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1. Let us denote by C the class of functions /(z) regular for | z\ < X which

have power series expansion about 2 = 0 beginning

/(z) = axz + a2z2 + • • ■

and which satisfy the condition

fizi)fizi) * 1, |zi| < 1,   |z2| < 1.

Bieberbach [l ] first considered such functions with the additional assumption

that they be univalent. He showed that for them |ai| SX, equality occurring

only for/(z)=e,öz, d real, this result being equivalent to the Koebe 1/4 Theo-

rem. Eilenberg [2] showed that the assumption of univalence was unneces-

sary. Rogosinski [8] also studied this class of functions, proving in particular

the important result that any function in C is subordinate to a univalent

function in C. Let us mention that the Bieberbach-Eilenberg theorem can

easily be proved using the methods discussed in [5]. In this paper we shall use

related methods to prove deeper theorems for functions of the class C.

2. Theorem 1. Let /r(z) = iX-r2y'2z/iX+irz) (r<l). Then /r(z)GC and

for  \z\ =r, fiz)EC,   |/(z)| Sr/iX — r2)112,   equality  being  attained   only for

±fAze") at the point z = ie~"r.

The mapping w=/r(z) carries |z| <1 into the interior of a circle K passing

through w= + X and w= — X. The segment of the imaginary axis joining 0

and ir goes into the segment Si of the imaginary axis joining 0 and

ir/iX — r2)1/2. Set a = r/(l —r2)1'2. The quadratic differential —idw2/wiw — ia)

iw+ia-1) is positive on Si, K and on 52, the image of Si under the transforma-

tion w* = X/w. Since K is invariant under this transformation we see at once

that the module of the doubly-connected domain bounded by Si and Si is

equal to twice the module of the doubly-connected domain bounded by K

and Si ii = X, 2). The latter is equal to the module M of the unit circle slit

rectilinearly from 0 to ir. In each case we mean the module for the family of

curves separating the two boundaries [6].

Let now/(z) G C,/(z) univalent, and take any point on \z\ =r, say re".

Letfiz) map the rectilinear segment from 0 to re" on an arc S¿* in the w-plane

from 0 to fire"). Let 52* be the image of S* under the transformation w*

= X/w. By a well known result of Teichmüller [9] the module of the domain

D bounded by S* and S2* is at most equal to the module of the domain D*
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obtained by slitting the w-plane rectilinearly from 0 to fire") and from

— X/fire") rectilinearly in the opposite direction to infinity. Equality is

possible only if D and D* coincide. On the other hand the module of D is at

least 2M by Grötzsch's Lemma. Comparing D* with the domain bounded

by Si and 52 we see that |/(rei9)| Sa. Using the equality conditions in the

above result of Teichmüller and in Grötzsch's Lemma we see we can have

|/(rei9)| =a only for the functions and points stated in the theorem. Using

Rogosinski's subordination result we obtain the theorem for all/(z)GC.

The main result of this theorem can be obtained using instead the method

developed in [6]. It has the disadvantage, however, that it does not in general

provide uniqueness theorems due to the intervention of a symmetrization.

That method will be used in the remainder of this paper.

3. We wish now to prove similar results for the maximum and minimum

values of |/(z) | for | z\ =r within the subclass of functions of C which have a

given value of |ai|. Naturally we can hope for reasonable minimum results

only under the further assumption that /(z) is univalent. In the case of

maximum results we can also assume we are dealing with univalent functions

in view of Rogosinski's subordination theorem.

We shall now construct a family of functions which will provide the

extremals in this problem. Consider the unit circle |z|<l and the points

0, p, r, 1, —1 i — XSpSX, 0<r<l) on its diameter along the real axis.

Regard in the upper semicircle the function

r> Hz-p)ipz- X)Y'2
? =   I-¿z.

