)) ̂  cos y{Ai\ z\2p*i\ z\) - pi) + p0*}

where A=Aip*). Let

00

(6.13) Wiz) = zaZa"Zn. «o=l, | z\ < 1,
n-=0

be the unique solution of

(6.14) IF" + p(z)W = 0

corresponding to the root a, with the larger real part, of the indicial equation.

Then the function

(6.15) F(z) = {W(z)}1'a = z+ • • •

is regular, single-valued, schlicht and spiral-like in \z\ <1. The constant A

= A(p*) is the largest possible one.

We remark that if z2p*iz) is a constant po*, then A ip*) = w and, for all C,

Wciz) =za\ 2a* = l + (l — 4p0*)1/2, in which case the function (6.11) is the triv-

ial function z. However, in this case the right-hand side of (6.12) is inde-

terminate, as indeed is (6.10). If it should happen that for some functions

Piz) the real part of {eiyz2p(z)} is bounded above by some constant K, then

we may deduce from the theory of functions with bounded real part that

2KI zI       1 - Iz I ,    ,
(6.16) 9t{e*zV(2)} £-7-7 +-r-r-VKpoe*), 1*1 <!•

1 +   z        1 + \z\
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In this case, rather than take z2p*(z) a constant in our theorem above we

may take z2p*(z)=z(l+z)~1+p0*, and the value of A(p*) which goes with

this choice. In this way an appropriate value for K is determined.

Corollary 1. The main theorem holds in particular if (6.8) is replaced by

the condition that {z2p*(z) —pi) be convex in the direction of the imaginary axis

for \z\ <1, and if (6.12) is replaced by the conditions that the function {z2p(z)

— po) be subordinate to the function A(p*){z2p*(z)—p0*) in \z\ <l and that

$tp»£po*.

Since {z2p*(z) —pi ) is to be convex in the direction of the imaginary axis,

and real on the real axis, it follows that the max|z|=r 9c{z2p*(z)} occurs for

z = r and (6.8) then holds. If also

(6.17) {z2p(z) - po) < < A(p*){z2p*(z) -po*},

and if dtpo^pi, we have

(6.18) 9t{z*piz) - Po) ^ A(p*){r2p*(r) - p0*,

and

(6.19) SR {z2p(z)} £ A (p*) {r2p*(r) - p0*} + pi-

Thus (6.12) holds for 7 = 0. This completes the proof of Corollary 1.

7. Illustrative examples. Since z2p*(z) was chosen to be not a constant in

the main theorem, we shall take the next simplest case for our first illustra-

tion.

Example 1. Let z2p*(z) = p0*+z, p0*£1/4. It will be convenient to write

Po* - a* - a*2, a* ^ 1/2.

Equation (4.2) becomes

d2W      (C       a* - a*2\
"■" -7F+{-7+-*-)w-0-

The solution (4.5) of (7.1) is

°° ( — Cz)n

(7.2) Wc(z) = T(2a*)z°' Z
n=o  n\T(n + 2a*)

(7.3) Wc(z) = ^^ (Cz)i'2/2a._1(2(Cz)1/2).

The equation IFc(i?)=0 leads to

(7.4) J2a*_i(2(CRyi2) + 2(Oc)1'l7L*-i(2(C7c)1'2) = 0.
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Thus

Xlia*)
(7.5) C(R)=—K—±,

AR

where Xi = Xi(a*) is the smallest positive root of the equation

(7.6) Jia'-i(X) + XJta'-iiX) = 0.

Xlia*)
(7.7) A = A(p*)  =   lim   C(R) = •

fi^i-o 4

(7.8) WA(z)=(-^rY   1T(2a*)z"2Iia^1(Xizli2).

(7.9) FA(z) = \(—-) "    r(2a*)z1'2/2„._1(X1z1/2)"|   " = s + • • • .

The function FA(z) of (7.9) is schlicht and star-like in \z\ £ 1, and its deriva-

tive vanishes at z = 1. Thus the radius of univalency of FA(z) has the value 1.

