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If F(z) is an entire function of order <2, then

00

F(z) = azmeb*T\(\ - z/Xn)e*A».

When F(z) is even or odd the form becomes

00

(1) F(z) = az™H(l - zWn)
n=0

with m even or odd, respectively. Our purpose here is to study the relation

between the growth of F(z) in (1) and the distribution of the zeros, a topic

which has already formed the subject of many investigations. Without essen-

tial loss of generality we can, and do, take

(2) F(z) = fl(t - z2/K),        E1/|X„|2<^.
n-0

For simplicity it is assumed in addition that X's are real, unless we state the

contrary, the notation being so chosen that 0<Xo = Xi^X2^ • • • . Through-

out the paper A(w) denotes the number of X's which are less than u. Although

Levinson [l ] has shown how some of the results for complex X's can be de-

duced from those for real, the reduction of the one case to the other is diffi-

cult; and hence the assumption of real X's involves a loss of generality.

Within this framework we give simple proofs, and sharpened forms, of

many known results, to which reference is made at appropriate points of the

sequel. Some of the facts established are used to discuss the L2 completeness

of exponentials on a given finite interval.

Representations for F(x). As in [3], for real x

log | P(x) | = Z log | 1 - x2/X2„ |

/I  00 ,

log I 1 - x2/u2 I ¿A(«)
a

/i x—b /» oo

log (x2/u2 - l)áA + j     log (1 - x2/u2)dA
a J x+b
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where a is any real number between 0 and Xo, while b is any real number such

that the interval (x — b, x+b) has no zeros. Since _t_l/X»< » for convergence

of the infinite product, and since the X's are monotonie, we have n/\n—>0.

From this it follows that

(4) A(w) = o(w2), u—> ».

If we now integrate by parts in (3), Equation (4) shows that the integrated

term vanishes at ». It also vanishes at a, since a<Xo. Combining the inte-

grated terms at x—a and x+a, as in [3], leads to

U.x-6        r. m \  uu\    2x2du       A(x)

+ \—~-2+^(36 + P)
a J x+b)        U X1   —   Ul X

where the error-term E satisfies P = 0(l/x) as x—♦ ». It is shown in [3] that

log |P(x)|  is dominated by the expression on the right of (5), for large x,

even when the interval (x — b, x+b) contains zeros; that is, the extra zeros

introduce a new error term which is always negative.

If we define A (w) by

(6) A(m) - Ai») + Du

where D is constant, then (5) yields, after a short calculation,

/ px-b       ("» ) Aiu)    2x2du

log|F(x)|={) +/       f-~--j
{J a J x+b)        U        X2  -  «"

(7)
A(x)

+ (36 + P) -^ - (20 + 6 + Ei)D
x

where Pi also is 0(l/x). Within terms of this order the result is independent

of a and b, as it should be.

Since x-f-6<x2/(x —6) <x2/a< » for large x, and since the integrand in

(5) is negative for w>x, the expression (5) is increased^) if the limits x-f-6, »

are replaced respectively by x2/(x —6) and x2/a. Making that change in (5),

and letting u =vx in the first integral, u = x/v in the second, gives

/l—blx
piv, x)2dv/il - v2) + oil),

(8)
A{ux)       Aix/v)

piv, x) =  -■-;—
vx x/v

as in [3]. That the inequality holds for all x follows from the remark made

earlier concerning the effect of zeros near x. Also the relation holds as an

equality, with o(l) replaced by 0(l/x), when A(w)/w is bounded and | x— X„|

>c>0.

(') This remark, due to Robert Steinberg, simplifies the original presentation.
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A theorem of Carlson. The condition lim A(u)/u = D implies log | P(x)|

^o(x), provided X„+i—Xn>c>0 (see [4]). Although previous proofs [l ; 3; 4]

make essential use of the latter hypothesis, it has been observed (for example

by Levinson [l ]) that the condition can be weakened. Later it was shown by

Pfluger [7] that the condition can be dropped altogether; in fact, one requires

only 2Zlm (lAn) < °°- For even functions a similar result is deducible from

the work of Titchmarsh [8]. Here we give a new proof which uses real-

variable methods only:

Theorem I (Titchmarsh, Pfluger). 7/lim A(u)/u = D, then log |P(x)|

^o(x).

For proof, write the integral in (8) as

(9) 1 p(v, x)2dv/(l - v2)
Ui S /» 1—5 /» 1—blx\

+ + > p{v, x)2dv/(l
a/x J S J 1-8        )

where ô is a fixed small number. As in [3] the first integral is 0(h), since

A(u)/u is bounded. Again as in [3], the second integral tends to zero, for fixed

positive ö, when x—»oo. The third integral may be written

(10)
/:

-blx   A(vx) — A(x/v)       dv

1

/i i-bix ruvx)       A(x/v)~]   dv

—— + -i-f?-
i_s      L   vx          v(x/v) J1 + V

The expression (10) is =0 since A(u) is monotonie, and (11) is 0(8) since

A(u)/u is bounded. Choosing ô first and then letting x—>oo, we obtain the

theorem.

Since A(u) is nondecreasing, it is a simple exercise (probably due to

Landau; also see the lemma for Theorem XI) to show that

1   /•»
lim— |

A«
-— dt = D

implies lim A(u)/u=D and hence implies Theorem I. Thus, Cesàro existence

of the limit suffices. The Littlewood 0(1/«) theorem shows that Poisson

summation

lim   (1 - x)2Z i*n/n)xn = D
¡r-»l-

also suffices, provided Xn = 0(w). A less trivial extension of Theorem I is

possible, however, as we shall now see. The only use made of the condition

lim A(u)/u = D was to obtain the boundedness of A(u)/u, and to ensure the

vanishing of fl~s in (9) as x—>°o. In fact the proof shows that log+ | P(x)|

= o(x) it A(u)/u<M, and
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/» l-J

(12) lim   lim   I       piv, x)_z>/(l - v2) = 0.
S->0   as-»«   J s

It will be seen later that this result and the following(2) generalize Theorem I,

in that they apply even when A(m)/m has no limit.

(13) lim P^ - ^1 = 0,
_-.» L   vx x/v   J

Theorem II. If K{u)/u is bounded and if, for each positive v,

'A(î)x)       A(x/V)~

x/v

then

lim log+ | Fix) | /x = 0.
X—*°o

It suffices to show that the limit (13) holds uniformly in v, if 0<8^v

__ 1 — 5; for from this (12) follows. The uniformity is a simple consequence of

Lemma 1. Under the hypothesis of Theorem 11 we have

AiatXi) - A(x.)
(14) hm- = 0, i—>»,

Xi

whenever lim a¿ = 1, lim x¿ = ».

Let us consider the i's in (14) for which a¿_: 1 ; discussion of the others is

similar. Given e>0, choose a>l so that (a — l)M<e, where M is a bound for

A(w)/w. If i is so large that 1 _áai^a, the monotonie character of A(w) gives

A(a,x,) — A(x»)       A(ax,) — A(x,-)
0 iS —-—- ^ —-—-

Jv% Jt/%

tA(aXí)        A(x¿)"|       A(0x,-)

0X¿ Xi     J 0X¿

As Xi—>» the expression in brackets approaches zero, in view of (13); and

hence, by our choice of a, the limit is at most e.

Having established the lemma, we suppose now that (13) holds, but that

the convergence is not uniform for 0<S^î)^l — 5. This means that there is a

sequence z\- taken from [ô, 1 — 6], and a sequence x¿—»», such that

(15)
Aixi/vi)       Aixivi)

•v¿/ Vi OCiVi

_? P> o,

where p is fixed. The Weierstrass theorem enables us to assume z>;—>z>, where

b<v<l-ô.