J     ziiz - r)iz - r-1))1'2

It is understood that this function is defined by continuity in case p assumes

either of the positions 0, r. Further the radicals are to have their positive de-

terminations on the real axis just to the right of 0. The lower limit of the

integral may be taken as any suitable point. Let the images of 0, p, r, X, — 1

be denoted by A, B, C, D, E. We shall assume r to be fixed and describe the

image of the upper semicircle in various cases, depending on the value of p.

Case I: 0<p<r. A is situated at <». AB is a horizontal half-infinite seg-

ment on which 9îf increases as we go from A to E. EC is a vertical segment

on which St decreases as we go from B to C. CD is a horizontal segment on

which 9îf increases as we go from C to D. DE is a vertical segment on which

St increases as we go from D to E. E^4 is a horizontal half-infinite segment on

which 9îf decreases as we go from E to A. The value of St on it is greater

than the value on AB.

Case II: —X<p<0. A is situated at =°. AC is a horizontal half-infinite

segment on which Uîf increases as we go from A to C. CD is a vertical segment

on which St increases as we go from C to D. DE is a horizontal segment on

which dtt decreases as we go from D to E. EB is a vertical segment on which

St decreases as we go from E to B. BA is a horizontal half-infinite segment
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on which dit decreases as we go from B to A. The value of St on it is greater

than the value on A C.

Case III: p= —X. This is the limiting situation in Case II when B and E

come into coincidence. BA becomes a continuation of DE.

Case IV: r<p<X. A is situated at =°. AC is a horizontal half-infinite

segment on which dit increases as we go from A to C. CB is a vertical segment

on which St increases as we go from C to B. BD is a horizontal segment on

which dit increases as we go from B to D. DE is a vertical segment on which

St increases as we go from D to E. E^4 is a horizontal half-infinite segment

on which dit decreases as we go from E to A. The value of St on it is greater

than the value on A C.

Case V: p = X. This is the limiting situation in Case IV when B and D

come into coincidence. BC and DE are then collinear.

Case VI: p = r. This is the limiting case between Cases I and IV when B

and C coincide.

Case VII: p = Q. In this case A and B coincide and C, D, E form the other

three corners of a rectangle. This case corresponds to the problem solved by

Theorem 1. It can be treated in a manner entirely parallel to the others but

because we already have a complete solution in this case we shall not give it

special explicit mention.

In each case we rotate the domain so obtained through 180° about the

midpoint E of DE, denoting the images of A, B, C, D, E by A', B', C, D', E'.

Identifying the points of DE and D'E' which coincide in pairs we obtain a

new domain. The latter domain we map conformally on the left-hand half-

plane 3w<0 in the w-plane in such a way that A goes into w = 0 and A' goes

into w= oo. Rotation in the t-plane through 180° about E corresponds in the

w-plane to a linear transformation of 3w<0 onto itself interchanging 0 and

oo. This transformation has the form w*=a/w, a real and positive. The fixed

point —a112 (positive root) is the image of P. We adjust the original con-

formal mapping in each case so that this becomes the point — 1 and the linear

transformation becomes w* = X/w.

Let the images of B, C, D, E he il, im, if, ig where m>0, />0, g<0 and

we may have l = m,f, or g. Then the images of B', C, D', £' are —i/l, —i/m,

—i/f, —i/g, i.e. /= —X/g. If we extend t as a (non-single-valued) function

of w to the whole w-plane by reflection in various segments of the imaginary

axis we see at once that ¿f2 is a quadratic differential on the w-sphere with

double poles at 0, oo, simple poles at im, —i/m, and simple zeros at il, —i/l

(except for Case VI where the latter cancel). Indeed we can write

iw — il)iw + i/l)
¿f * = K —---V— dw2

w2iw — im)iw + i/m)

with K a suitable positive constant. This is understood to be defined by

continuity in the limiting cases. The curves on which ¿f2>0 will be called
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trajectories, those on which ¿f2<0 will be called orthogonal trajectories.