If a* = l (£o* = 0), we have as a special case the result that the function

(7.10) <Kz) =-z1'2/1(X1z1'2) -»+...,
Xi

where Xi is the smallest positive zero of Jo(A'), ^ = 2.405 • • • , is schlicht

and star-like in \z\ £1, but is not schlicht in any larger circle. As a conse-

quence we have the theorem

Theorem 1. Let zpiz) be regular for \z\ <1, and

i
Y

9t{z2*(z)}  < — I z[ for  \z\ < I,

where Xi is the smallest positive zero of JoiX) iX\/1 = 1.4460 • • • )■ Let

W = Wiz) = z + fl.2z2 + • • • + anzn + ■ ■ ■ , | z | < 1,

be the unique solution W= Wiz), iF(0) =0, IF'(0) = 1, of the equation

W" + piz)W = 0.

Then W= Wiz) is schlicht and star-like in \z\ <1. The constant X\/A is a best

possible one.

Example 2. Let z2p*iz)—z2, a* = l. Equation (4.2) becomes

d2W
(7.11) -+ CIF = 0.

dz2

The solution (4.5) of (7.11) is
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(7.12) Wciz) = C-1'2 sin iCl>2z).

We find W'c(R) =0 for C1'2i? = x/2. Thus

2 2

(7.13) CW=7^'       ^(#*)=T-
4.R2 4

(7.14) JFi(z) = — sin
x

sin I — z 1 =
\2    /

WA(z) of (7.14) has a radius of univalency equal to 1 and its derivative

vanishes at z = 1. We then have the theorem

Theorem 2. Let zp(z) be regular in \z\ <1 and (Ht[z2p(z) ) £(x2/4)|z|2 in

\z\ <l. Then the unique solution W= W(z), W(0) =0, 1F'(0) = 1 of

W" + p(z)W = 0

is schlicht and star-like for \z\ <1. The constant x2/4 is a best possible one.

Example 3. Let z2p*iz) =z/(l+z), a* = 1. In this case z2p*iz) is a convex

function, real on the real axis. Thus for \z\ =r<l

(7.15) max9í{z2¿*(z)} = —— = | z \2p*i \ z \ ).
1*1-' 1 + r

The solution Wciz), PFc(O) =0, W¿(0) = 1 of

C
(7.16) IF"-|-IF = 0

2(1 + z)

is

-1  -    »   ((2* - 3)2- 1        )      (-2)«

(7.17) IFc(2) = — Z IT {--r-+ C)
4 ) in — 1)!»!

(7.18)
(I + (1 - 4C)1/2      1 - (1 - 4C)1'2 \

IFc(z) = 2FÍ-—,    -1-— ;2;-zj

where Fia, ß; y; z) is the hypergeometric function

r(y)       "    r(a + n)T(ß + n)
(7.19) Fia,ß;y;z)=--^— Z —- z", | 2   < 1.

Yia)Yiß)to        r(7 + »)»! '

The equation W¿iR) = 0 leads to

(7.20) Fia, ß; 2; -R) - RF'ia, ß; 2; - R) = 0,

where

(7.21) 2a = 1 + (1 - 4C)1'2,        2ß = 1 - (1 - 4C)1'2,        «4-0=1.
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The equation (7.20) may be written as

(7.22) (1 - ß)Fia, ß; 2; - R) + ßFia, ß + 1; 2; - R) = 0.