(2) It is a pleasure to acknowledge the author's indebtedness to Paul Erdös, who pointed

out the possibility of extending Theorem I in this way, and also verbally sketched a proof.
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Equation (13) for this value v yields

A(xi/vi)       A(xiV2/vi)
(16) hm

Xi/Vi XiV2/V{

= 0, Xi

the role of x in (13) being taken by x,z</z>¿. Combining (16) with (15) shows

that

(17)
A(xiV2/vi)       A(xivi)

^P/2
XiV2/Vi XiVi

for large x,-. Since [xiV2/vi]/(x^i) = (v/vi)2—*\, the inequality (17) contradicts

the lemma.

The converse. We now enquire whether the condition log+| P(x)| =o(x)

implies a regularity condition on the X„'s. That Carlson's theorem does not ad-

mit a converse is indicated by the work of Pfluger [7 ] ; but here we construct

a counterexample which shows more specifically how far one can go:

Theorem III. Suppose given p, q, and A, with p>q>0 and A <1. Then

there exists a sequence {X„} satisfying \n+i — \n>A/p, lim sup A(u)/u = p,

lim inf A(u)/u = q, and log+ | P(x)| =o(x).

Probably the conditions q>0, A<1 can be replaced by c? = 0, ^4 = 1 with

only minor modification of the proof. To establish III as it stands, let

p = a-\-b, q = a — b, and define

(18) L(u) = u[a + b cos (log w)1'2], u > 1.

Then lim sup L(u)/u=p, lim inf L(u)/u = q, and L(u) satisfies (13), as is

seen by a short calculation. Moreover for large u we have 0<L'(u) <p/A,

and hence there is a distribution of zeros, A(u), such that

(19) | A(u) - L(u) |jS 1, u large,

and Xn+i— \n>A/p. Since L(u) satisfies (13), so does A(w), and hence

log+ I P(x) | =o(x). It does not matter how we define A(u) for small u, so long

as A(u) satisfies the requirements of the theorem. For, a finite number of

factors in P(x) only alters P(x) by a polynomial, and this does not influence

the estimate log+ |P(x)| =o(x).

The following result(3) shows that the weaker regularity postulated in

Theorem II also cannot be deduced from log+ | P(x) | =o(x):

Theorem IV. Given c, and M>Q, there exists a sequence {X„} such that

X„+i— X„>c, A(u)/u<M, log+ | P(x)| =o(x), and (13) is violated.

We give the proof in outline only. Let e and / be constants with 1 >f>e

(3) The result is unexpected. It had been conjectured by Paul Erdös and by the author

that Theorem II might give a necessary and sufficient condition, at least when X„+i — X„>e.
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>0, and let p be a large constant. Define a function P(w) as follows: The

graph of P(m) is a straight line of slope 1 from {p, ep) to infinity; it is a

horizontal line from {p, ep) to the point {wp, ep), w<l, where this hori-

zontal line meets the line y=fu; it continues down a line of slope 1 until

this line of slope 1 meets y=eu; and it coincides with y = eu until it reaches

the origin. Thus, Liu) consists of connected straight line segments having

slopes e, 1, 0, 1; the portion of zero slope joins the lines y=fu and y = eu.

Associated with P(„) is a zero distribution A(m), [A—P| ál, and a function

Fix). In our considerations we may speak of A and P interchangeably.

Let (x, ep) be a point on the horizontal part, so that x = cp, with w<c<l.

An elementary calculation gives the principal value of (cf. Equation (5))

/' a Liu)     2xdu

— ~2—r
a U X1  —   U'

For large p it turns out that the result has the form

- 2(1 - e) log 2 + 0(1 - w, 1 - c);

and the same is found for points x on the line segments of slope 1 cut off

by eu, fu. Now, as f—*e we have w—»1, hence c—♦_. Thus we can choose / so

close to e that the integral (20) is negative, if p is large, for all x in the indi-

cated range. Such a choice of e and / is now made (with f>e, of course).

It is clear from (20) that P(w) is weighted negatively for u>x, positively

for „<x. (When P(„) is interpreted as a zero-distribution A(m), this remark

merely reflects the fact that the factors in | P(x) | are greater or less than 1,

according as |x| ^>X„ or |x| <X„.) If we choose a comparison function Pi(m)

such that Pi(m) =_P(m) for u <x, and Pi(„) _;P(w) for „>x, then the integral

for p dominates that for P. This remark enables us to determine at a glance

the behavior of (20) for certain values of x. If x is on the segment of slope e,

choose Pi(„) =eu. The corresponding integral (20) is bounded (Pi(x) is essen-

tially a cosine) so P(x) is also. Similarly if x is beyond the point where the

second segment of slope 1 cuts y =fu, the choice Pi(w) =fu shows that P(x) is

bounded.

We now modify P(w). Instead of letting Liu) follow the second segment

of slope 1 on out to infinity, after a time we make L{u) bend back, very grad-

ually, until finally it coincides with the line y = eu. That this process can be

carried out in such a way that (13) is preserved follows from the proof of

Theorem III (cf. Equation (18)). We now follow the line y = eu out to a large

value of x. The stopping-place x is so chosen that the early factors of P(x),

associated with the portion of P(w) where L{u) ¿¿eu, have a product "nearly

equal" to that which they would have had for L{u) = eu. This is possible,

since the ratio of these partial products tends to a finite limit as x—*•».

Starting at this point, we repeat the whole process just described: Liu) leaves

the line y = eu, following a line of slope 1 until it reaches y=fu. Then L{u)
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continues horizontally to a point p, on y = eu, and now L(u) follows a line

of slope 1, to return later, and gradually, to the line y = eu.

For a fixed w and a sequence p—»oo we have L(p)/p=e, L(wp)/(wp) =/,

so that (13) is violated. Since L'(u)^l at all times, the associated A(u) has

Xn+i—X„ = l. Considering F(kx) gives Xn+i— X„ = c, A(u)/u<M, and thus the

proof is complete.

The foregoing theorems show that {X„} can be rather irregular, and yet

allow log+ | P(x) | =o(x). Continuing in this vein we show that {X„} may have

large gaps, so that F(x) has large intervals free of zeros, and yet Iog+ | F(x) \

= o(x).

Theorem V. If M>0 there is a distribution of zeros such that A(u)/u<M,

Xn-fi— X„>c, log+ |P(x)| =o(x), and yet A(x¿) =A(y,) for an infinite sequence

yi-+ oo, xt/y¿-r oo.

Let p, w, and / be constants, with p and w large, and with / satisfying

0<2wf<l. The role of y,- in the theorem will be taken by a sequence p^>œ,

and Xi by a sequence pw. Define L(u) as the continuous function which fol-

lows the line y=fu up to u = p, then is horizontal to u=wp, then follows a

line of slope 1 to infinity. For the principal value one finds

/'°° L(u)     2xdu
-: = 2s log s - (s + 1) log (s + 1) - (s - 1) log (s - 1)

o         u      x1 — UL

+ /[(l + c) log (1 + c) - 2c log c - (1 - c) log (1 - c)]

alter a short calculation, where c = p/x and s = cw. We assume x on the hori-

zontal portion of L(u), so that \>c>\/w, w>s>\. Discussion of other

values of x is similar, most values being dealt with at a glance by introduction

of a comparison function Li(u).

The derivative of the terms involving s is log s2/(s2 — 1), hence positive.

These terms have their maximum at s = w, therefore, and the maximum is

approximately —l/w, since w is large. Similarly, the coefficient of/ has a

maximum at 2c2 = 1, and the maximum does not exceed 2. The given condi-

tion on/ shows now that the integral is negative for all x in the given range;

and actually the same is true for all large x.