Regard now the combined mapping from the upper unit semicircle in the

z-plane into the w-plane. Reflection across the segments joining —1 and 1 in

the z-plane and —i/f and if in the w-plane leads to a function/(¿z; r, p) regular

and univalent for \z\ <1. It maps |z|<l on a domain in the w-plane which

we denote by E(r, p) and which is bounded by a trajectory or an orthogonal

trajectory of ¿f2 (or by several such meeting at critical points in the limiting

cases). Moreover/(z; r, p)EC in view of the fact that the mapping w* = X/w

carries Dir, p) into its exterior. We observe that f(z; r, r) =z.

In Cases III and V we can obtain, however, not just one function but a

whole continuum of functions which will have the extremal property. We shall

discuss more completely the construction in Case III, that in Case V being

entirely analogous. Now, instead of rotating the domain about E we rotate it

through 180° about any point Q lying between E and D (using the same

notation as before). We again identify the points of DE and D'E' which

coincide in pairs to obtain a new domain. However we do not now have

D=E' or E=D'. The remainder of the construction is the same except that

Çgoes into w= —1 instead of P and we do not have/= — X/g, indeed/< — X/g.

We denote the continuum of functions so obtained by/(z; r, —1, X) where X

runs over 0<X<1 as Q runs over the open segment PD.fiz; r, —X, X) maps

|z|<l on a domain E(r, —1, X) bounded by two trajectories joining if and

— i/f (the zeros of dt2) and slit along the imaginary axis and from —i/f to ig.

As before /(z; r, —X, \)EC. In Case V we obtain similarly functions

/(z; r, X, X)EC. Here we rotate about a point E between E and E and Xruns

over 0<X<1 as E runs over the open segment PE. The image of |z|<l by

/(z; r, X, X) will be denoted by 7>(r, 1, X).
Naturally the quantities /, m, f, g depend on the particular situation and

will be denoted by mir, p), mir, —X, X), mir, X, X), etc., when appropriate.

4. Theorem 2. Let giw) be regular and univalent in Dir, p) (E(r, —1, X),

Dir, 1,X)) withgiO) =0, |g'(0)| =1 and such that g(wi)g(w2);¿l, Wi, w2GE(r, p)

(E(r, -X,\), Dir, X,\)). Then for m = mir,p) imir, -1, X), w(r, 1, X))

| giim) | S m

when

- 1 S P S r,        0 < X < 1

and

I giim) I ̂  m

when

r S P SX,       0<X<1.

When p = r the result is an immediate consequence of the Bieberbach
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theorem. For p = 0 it follows by our Theorem 1. Otherwise the details of the

proof are somewhat different according as we are dealing with Case I, II, III,

IV, or V (although the same for the whole continuum of domains correspond-

ing to Case III or Case V). We shall give here complete details only in Case I

and indicate briefly the necessary modifications for the others at the end.

We consider the orthogonal trajectories of the associated quadratic dif-

ferential dt2 which we denote by Qiw)dw2. Near w = 0 these are Jordan curves

which tend to circular form as they shrink down to w = 0. In this case 0<Km

and from il emerge three arcs of orthogonal trajectories. One proceeds along

the imaginary axis to im. This segment we denote by 7i. The other two join

to form a Jordan curve which we denote by E2. The latter bounds a simply-

connected domain containing w = 0. Let L be a small orthogonal trajectory

in the neighborhood of w = 0. L and E2 bound a doubly-connected domain

which we denote by D\. Between the boundary 77 of E»(r, p) and TiVJT2 lies

a second doubly-connected domain which we denote by 7>2.

Let us regard now the image of Dir, p) by giw). We may, without loss of

generality, assume that the image domain is bounded by a smooth curve S

since otherwise we should apply the following argument to an approximating

sequence of such domains. Suppose the image to lie in the w'-plane, w' = ^+ir¡.