The series for Fia, ß; 2; —1) converges absolutely while the series for

Fia, ß + l ; 2; — 1) converges conditionally for the values of a and ß given in

(7.21).
Using the integral representation

r(7)

r(0)r(7 - 0).
(7.23)    Fia, 0; 7; 2) = — f   ¿^(l - /)7"3_1(1 - z/)"»¿/,"siJ 0

valid when |z| <1, 9t7>9c0>O, in (7.22) we find that the left side of equa-

tion (7.22) is positive for 0<Cgl/4. Letting

1
s = —(4C - l)1/2> 0,

(7.24)
1

C = s2 + —,
4

and equating to zero the real part of the integral representation of the left

side of (7.22) we obtain, after considerable simplification, the equation

(7.25) r ços [slog jjl -t)/it + Rmd^Q_

Jo [til - t)(l + Rl)}1'2

1 2       1
(7.26) A(p*)  =    lim   C(R) =   lim s2(R) -\-= *i -\-

R-.1-0 B-i 4 4

where si is the smallest positive zero of the equation (7.25) when R = l.

Putting ex=(l—t)(t+t2)~1 in (7.25) we find that $1 is the smallest positive

zero of the function <p(s) defined as

/>  CO

(3 + cosh x)~112 cos sxdx.
0

By considering the contour integral

(7.28) £e(.si+imz(e2t + 6ez + i)-i/2rfz = 0,

where the contour is the rectangle with corners at z = 0, R, R + 2wi, 2wi and a

slit, parallel to the real axis and joining the points iri and 2 In (2ll2 + l)+iri,

it is possible to show, after letting R—-> 00 and taking real parts, that

/, 21n(21'î+l)
(3 — cosh .-vr)-1'2 cos sxdx.

0
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From il.29) it can be shown that

<t>(s) > 0,     0 £ 5 £— [In (21'2-r- I)]"1,

(7.30) ^ ^

<t>is) < 0,     — [In (21'2 + I)]"1 < 5 < — [In (21'2 + l)]"1.

The existence of the zero Si of (pis) follows from (7.30). It lies between 1.3

and 1.4. We omit the details of the proof of this statement.

If zpiz) is regular in \z\ <1 and

(7.31) $t{z2piz)) ^ Aip*)/2 in  [ gj < 1,

where Aip*) =Si + l/4, and si is the smallest positive zero of 0(s), determined

by (7.27) or (7.29), then for |z| <1

(7.32) 3c{z2¿(z)} £ Aip*) —Li!— = Aip*) \ z \2p*i \z\),
1 + I z|

and (6.12) is satisfied. From this we have the theorem:

Theorem 3. If zpiz) is regular in \z\ <1, and if

1 2        1 ,    ,
dt{z2piz)) Û—S1 + —,                               \z\ < 1,

2 8

where si is the smallest positive zero of the function

/I   00

(3 + cosh x)~112 cos sxdx,
o

then the unique solution W= Wiz) of the form

00

W  =  2 +  Z a»Z", I 2 I   <   I,
n=2

of the equation

d2W

dz2
+ piz)W = 0,

is schlicht and star-like in \z\ <1. The constant 5i/2 + l/8 cannot be replaced by

a larger one.

We remark that for C = Aip*) =5? + l/4 the hypergeometric function

(multiplied by 2) in (7.18) is schlicht in \z\ £1 and its derivative vanishes at

2=1. This solution corresponds to a choice of

(7.33) z2piz) = Aip*)z2p*iz) = Aip*)zil + z)"1
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in which case ¿>o = 0, a = l.

If ^o^O and if z2piz) is regular in \z\ <1, Theorem 3 could have been

stated in a somewhat more general form provided we assume 9î£o£0 and use

(6.16) with 7 = 0. In this case a 9*1.

Example 4. Let

(7.34) z2p*iz) = ¿ Pn*z",        K=— '
n=0 4

be regular in j 2: [ <C 1 with p*^0, « = 1, 2, • • • . Suppose \z\ =1 is a natural

boundary for z2p*iz). This is the situation if, for instance, the series has suffi-

ciently large gaps. Since none of the coefficients is negative, the condition

(7.35) max tit{z*p*iz) ) = | z \2p*i \z\)

of the main theorem is fulfilled. We then determine the constant A =Aip*)

by (5.15) and (5.16). If A >0 we see from (6.9) and (6.10) that the solution

FAiz) of (6.11) corresponding to our choice of z2p*iz) in this example is

schlicht and star-like in \z\ <1, and, moreover, has the unit circle as a na-

tural boundary. Thus we have a device for constructing schlicht functions

with natural boundaries whenever Aip*) can be determined in a construc-

tive way, and provided it is not zero.