We now modify L(u). Given Wi>w, we choose/i<l/(2wi). Instead of fol-

lowing a line of slope 1 out to infinity, L(u) is bent back gradually until it

coincides with the line y =fiu. Choosing p{5>p, we repeat the process formerly

described, and so on. The approximating A(u) satisfies X„+i—X„^l, since

L'(u) i£ 1 ; and considering F(kx) gives the theorem.

So far the results have been negative ; we have shown that various smooth-

ness conditions on }X„} are not necessary for log+ |P(x)| =o(x). If X„+i

—Xn>e>0, however, it turns out that (12) is necessary. (We already know

that (12) is sufficient even under the lighter hypothesis A(u)/u<M.) Neces-

sity results from the following:
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Theorem VI. 7/X„+i—X„>c>0, then log+ | P(x)| =o(x) implies (12).

The proof is actually contained in [3], where it is shown that f\z\/z in

(9) is small when 6 is small. Knowing this, we deduce (12) at once from (9)

and from (8), which holds as an equality whenever |x —Xn| is bounded away

from zero. Specifically, let e>0 be given, and choose ôi so small that fa/x

and f\Zbs/x in (9) are less than e/2 whenever 6<5i. Then the assumption

log4" | F(x)| =o(x) combines with the equality (8) to give

/l-ä piv, x)dv/il - v2) < e,

whenever 6<6i and |x—X„| is bounded away from zero; say |x—X„| >c/3.

If the result (21) held for all x we should have established (12).

Suppose we alter x by an amount c or less. The change in p{v, x) is at

most 2c/x, since Xn+i—X„>c; and this change does not affect the validity of

(21). Since every value of x is within a distance c of a value x satisfying

|x— X„| >c/3, (21) holds for all x.

The proof of Theorem VI is complete, then, as soon as we show that

f\Zb5/x in (9) is small for small 6. For convenience we repeat the proof in [3],

taking this opportunity to correct a numerical error. Divide the interval

(1—6, 1) into [46x/c] subintervals each of length e/4x (one at the end may

be shorter). Now, p{x, v) changes by at most 2/{x(l— S) — 1} when we pro-

ceed from one interval to the next, and this is <6/x for large x. So in the

kth interval from the right we have p{v, x) <6k/x, since p'l, x)=0. The

integral over the &th interval does not exceed 6/x, by an easy calculation, so

the whole integral does not exceed 246/c, by summation.

The behavior of f\l\lx is the crux in many of the questions with which

we are concerned, since only here is the kernel 1/(1 —v2) unbounded. It seems

worth noting that simple changes of variable yield

/i 1—6/_ /» Sx
piv, x)dv/il - v2) =  I      [A(x - w) - A(x + w)]dw/2wx

l-S J b

apart from terms 0(6), 0(l/x). In this form the role of the condition X„+i

—XK>cis transparent; it yields A(x+w) —A(x —w) <2w/c so that the integral

|j"a*| does not exceed S/c, by inspection.

The complex plane. We wish to investigate further the distinction be-

tween the conditions log+ | P(x) | =o(x) and lim A(m)/m = P. Although pre-

cise description is difficult when attention is confined to the real axis, a discus-

sion is easily given in terms of F{z).

Theorem VII. The following conditions are equivalent:

(a) lim sup log |F(x)|/x^0 and lim sup A(m)/« = _?< ».

(b) lim sup log | F{reie) \ /r = irD'\ sin B\ for some D' < » and all 8.
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The discussion leading up to (5) gives the well known result [2]

/'M A(w)       2y
o       u     u2 + y2

so that (a) implies, again as in [2],

lim sup log | F(iy) \ /y = irD' ^ xD

(cf. Equation (32)). The Phragmen-Lindelöf function h(d) for F(z) therefore

satisfies

h(ff) g 77(0) = xD' sin \d\

when we note log+ |P(x)| —o(x) by (a). Now, h(0) is symmetric about the

real axis, since F(x) is real. If h(6i) <H(6i) for some di between 0 and 7r/2,

then h(—8i)ïzH(—0i) by [S]. This is impossible since h(—6i)=h(6i), and

hence (a) gives (b).

That (b) implies (a) is trivial, since (b) ensures that F(z) is of exponential

type; and lim sup A(u)/u < oo for all such functions. The following considera-

tions enable us to estimate D in terms of D'. If (b) is given, then

[5] log \ F(reie)\ /r <H(d) -\-tunilormly lor r>ro(e). Hence Jensen's theorem

1   rr A(u) 1    Ç2«       , ,
(24) — I    —— du = - j      log | F(reie) | dd

r J o      u 4irrJ 0

gives lim sup r~1fTQ(A(u)/u)du^,D'. This shows easily that lim sup A(u)/u is

finite; a detailed discussion is given later (lemma for Theorem XI).

In the presence of a mild restriction on A(«), the condition log |P(x)|

^o(x) is equivalent to a certain type of regular growth in the complex plane.

Such is the content of Theorem VII. It will be seen, now, that lim A(u)/u = D

is equivalent to a stronger regularity condition ; and thus the two hypotheses,

log | P(x)| ^o(x) and A(w)~7)w, can be readily compared.

Theorem VIII (Pfluger). The following conditions are equivalent:

(a) lim A(u)/u = D.

(b) Given any e > 0 there is a constant C = C(e) such that, for -k — e = 191 = e,

we have

exp (irDr | sin 6 | — er) g   | F^e"*) \ = exp (irDr | sin 6 | + er)

whenever r>C.

The condition (b) is almost enough to ensure that the X's are real; the

corresponding statement for complex X's is the following:

Theorem IX (Valiron-Titchmarsh). Leí F(z) = H(l — z2/\„) where\nare

any complex numbers such that 2~2\'^n\~2< °°. Then lim n/\n = D, a real

number, if and only if VIII(b) holds.
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Theorem VIII is essentially Theorem 3 of [7], and Theorem IX is essen-

tially the Valiron-Titchmarsh theorem for entire functions of order 1/2

(cf. [9; 10; 13]). Our procedure differs, however, from that used heretofore.

We prove Theorem IX, which contains Theorem VIII ; the method illustrates

how some of the other results might be extended to complex X's. Suppose first

that VI11(b) holds. In the region tr — e_: \d\ _:e, there can be at most a finite

number of zeros. Otherwise there would be a sequence r„ exp {iBn) with r„—> » ,

and the left-hand inequality of VIII(b) would be violated. It suffices, then,

to prove lim A{u)/u=D; the condition lim w/X„ = P follows from this.

By Jensen's theorem (24) we have

(25) 4tt f   Aiu)du/u = Í f + f \  log | F(rei9)
«7 0 \J E       J E'l

de

where P is the set tv — e^ \o\ ¡te and E' its complement. The fact that the

X„'s cluster about the real axis ensures that | F(x)|<iC| F{ix)\ for large x, so

that (by the Phragmen-Lindelöf theorem, for example) /_» in (25) is 0{er) as

r—>oo. Computing fE by use of VI11(b), and noting that e is arbitrary, we

find lim r~1foAiu)du/u = D. Hence lim A(w)/k = 7?, as was to be shown (cf.

lemma for Theorem XI).

Suppose, now, that lim w/Xn = 7>, where D is real. To deduce VI11(b),

write X„ = rn exp (¿0n), with

rn ~ n/D,       6n —» 0,        rn+i _: r».