Let E', 77, 77 be the images of E, Ei, E2. L' and E2 bound Di, the image of

Ei, and 77 U77 and 5 bound Di, the image of 7>2. By conformai equivalence

D', (* = 1, 2) has the same module as Di, this being understood as taken in

each case for the class of curves separating the boundaries [6]. Let coi(£, rf) be

the function harmonic in Di taking the value 2 on E' and the value 1 on E2 .

Let «2(£, rj) be the function harmonic in Di taking the value 1 on 77 W77

and the value 0 on S. Define co(£, -n) to equal 2 on the interior of E', to equal

«i(£, v) on Di, and to equal w2(£, r¡) on Di.

Now consider the surface w=«(if, rj) lying in 3-space over the (£, r¡) plane.

We apply to it circular symmetrization with respect to the half-plane through

the positive rç-axis and perpendicular to the (£, r¡) plane. In this way we ob-

tain a function ¿;(£, r¡) defined over a symmetrized domain. The set on which

1 <w<2 is a doubly-connected domain A bounded by curves L and T2 cor-

responding to E and E2. The set on which 0<<£<1 is a doubly-connected

domain D2 bounded outside by S corresponding to S and inside by E2 plus a

segment TV on the imaginary axis.

Let D, have the module M{, Di the module M¡ (î = 1, 2). Then by a stand-

ard form of argument [7, pp. 185, 194; 6] it follows that M,^Af¿ (* — l, 2).

Let E* be the image of L under the transformation w* = X/w and let SD

be the doubly-connected domain bounded by E and L*. Let E be a point on

the positive imaginary axis in 3) and E* its image under the transformation

w* = X/w. In © we regard the following module problem. Let G denote the

class of rectifiable Jordan curves lying in £) and separating E from E, E*, and

E*. Let C2 denote the class of rectifiable Jordan curves lying in 3) and sepa-
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rating E and E from E* and E*, these curves being further restricted to be

homotopic to such a curve symmetric in the imaginary axis. Let G denote

the class of rectifiable Jordan curves lying in 35 and separating E* from

E, E, and F*. Let p be a real-valued non-negative function of integrable

square over 35 and such that for c,GG ii=X, 2, 3), fCip\dw\ exists and that

I     p | dw [ =; a, I     p\ dw \ è b, I     p\ dw \ ï: a
J cj J c2 «/ C3

with 0<a<&. Then let the greatest lower bound of ff<&p2dudv for all such

functions p be denoted by Mia, b, L, F). This actually is a minimum attained

for a function p for all choices as above. That this is so can be shown by a

general construction method but the general result will not be needed here.

Let now E coincide with the point im. In the metric ¡ Qiw) \ 1/2| dw\, which

we call for short the Ç-metric, all orthogonal trajectories of Qiw)dw2 in the

classes G and G have a given length, say a, and those in the class G have a

given length, say b, with b>a. We then verify at once that | Q(w)| 1/2|¿w¡

provides the extremal metric in the corresponding module problem and this

whatever the choice of E.

Now for a point G in 35 with affix ik, k>m, we have Mia, b, L, F)

¡zMia, b,L,G)+d where a, b are as above and ¿>0 is independent of the choice

of L but depends on G. This can be seen in various ways, perhaps most easily

by observing that it is possible to modify the function | Qiw) |1/2 by setting

it equal to zero in a sufficiently small neighborhood of F to obtain a function

admissible in the competition for the greatest lower bound Mia, b, L, G),

independent of the choice of L.

In the domain 35 let there lie four doubly-connected domains Ei, E2, E3, E4

which do not overlap, have modules Ni, iV2, Nz, Ni, and are situated as fol-

lows: Ei separates E from G, G*, and E*; E2 and E3 separate E and G from

L* and G*, having the same topological situation as curves of the class G, E4

separates L* from E, G, and G*. Then

(1) Mia, b, L, G) ^ a2iNi + N4) + b2iN2 + rV,).