Example 5. That A =Aip*) can sometimes be zero is shown by the fol-

lowing illustration. Let

(7.36) z2p*iz) = z2(l - z2)-2.

Here p0* = 0. The solution [3] corresponding to a*=l of

C
(7.37) IF" H-IF = 0, C ^ 0,

(1 - z2)2

is

((l + z)/(l-z))5'2-((l-z)/(l + z))8'2
(7.38) IFc(z) = (1 - z2)1'2-

28

8 = (1 - 4C)1/2 5¿ 0.

(7.39) lFc'(r) =  [(5 - r)(l + r)s + (Ô + /-)(1 - r)s] -=- 25(1 - r2)<1+5>'2.

Let y = yib) he the numerator of (7.39): For values of r sufficiently close to,

but less than, one and for e>0 arbitrarily small we have

y = 2r(l - r)r > 0 when 5 = r < 1,

y = - er(l + r)(1-e>r + (2 - «)r(l - r)^' < 0 when 5 = (1 - t)r.

Thus y = 0 for at least one root 8 = 50, (1 — e)r <ô0<r. As r—*l, b0—»1, since e
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may be taken arbitrarily small. In this case C=C(r)—»0. Thus Aip*)=0,

WAiz)=z.

Although Wciz) in (7.38) is indeterminate when 5 = 0 (C=l), a limiting

process gives

1
(7.40) IFi(z) = — (1 - z2)1'2 log (f^>
The derivative of IFi(z) vanishes within the unit circle. Since W^z) is there-

fore not schlicht in \z\ < 1, it is sufficient to consider as we did only the range

0£C<1 for TFc(2) in (7.38) (5 real and positive).

8. Concluding remarks. Throughout this paper we have confined our in-

vestigation to the solution of

(8.1) W" + piz)W = 0,        z2piz) regular in | z | < 1,

which corresponds to that root a of the indicial equation for solutions about

the origin for which the real part of a is the larger (or, if the real parts are

both equal, to a solution about the origin which does involve log z). The reason

for this is fairly obvious: the integrals in the Green's Transform (3.4) do not

exist for 9ca<l/2.

This, however, poses the question as to whether our main theorem may

not still have a counterpart for the other root ß, if we assume 9c/3>0 and

employ a modified method of proof. I am leaving this question open for

further investigation, but point out here that the Green's transform may be

rewritten so that the integrals exist for dtß>0. We multiply (8.1) by zWdz

and integrate from 0 to z, \z\ <1. This gives

(8.2) I    zWiz)W"iz)dz + f   zpiz) | Wiz) \2dz = 0.
•7 o «7 o

Integrating by parts, we obtain

.         ,   zlF'(z)       rz , .   _      cz —
\Wiz)\2-=j     | W'iz) \2zdz + I    W\z)Wiz)dz

(8.3) W(Z)       J° J°

-/:
zpiz) I Wiz) \Hz.

If the path of integration from 0 to 2 = reie is a straight line segment, 0 — con-

stant, we have

,      .    (zW'iz))     cr i    , rr    (zW)      .
\wiz)\m<——} = I   \w\2pdp+     m\—>      \w

\ Wiz) f      Jo   '       ' Jo        I IF/,,1^1
(8.4)

/'r    , i i      i    ¿PK{z2piz))izl=p\w\2 -•
o p

dpi _
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It is seen at once that in this modified form Green's transform involves

integrals which exist for ÛÎ/3>0. However, an additional term has been added

to the formula which means that some further modifications of attack on the

problem are necessary to obtain results for the case 3c0>O analogous to those

found in this paper.
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