Changing each rn by an arbitrarily small amount (insignificant for our

estimates) enables us to assume r„+i>rn, which we do. In that case 6„ = girn)

for a function g, which is defined at other values of r by g(r)=0„, rn^r

<rn+i- In this notation

/i »                2r2                                   r4log  1-cos 2[d - giu)] -\-dA{u)
o                      u2                                       «4

where A{u) is the number of r-'s less than u. Given 6>0 we have |g(M)| <6

for large u, since giu)—>0. Now, changing 9n to zero in a finite number of

factors enables us to assume giu) <5 for all u, not merely for all large u. Since

lim  | 1 - 22/X21 / | 1 - z2/X'21 = | X'/X [2 for any X, X',
r—».

this change in P(z) does not affect the estimates with which we are concerned.

Let ir — e_:|0| S_e, and choose 6<e/2. Then the absolute value in (26)

is bounded away from zero; indeed, its minimum is sin2 (e —6)=sin2 e/2.

Moreover, at each u this absolute value is a monotonie function of the value

of giu), provided |0 + 7r/2| >5. The expression (26) therefore lies between its

value for g(„) = 6 and its value g(„) = — 6 in this case. If \6 — ir/2\ <6, the
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expression lies between its value for g— 0=0 and for g—8 = 28. Writing ±5

for g(u) and integrating by parts gives

'/:

A(w) r2u2 cos (8 ± ô) - r4
du

m4 - 2rV cos 2(8 ± ô) + r4

for the first case; discussion of the second is similar. Letting u=rv gives

A(rv) v2 cos 2(8 ± Ô) - 1
(27) 4r f dv.

rv      v* - 2v2 cos 2(8 + 5) + 1

We write the integral as /o+/s°- Since the integrand is bounded the first

is 0(5), uniformly in 8 and r. For the same reason the second tends uniformly,

as r—> oo, to the value it would have for r = oo ; that is, to the value with

A(rv)/(rv) replaced by D. Finally, this latter integral differs, uniformly, by

0(5) from its value with 5 = 0. Choosing e first, then a sufficiently small 5,

and finally r, we obtain the theorem. (Evaluation of the integral is avoided

since the corresponding F(z) is, essentially, cos (irDz)).

Theorem IX has the following corollary:

Corollary. Let F(z) = 11(1— z2/\n), lim «/X„=7>, and G(z)

= XI(1 — z2/pl), lim n/un = D', with D, D' real and D't^D. Then the roots +zn

of the equation F(z) =G(z) satisfy lim ra/3n = max (77, 77').

For proof, observe that VI11(b) holds for F(z) and, with D' instead of D,

for G(z). Hence VI11(b) holds for F(z) -G(z), with 77 replaced by max (77, D').

The condition D^D' is of course essential. If 77'=77 then lim n/zn need not

exist; and when it does exist, it can be any number between 0 and 77.

Upper limits, lower limits, and inequalities. We define

A = lim sup log | F(iy) \ /y, a = lim inf,

(28)
r J o

A(u)
B = lim sup — I    -du, b = lim inf,

u

lirrJ n

2ir

C = lim sup-I       log | F(rea) \ dB,        c = lim inf,
AwrJ o

D = lim sup A(u)/u, d = lim inf,

where each variable approaches infinity. It is pointed out in [2] that A =7r7>,

and that D is finite if A is; the latter is a simple consequence of Jensen's

theorem. These results suggest the following:

Theorem X. Let r = 2(s — l)ll2/s, where s is the positive root of s log s

= 2(5 — 1). Then ttD—A^tD, and this is best possible. Moreover, if A=tD

then d = 0.

We have s^2.9213, r^0.8047. To prove that A ^tD, letA(u)/u = D'^D
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— e at u = p. That this holds for arbitrarily large p and arbitrarily small e

follows from the definition of D. Let P(„) be defined as 0 for 0<u<p, and

as D'p for p^u< ». The non-negative increasing character of A(w) ensures

that A(w)^P(w), so that the integral (23) dominates the corresponding ex-

pression with Liu). We have

J'00 Li»)       2y
— ~T~ du = (_>'//) log (1 + t2), t = y/p.

o      m    m2 + y

Differentiation shows that (29) is maximum when

(30) (1 + t2) log (1 + t2) = 2t2

and that the maximum is then 2//(l+/2). Writing s = l-H2 gives the right-

hand inequality in Theorem X. That the result is best possible follows, as

usual, by modifying P(w) so that it returns infinitely often to Du.

If _>0, we define P(w) as d'u for 0<u<p, as pD' for p<u<q, and as

d'u for g,^w<». Here á'_:_—e, and pD' = qd'. The integral (29) is easily

computed; it is

Í 1 + t2 Ï
(31) d'{2 tan-1 (1//) + (w/¿) log m2-\-% - 2 tan"1 {m/t)\

{ m2 + I2 )

where m = D'/d', t=y/p. Equation (23) does not quite dominate (31), since

we may have A(m) <L{u) for u small. Writing (23) as

U's       Cx) A(y»)     2vdv

o       J s  )     yv      1 + v-

shows, however, that A(m) for small u has no influence on the estimates with

which we are concerned. Hence (31) is dominated when p and y are large.

Since d'—^d, D'—hI as p=pi-^> », the upper limit of y-1 log | F'{iy) | dominates

(31), with _■' = _■, 77'=77.

It follows that A >tD. For, (31) as it stands exceeds (31) with _' = 0 (this

is plain from the derivation, though direct verification is tedious). Hence the

maximum of (31) exceeds the maximum of (29); and if A=rD, we must

therefore have _ = 0.

The theorem can be extended to the case in which d as well as D is pre-

scribed, although the resulting formulation is complicated and inelegant. By

simply putting ¿ = 1 in (31), however, we find the right-hand inequality, which

is not optimum, in

2D2 D
(33) irD ^ A ^ 3ird/2 + D log-2d tan"1 — •

d2 + D2 d

Similarly, by considering a function P(w) defined as Du for 0<u<p, as Dp

for Q^u<q, and as Du for q<u< », we find
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d2 + D2 D
(34) ird < a < 3wD/2 + d log-■ - 2D tan"1 —

2d2 d

when we put t = \/m in the expression corresponding to (31).

Theorem XI. In the notation (28) we have

d á c g C S D,

1 + log (C/D) = c/D,        1 + log (C/d) è c/d.

Moreover these inequalities are best possible. Given any C, c, D, d satisfying

them, there is a corresponding F(z).

We shall establish this result for all entire functions (defining 2A(u)

= number of |X„| Su), not only for the F(z) in (2). Theorem XI gives the

following Tauberian theorem:

Corollary 1. 7/lim (l/47rr)/¡j* log | F(reie)\d8 = D, then lim A(u)/u = D;

and hence, when F(z) is given by (2), we have VI11(b).

Also it enables us to make the result VII more precise:

Corollary 2. In Theorem VII we have eD'^D^D' (where e is the base of

natural logarithms).

Theorem X yields only the weaker inequality irD'/t = D~^D'. Since

Jensen's theorem gives C = B, c = b, it suffices to establish the following

lemma:

Lemma. In the notation (28) we have d^b = B^D, 1+log (B/D)~=b/D,

1+log (B/d) }±b/d, and these are best possible. If b = B, then D=d.

The second part of the lemma follows from the first when we note that

1+log x<x for x>0, x^l. Thus,/(x) = 1+log x — x satisfies/'(x) = (1—x2)/x,

so that x=l gives the maximum; but/(l)=0. (The second statement also

follows from a general Tauberian theorem of Wiener, or from a similar theo-

rem of Hardy for sums.)

To prove the first part of the lemma, let A{u)/u = D'>D—e at u=p.