Indeed if the function p is admissible in the module problem defining

Mia, b, L, G), the function p/a is admissible in the problem defining the

module TVi of Ei. Thus

-//,
p"-dudv ¡t Ni.

El

Similar results hold for the other domains and thus

f f pHudv ̂  a\Ni + Ni) + b2iN2 + N3).
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Since Mia, b, L, G) is the greatest lower bound of the left-hand side, the

inequality (1) follows.

Suppose now that we had, contrary to the statement of Theorem 2,

|g(i»i) >m. Then in the configuration obtained above by symmetrization

the end of Ti not on T2 would have an affix ik, k>m. We let this point play

the role of G. Let Ei = DiP35. By the manner in which E tends to circular

form as it shrinks down to w = 0 it follows that the module TVi of Ei is such

that | Mi — Ni\ tends to zero in this limit. Let E2 = D2. Let E3 and E4 be the

images of E2 and Ei under the transformation w* = X/w. These domains do

not overlap the preceding. Indeed, using the property that giwi)giwi) ^ 1,

Wi, WzEDir, p), we see that the domain bounded by S, and thus the domain

bounded by S, does not overlap its image under the above transformation.

Now Ei, E2, E3, E4 have modules Ni, M2, M2, N\. On the other hand from the

fact that the Ç-metric provides the minimum Mia, b, L, F) we deduce at once

Mia, b, L, F) = 2a2Mi +2b2M2- Combining this with the preceding inequalities

we have

2a2Mi + 2b2M2 è 2aWi + 2b2M2 + d.

Using the fact that we can make | TVi — 2Wi| as small as we please by making

L small enough, this contradicts the fact that M¿^ Mi (i = l, 2). This proves

Theorem 2 for Case I.

We shall now indicate very briefly the modifications necessary for the

proof in the other cases.

Case II: We work with trajectories instead of orthogonal trajectories.

Instead of the two doubly-connected domains Ei and 2?2 we have a quadrangle

with a pair of opposite sides on E (chosen as before) and an enclosing doubly-

connected domain. The details of the proof are much as in [6].

Case III: In this limiting case the doubly-connected domain drops out.

The same method works for the whole continuum of functions.

Case IV: Here we work with orthogonal trajectories again. We have two

doubly-connected domains and the details are very much as in Case I.

Case V: In this limiting case one doubly-connected domain drops out.

The same method works for the whole continuum of functions.

5. Corollary. If, in addition to the conditions of Theorem 2, giw) satisfies

the condition of being purely imaginary on the imaginary axis, then equality can

be attained in the inequalities of that theorem only if giw) =+w in Dir, p)

(E(r, -l,X),E(r, 1, X)).

Indeed in this situation it is not necessary to apply a symmetrization and

we then obtain the uniqueness result by a standard argument as in [4].

From this it follows at once that no two values of /'(0; r, p), —XSpSr,

and/'(0; r, —1, X), 0<X<1, can be equal. We observe that all these values

are real and positive. Also a straightforward argument in the theory of normal
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families shows that/'(0; r, —1, X) tends to zero as X approaches 1. Since

further/'(0; r, r) = X it follows by continuity that for fixed r there is just one

function in the above set with its derivative at z = 0 equal to c for each c in

0<cSX. This function we denote by Fiz; r, c). Similarly there is for fixed r

j ust one function among /(z ; r, p), rSpSX, and fiz ;r, 1, X), 0 <X < 1, with its

derivative equal to c for each c in 0<ei£l. This function we denote by

27(z; r, c). We are then in a position to state our main result.

Theorem 3. If fiz) EC and |/'(0)| = c, then \fire")\ SSPiir; r, c) for each
r,O<r<X,0 real.

If fiz)EC and is univalent and |/'(0)| =c, then \fire")\ —SHiir; r, c)

for each r, 0<r<l, d real.

This follows at once from Theorem 2 making use of Rogosinski's sub-

ordination result.

Finally it should be remarked that the methods of this paper serve to

treat various other problems for the class G
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