This happens for a sequence p = pi—><x> and € = €,—>0. In order not to confuse

an essentially simple proof, we drop the primes, writing B, b, D, d for quanti-

ties arbitrarily close (when p is large) to B, b, D, d. Define L(u) as bu for

0<u<p and as Dp for p=^u^q, where Dp — dq. We have

l  rrL(u)
(35) — I    -du = xb — Dx log x,        x = p/r.

r J o     u

The maximum occurs at log x = (b — D)/D, which is interior to the interval

p<r<q. For, with m = b/D we have x = em~1^l since m<\. On the other

hand if f(m)=em~1 — m we have /(1)=0, f'(m) =em~1 — 1 =0; so em~1<m.
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The maximum value is De{htD~l).

It will be seen, now, that the maximum for A(m) is just as large. We have

±fr^du = ±±fP + ±fr.
r J o     u r    p J o r J pr    p

By the definition of b,

1   ("AW
/'"A(w,-du _: 6, p large,

o     u

and since A(w) is nondecreasing we have A(w) _tP(w) for u>p. Thus,

•A(w) 1   rTL{u)1   /* r A(«) If,
-   I      -«_  -   I-0M.

r J o     u r J p

Combining these inequalities gives

A(«)

r J o
du ^ x6 — Dx log x

r J o     u

as was required (see (35)). Comparing maxima yields

which is the first nontrivial inequality of the lemma.

Suppose next that A{u)/u = d at u = s (more accurately, Aiu)/u — d' <d+e

for a sequence u = Si—>», e = e}—»0). Define P(w) as _s for p<u<s, where

pB=ds, and as Bu for 0 <„_=£. If p<r<s we have

1/'r J o

£(«)
_m = P(x — x log x),        x = p/r,

0        M

which decreases steadily to a minimum value _(1 —log [d/P]) at r = s. By defi-

nition of B, for large p we have

-fP J c

'Ai»)
—— du ^ B;

o      u

and since A(m) is nondecreasing, A(«) _=P(m) for ^> <«<5. It follows as before

that

1   r * A(«)             1   /• * Liu)
— I     -• du _; — I    -du
r J o     « r J o     «

whence 6_í_(l-log (_/P)).

To show that the result is optimum, it suffices to give a A(„) for which

both the relations become equalities. Define A{u)=bu up to u=pi, then

A{u)=Dpi until A{u)=Bu, then A(w) =Pw up to a large value £2, then
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A(w) =Bp2 until A(u) =du, then A(u) =bu to p3, and so on. Since the behavior

of A(u) tor small u has no influence on our estimates, the sequence pi can

be so chosen that both equalities are obtained. Certainly pn/pn-i—>°°

suffices.

Other inequalities and a Tauberian theorem. The following relates to

certain functions having, on the average, only a few zeros:

Theorem XII. When the right-hand side is finite,

log | F(iy) |  2dy <^ /• « rA(«)-|» du

ufJ 0

/

\F'(iy)

F(iy)

y J o   L   u  J

,,CTAW
«7 o   L  w J

(36)

A(íí)~|2¿w

y •/ o   L   u  j   2<

It is easy to see that

log | F(iy) |  2dy r M Ç x  A(t)   A(v)   log t2 - log v2

t        v f- - v2J" -/7" o    •/ 0
dvdt,

with a similar expression for the other integral, but we have not been able to

carry out a proof along these lines. To establish Theorem XII, let y = e",

u=e~' in

(37) y"1 log | F(iy)
-/; •/ 0

A(uy)     2du

uy     1 + u2

to find

(38) <p(s) = e-" log | F(ie') \ = /*((2x)1'2 sech t)

where f(u) =A(eu)/eu and the * denotes convolution. We have

y > o,

/",       , r rA(t)i2 dt

If T denotes Fourier transformation in the mean square sense, therefore,

T<p = (Tf){T {2iryi2 sech t) = (P/)(ir sech ttx/2).

By the Plancherel theorem

(39)

f    | 4 |2 = | T4> |2 =  f | P/l V sech2 (wx/2)dx

<   T2   f    |   P/l2   =   7T2   f    |/|2   =   !T27

which is the first inequality. For the second, differentiating (23) yields
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F'iiy)        r °°  Ait)        4yt2 Ç " A(«y)     4u2du
i -r*g. *yt* dt = r

Jo        t      it2+y2)2 Jo(40) Fiiy)       Jo       t      H2+y2)2 Jo       uy    (1 + w2)2

= /*((27r)1'2e-i sech2 t)

as before. The maximum of T((27r)1/2e_i sech2 t) occurs at x = 0, and equals

x2dx
/CO                         o— I /»-dt = 4

-_ ie' + e'1)2            J<ie' + e~1)2 Jo     (1 + x2)

The remainder of the proof follows (39). It is probable that a sharper state-

ment could be given by contour integration, though we have not done so.

The following is an immediate consequence of Theorem XII:

Corollary. There is a function with lim sup log | Fiiy) \/y = D and with

I
I log | Fiiy) dy

— < (irP)2/2.
yy

In connection with XII, the following Tauberian theorem is of interest:

Theorem XIII. lim iF'iiy)/F{iy) =ttD if and only if lim A{u)/u =D.

The proof is practically contained in a discussion of Paley and Wiener [2 ],

where they establish other theorems of the same character. Differentiation of

/»  CO

log (1 + y2/v2)dA{o)
o

gives

/.  CO

Kiv/y)dAiv)
o

where P(w) = (2/7r)(l +u2)~l. K{u) is nonincreasing, /0"P(„)_w = 1, and

/i » rt co

Kiu)uiwdu = ir-1 I     sech xe~iwvdx = sech ttx/2 ^ 0.
0 J -co

Hence Theorem XIII is immediate, by the theorem of Wiener cited in [2].

Uniformly distributed zeros. If |A(m)— Du\ _= 77 for some constants 77

and D, we shall say that the zeros are distributed uniformly. By estimates

based on the gamma function, Paley and Wiener [2] have shown that

|P(x)| <C|x|4H_1 where C is a constant depending on Fix), D, and 77.

Using a different procedure we improve the exponent to 477—2, show that

the result is best possible (in a certain special sense), and estimate the con-

stants. Related results are given in [ll].

Theorem XIV If |A(m) -Du\ á77, with 77>l/2, 7>>0, then  |p(x)|
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<CiXiB~2for some constant Ci depending on D, 77, and X, the first zero of F(x),

but not otherwise on F(x), or on x. If x is given there exist a similar constant

C2>0 and a function F(x) (depending on x) such that \A(u)—Du\ ^77 and

| F(x) | C2x4H"2. If D = 0 then \ F(x) | = (x/X) tff), where X is the first zero of F{x),

and this is optimum. If 77= 1/2, then \ F{x) | = 1.

AM

'  H

H-\

-77+1

-H

"d1

H

Fig. I. A function A(u)=A.(u)-Du for which \A(u)\ ¿Hand \F(x)\ >CxiH^.

When 77 = 0 then P(x) is a polynomial, so that the result is trivial; and

when H =1/2 we must have P(x) =cos 7t7?x. We confine our attention there-

fore to the case 77>l/2, D>0. For large x (that is, apart from 0(l/x)) one

may choose

(41)

(42)

c2={ eD PY-)(-)
1(277- 1)XJ \pj\e\/

/ 1 ^ /2H + lX25

2.718

where C2 in (42) is given by (41), and where

(43) Dp = [77 + D\] + 1 - 77,

so that X<p=X + l/77. Of course, X^77/77 is assumed.

The proof is elementary but somewhat long because one must make

essential use of the fact that A(m) is an integer. (The integral character of

A{u) has played no role in our considerations heretofore.) To begin with,

Equation (7) yields

(44) log | P(x) | =  | f   + f   1 A{u)K{x, u)du - 2X77 + 0(l/x)

where 7i(x, u) =2x2/[u{x2 — u2)], and where the integral near x is a Cauchy

principal value. In our applications x^X„. The 0(l/x) term is uniform for the
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whole class of P(x) having a given X and max A(„)/w. We must estimate the

integral (44), when |_1(»)| _=77.

The function A{u)=Aiu)—Du is composed of vertical straight segments

having integral lengths, at the zeros of P(x), and of straight segments having

slope — D between them. For w<x we have P(x, „) >0 and for w>x we have

P(x, „) <0. Hence the function A{u) which maximizes P(x) at a particular x

is as large as possible for u<x, and as small as possible for w>x. It has, in

fact, the general character illustrated in Fig. 1. (Although we have not proved

that this is the maximizing function, it does furnish the example | P(x) |

>C2xiH~2, as we shall see later.) Evidently, Aiu) behaves like 77—1/2 for

«<x, and like —77+1/2 for u>x. This observation suggests Theorem XIV.

A proof can be based on the following lemma, which is needed also for

estimating Ci and C2:

Lemma 1. Let K{u) be non-negative. If K{u) is increasing then

/i p+l/D /» p
iA - l/2)Kiu)du ^   I A{u)Kiu)du

P J P-l/D

for each p; and if K{u) is decreasing then

(46) I iA - l/2)Kiu)du à  i Aiu)Kiu)du.
"   P-1/D «7 p

Let Aiu) attain its maximum in [p —1/77, p] at u = q. At u> q oí the curve,

Aiu) follows a straight line of slope — D (otherwise it would reach a higher

maximum) and at q, Aiu) drops at least by unity for the same reason. Hence

Aiu) is majorized by the function which is equal to 77 at q + , to 77—1 at q —,

and to a linear function of slope — D elsewhere. For this A{u) we have

f        A{u)Kiu)du ̂ Kip) f1     Aiu)du = Kip) f        iA - 1/2)0«
«7 P-1/D J p-l/D J p-l/D

/< P+1ID
Kiu)iA - l/2)du.

n

The other part of the lemma is proved in the same way.

To prove the theorem, we observe that P(x, u) is decreasing for u <x/31/2,

increasing for „>x/31/2, uî±x. By (46) of the lemma, therefore,

/' V /» P+l/D

(P - 1/2)P ^  | AK,       p+ Í/D < x/31'2,
p-l/D J p

so that, taking p=\ + l/D, X + 2/77, • • • and adding,

/• q f 3+1 ID(P - 1/2)P ^   I ¿IP
N J X+l/D
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where q = \-\-m/D, m an integer; q is so chosen that ç + l/T? <x/31/2, \q

—x/31/2| <2/D. The precise value is immaterial; the terms for u=x/3112 are

0(l/x). For the interval (X, X + l/77) we have, of course,

/. X+l/D nX+lID
HK ^   I AK.

x J \

Turning now to the interval (x/31'2, x — a) we use (42) of the lemma to

find

/x—a p x—a—lfD

(77 - i/2)p; = j AK
J s-l/fl

where s = x — a — n/D for some integer n, and 5 is close to x/3112. We have also

/x— a /* x—a

HK =  I AK.
x—a-l/D J x-a-l/D

The same procedure gives, K being now negative,

/I  00 /%  00(77 - 1/2)X =  I ^7?,
i+a J x+a+l/D

Jx+a+l/D /» i+a+1/û
777Í =  l AK.

x+a "   x+a

By addition of (47)-(52) we obtain the first assertion of the theorem, after

evaluating the elementary integrals for a—»0, x—> °o.

For the second part of the theorem, we use the lemma to estimate P(x)

corresponding to A(u) in Fig. 1. The first zero, p, alter the multiple zeros at

X, is given by (43). Making no attempt to determine the best constant, one

can use the estimates

/• p+l/D n p+2/D

AK >  I (77 - 1/2)7:, p <u < x/31'2,
p J p+l/D

and so on; the proof is very similar to that just given.

This procedure, and that described for showing | F(x) \ ^ CxiH~2, yield

values for Ci and C2 which are less precise than those indicated above. To

obtain estimates as sharp as (41), (42) the following lemmas are required:

Lemma 2. Let A(u) be a linear function joining the points (p, 77) and

(p + l/D, 77—1). If K(u) is a decreasing function, then

• p+l/D /»p+l/D

I AK> \ (77 - 1/2)7?.
J p J p

Lemma 3. Lei A(u) in Lemma 2 be defined to have period 1/D. If K(u) is
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increasing, then fpp+1,DAiu+l/2D)K>fpp+1/DiH-l/2)K.

We omit the trivial proofs. By Lemma 2,

(54) f 'AK>  C\h - 1/2) __
J p J p

where q is close to x/31/2. Similarly, Lemma 3 gives

(55) f  AK> f   (77 - 1/2)P, f   AK > -  f   (P - 1/2)P

where s is also close to x/31/2. (The integral from g to j is 0(l/x), hence in-

significant.) Here a and r are the values of u at which the lines y = + (77—1/2)

intersect the line y =77(x — u) (see Fig. 1). Evaluating the integral from r to a

and from X to p exactly, and using (54), (55) elsewhere, gives (41).

To obtain (42) one must show that the P which maximizes P(x) will

have no zero in the neighborhood of x, so that A (w) crosses the point (x, 0)

in the manner illustrated by Fig. 1.

Lemma 4. If x is large, we have

• x+H/D nx+H/D
/, x+U/D nx+H/U

AK ^  J P(x - u)K.
x-H/D J x-H/D

Let the curve y =A („) cross the vertical line u =x at some point yo. Since

K is negative for u>x, the integral for u>x is majorized by a line of slope

—D passing through (x, y0). (This is as small as A{u) can be, in view of its

geometric properties, if _l(x)=yo.) Similarly, since K is positive for u<x,

the integral is majorized by the same line of slope — D, extended backwards

from (x, yo). The maximizing function therefore crosses u = x as a line of

slope — D joining y=H and y= —77. It remains to show that yo = 0 is the

optimum choice.

For a value c^ 277/77 we evaluate fxxZccAK where A{u) follows y =77 to

the line of slope — D discussed above, then follows this line to y= — 77, and

follows y = —H to u=x+c. If the line crosses the u axis at «=a, the integral is

/x+c AK = (6 + a) log (6 + a) + (6 - 0) log (6 - 0)
x-c

+ 26(log c + 1) + 0(1/*),

where b=H/D. The terms involving a are found by differentiation to be least

at a = 0, so that the integral is then maximum.

To obtain (42), we note that the integral from X to p cannot exceed the

value given by Fig. 1, as is easily proved; and we have just seen that the same

is true for the integral from a to r. Dominating the integral elsewhere by
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adjacent intervals as in the discussion (47)-(52) introduces three new terms

in addition to those used in the derivation of (41), namely,

/» p+l/D /» a n ■

HK, HK,
p J 0--1/D J T

These yield the extra factor in (42).

It is probable that (41) is a better estimate of the true constant than

(42), as we see from the derivation. For «<x/31/2, the function in Fig. 1

actually majorizes the integral, as we shall now show.

With K(u) >0 decreasing, it suffices to prove that

/, 1/D /. 1/D
(1 - Du)K(u)du >  I       A(u)K(u)Du.

o Jo

This will follow as in the proof of Lemma 1 if the left side exceeds

/. a n HD
D{a - u)K +| [1 + D{a - u)]K{u),        0 < a < 1/D.

a Ja

It suffices, therefore, to show that

/. a n HD(1 - Da)K >  I       DaK
0 »7 a

or that foK>faDDaK. Since K is decreasing, however, it is true that

J     C a 1 /» 1/23

— j    K >-I       K, a < 1/D.
a Jo {1/D)J0

Whether the A{u) in Fig. 1 also maximizes the integral for u>x/3112 is prob-

lematical.

The main theorem on uniform distribution. In the preceding discussion

the function P(x) was allowed to depend on x, the point at which our esti-

mates were made. The results were concerned with the whole class of func-

tions having a given X, 77, and 77. If, instead, one and the same F is con-

sidered for a sequence x = x,—+ oo, the growth of P(x) is given by the following

theorem :

Theorem XV. When |A(m)-7?k| =77 with D>0, 77>l/2, then F{x)
= o(xiH~2). Moreover, let c(x) be any function for which lim c(x) =0. Then there

exists a distribution A(u) such that \A(u)—Du\ =77 and such that F(x)

>c(x)xiB~2 for an infinite sequence x = x,—>oo.

Suppose the theorem is not true. Then there is a sequence x = x—» oo for

which

(56) log | P(x) | > 45 log x - Ci,       S = 77 - 1/2,
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where C¿ represent constants independent of x for large x. As in the proof

of Theorem XIV, for a fixed o>0

y» x—a

(57) I      A{u)Kix, u)du < 35 log x + C2.
x

Also

/-   CO

(58) I    A{u)Kix, u)du = 0(1)
J 1x

by a simple calculation. From (56)-(58) it follows that

/2x A{u)Kix, u)du > S log x - d
x+a

when x = x¿—>».

The idea of the proof is to show that A (w) must be negative in an appre-

ciable fraction of the interval (x+a, 2x). This behavior for x0, xt, • • • , x„_i

prevents the inequality (56) for x„ when w is large.

Lemma. Let E denote the set in (x+a, 2x) where A{u) <0. If x = x¿, a value

where (56) holds, then m(P) >5x for some nonzero constant 6.

Since P(x, „) in (59) is negative and increasing, the most favorable case

(that is, the case permitting smallest measure) arises when E extends from

x+0 to ax. Although |_4(î.) | ^S+l/2 is postulated, rather than |_1 (m) j ¿S,

the proof of Theorem XIV shows that A (m) behaves in our calculations as if

I-_.(„) I ^S. This observation is used repeatedly in the sequel. In the present

discussion, we have

/1x p ax /» ax

AK ^  I      AK á  j      (-5)P~5 1og x - S log a2/(a2 - 1).
x+a J x+a J x+a

In view of (59) we must have, when x is large,

S log a2/i<x2 - 1) < C

so that a>l+6 for some fixed positive 6. This yields the lemma. As a conse-

quence

/2x Ai»)2du/u è 2S log (2 - 8) + 0(1/*)
x+a

where 6 is the 6 of Lemma 1. For, since 2/m is positive and decreasing, the

most favorable case arises when E is the interval (2x — ox, 2x). We have then

/2x p 2x—5z /» 2x—Sx

i2/u)Aiu)du S I i2/»)Ai»)d» ̂   I {2/u)Sdu
x+a J  x+a J  x+a
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and this is (60).

To prove the theorem, consider a sequence l<Kx0<Xi< • • • <x„ for

which (56) holds. We may assume x„^>x„_i, so that |7£(w, y)—2/u\ <l/x£_,,

whence

/2x s» 2x

KA =  I      (2/u)A + 0(1/x)
x+a J  x+a

for y^Xn, xi£x„_i. This simplification (which is not necessary) is possible be-

cause lim K(u, y)=2/u as y—>oo. If A(u) were so defined as to maximize

F(xn) we should have

/1x A(u)K(u, x)du = 25 log 2 + 0(l/x)
x+a

for x = Xi, • • • , xn. Even in this case, however,

log | P(x„) I < 45 log x„ + C6

by Theorem XIV. The function A(u) which we actually have satisfies (60)

rather than (61). For each x¿, then, there is a default at least equal to

25 log 2/(2 — 5). The total default is n times this, so that

log | P(x„+i) | < 45 log y + Ci - 2nS log 2/(2 - Ô).

As n—too this contradicts (56). We use the fact that the 0(l/x) terms are

insignificant if x¿ increase rapidly; e.g., if X)l/x¿< oo.

To obtain the second part of the theorem, let A(u) oscillate about y = +5,

as shown in Fig. 1, for 2x,_i<m<Xj — a; near y=—S for x¿+cz<m<2x¿;

near +5 for 2x¿<m<x,+i — a; and so on. By the default we mean, as above,

the amount by which log | P(x„) | falls short of the value it would have for

an optimum A(u), maximizing F(xn) (cf. Fig. 1). The same discussion as that

given above to show that the default is unbounded, as w—>°o, shows that the

default tends to a finite limit when n is fixed and x„—»oo. Suppose, now,

that Xi, • • • , x„_i have been chosen. With c(x) the c(x) in Theorem XV,

we choose xn so large that the default associated with xu • • • , x„_i is less

than (1/2) | log C(xn)|. The factor 1/2 is used to absorb the constants and

0(l/x) terms in our approximations. This gives the theorem. One could

also estimate the maximum possible density of the xn's in terms of c(x),

though we have not done so.

Extensions of the method. The following result is suggested by the preced-

ing discussion :

Theorem XVI. Let \A(u)-Du\ =77(m) where 77"(w)=0, lim H(u) = oo,

lim 77'(m) =0. Then log | P(x)| =G(x) where

G(x) ~ 477(x) log [x/77(x)].
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Moreover, there is a fixed function Fix) and a sequence x = x¡—>» such that

log | P(x) | > Gi (x) where

Giix) ~2P(x) log [x/P(x)].

Finally, there is a function H{u) of the above type for which the first result is best

possible, and also a function for which the second is best possible.

Since (77/x) log (x/77) —»0 when 77/x—>0, this result contains Theorem I.

For H{u) we use a sufficiently small convex majorant of \A{u)—Du\. As a

distinction between the two cases 77 = constant, 77—►», we shall see later

that the principal term in our present estimate is unaffected by the considera-

tions leading to the distinction between XIV and XV; and of course the

integral character of A now plays no role.

A few trivial facts needed later are assembled here. First, 77'(„)>0.

Thus, if 77'(«o)=0, then 77'(w)^0 when u>u0 by the condition on 77"(w) ;

and this would make lim 77(„)<». Second, we have 77(w) =o(w), since

lim 77'(„)=0, and therefore Hiu)/u^C0 for some constant Co. Finally,

H{u)/u is decreasing for large u. Thus,

Hiu) - P(X) = (m - X)P'(£) £ (« - \)H'iu)

so that Hiu) _:77(X) +ull'iu) -X77'(„). For large u, therefore, H{u) >«77'(w) ;

and this shows that [77(w)/„]'<0.

We turn now to the proof. The equation D{x — u) = —H{u) determines a

root u, which we designate as x+a. By the mean value theorem

Six + a) - Hix) = aP'(£), X + a > £ > x.

Since Oa = 77(x+a) this yields

Hix)
(62) a = -—— ~ Hix)/D

D- E'ik)

when we recall that H'iu)—>0. Proceeding in much the same way as before,

we find that log | P(x) |  is dominated, for a particular x, by

/i x— a /» x+a f* co

PP +1        Dix- u)K -  I       PP.
X "   x—a «* x+a

This result uses Lemma 4 of Theorem XIV, the role formerly taken by the

lines y= ±77 being now taken by the lines y= ±77(x+a).

The third integral in (63) is dominated by

Hix + a)   C °°        2x2
(64) —- I-du à Hix) log [x/P(x)],

x + a    J x+a   u2 — x2

since Hiu)/u is decreasing. (All our inequalities are asymptotic for x—>» in a

sense made explicit in Theorem XVI.) For the second integral (63) we have
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(65) f      D(x - u)K~2aD~2H(x).
J  x-a

The first integral may be written f{-r-Js~", with x — a>s>X. We have

/» x— a p x-a

HK =" H(x) I K á 77(x) log [x?/(H(x)s2)],
s J s

/"                   C *      du                       x + s
HK = C„ I     - = Cx log-2Cs

X                      J \    x2 — u2                     x — s

where C is constant, and s = o(x) is assumed. Define s = H(x). Then s = t>(x),

and (67) is o[77 log (x/77)]. Also (66) is 77 log [x3/773]. Addition of (64)-(67)
gives the first part of the theorem.

To prove the second part, we observe that

/» log(x/iO /• oo

777C = o [77 log (x/77)],      |    777? = 0(1) = o[77 log (x/77)],
x J I»

since H(u)/u^Co. The whole of the relevant contribution for a given x

comes, therefore, from the interval (log (x/77), x2). For a suitable sequence

Xj—»oo one can define the function at pleasure in each of these intervals

without interference from the others (note that log (x/77)—»oo). Thus, the

difficulty giving the distinction between XIV and XV does not arise here;

we can get just as large an (asymptotic) value for log | P(x) | with a single

fixed function as with a function depending on x.

Let A (u) = A(u) — Du follow the curvey = 77(w) from w = log (x/77) to the

point where this curve meets the line y=D(x — u) ; let it follow this line until

it meets the curve y= —H(u); and follow —H(u) to w=x2. The behavior

before log (x/77) and after x2 is a matter of no concern, provided | A(u) —Du\

= 77(m). (When we say that A(u) follows a given curve, we mean that it is

within a distance 1 of the curve, and is dominated in absolute value by the

curve.)

For this choice of A (u) we have

(69)

2 2

f    AK = A(x + a) f     K = 77(x) log (77/x)
J  x+a J  x+a

using 77(x+a) >77(x) and (62). If the curve y = H{u) intersects y=D{x — u)

at x— ß, we have ß<a (also, ß satisfies (62)). Hence,

r x-<*      h{x - ß) r   2x2
(70) I = -^-fi-j du = 77(x) log (x/77)

J locfx/m x — 8    J   x2 — uL

the last inequality resulting from the fact that ß<a~H/D and that

log (x/77) =o(x). In view of (68) the proof of the second part of the theorem is

complete.
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To establish the third part, concerning the optimum character of the re-

sults, we estimate the integral (66) differently, writing

/' *                  2_2      f* 8HK g- j    Hiu)du/u,
x                 x2 — s2 J \

2x2

' x x2 — sz J x

with asymptotic equality if s=oix). This yields

2x2      C' #0)
du

x2 2x2      C " HU
(71) log | Fix) | :g 2P(x) log —- + —-        -

iP(x)        x2 — S* J X       u

which is sometimes better than the first inequality of the theorem. For

example if 77(„)=„a, 0<a<l, Equation (71) gives

(72) log | Fix) | £ 2(1 - a)x" log x,

when we take s = x/log x; the theorem gives twice this. It follows that the

second inequality of the theorem is optimum for 77(m) —W, since this second

inequality then implies, asymptotically,

(73) log | Fix) | £ 2(1 - a)x" log x.

Finally, the function 77(w) =log log u can be used to construct a function

P(x) such that, for x = x<—*•», we have asymptotically

(74) log | Fix) | è 4P(x) log [x/Hix)].

This shows that the first inequality of the theorem is also optimum. To prove

(74), write

/•  X— ß f*  s /»  x—ß

p J p d 8

where p=log (x/H) and s>p, s~o(x); we choose s=x1/2 for our present

purposes. When x is large,

/' _ /» *PP ~ 2 I    Hiu)du/u
p ** p

and

(76) J       PP ^ H{x - ß) log ix/ß).

With the given choice of Hiu), p, and s, Equation (75) gives 2 log x log log x,

and (76) gives log x log log x. Combining with the term ff+a yields (74),

when we construct a suitable sequence x¿—>•». If we had chosen P(„) =log u,

the same procedure would show that the precise (that is, optimum) inequality

is
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log [ Fix) I _; 3H log (x/P).

Completeness on an open interval. Using a method given in [2], Levinson

[3] has established the following theorem:

Theorem A (Paley, Wiener, and Levinson). Let <pix) be an even, posi-

tive, increasing function of |x| such that fî [<£(x)/x2]_x< ». If 6>0, then

there exists an entire function 77(x) ^0 such that |_7(x)| ^e~'t'(z) and such that

hiu), the Fourier transform of H{z), vanishes outside of \u\ :S6.

From this we deduce

Theorem XVII. Let Fiz) be an entire function of type T, with real or com-

plex zeros X„, and let </>(x) satisfy the requirement of Theorem A. Suppose there

exists an entire function G{z), of type <T', such that \ F(x)G(x)| <e*(x). Then

the set {eiXnX} is incomplete L2 on seme interval of length <T+T'.

A partial converse is also true. If the set is incomplete P2 on an interval

of length <T+T', then there is an entire function G(x), of type <T', such

that fî i I log I P(x)G(x) I I /x2)dx < ».

Lemma. 7» Theorem XVII, there exists an entire function Hiz), of type < T',

such that I F(x)77(x) | <«-*<*>.

A trivial consequence of Theorem A, this lemma has the curious property

that the hypothesis becomes weaker, and the conclusion stronger, the larger

we take <£(x). To prove it, let the type of G(z) be T' — 2b in Theorem XVII,

where 6>0. Without loss of generality we may assume </>(x) in Theorem A

so large that 77(x) £P2. Hence 77(x) is the inverse Fourier transform of its

transform, so that PT(z) is represen table as

(77) Hiz) =  f   h{x)ei'xdx.
J -j

Choose 2<pix) instead of c£(x) in Theorem A, so that 77(z) has type ^5

by (77) and satisfies |77(x)| <e~2^x\ Therefore 077 is of type <(P'-26)+6

<T', and \iGH)F\ <e*e"2* = e-*.

To obtain XVII, choose </>(x) larger (if necessary) so that /0°°e_2*(x)_x < ».

Then there is a function G(z) for which FG£P2 and for which FG has type

_=P+P' —6. By a theorem of Paley and Wiener [2; 6] we can represent FG

as

/T+T'-S

fix)e^dx, fix) G L2.
-(r+7"-S)

Since P(X„)G(X„) =0, the set {eiXnX} is not complete on an interval of length

T+T'-S.

If JX„} is a real, positive increasing sequence, and A(w)=number X_5«,
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Levinson [l] proved that {eiX»x} is complete on every interval of length

<2wD when

A(xy) — A(x)
lim sup lim sup- = D.

i/-»i+        z->«o xy — x

Later it was shown [3] that [e*^»1} is not complete on any interval of length

> 2ttP» if

A(x + y) — A(x)
lim sup lim sup-= 77.

j,-.«        i-.« (x + y) — x

We are in a position, now, partially to close the gap between these two results.

Theorem XVIII. Let {X„} be a positive increasing sequence, and A{u) the

number of\n<u. If

A(x + xy) — A(x)
lim sup- = D

i-»*        (x + xy) — x

fora positive function y(x) such that y'^0, (xy)' = 0,/"y log ydx/x converges,

then [e±ihnX\ is not complete on any interval of length greater than 2wD.

The proof depends on the following:

Lemma. If \A(u)—Du\ <uy(u) for a function y(u) satisfying the require-

ments of Theorem XVIII, then [e±iKnX\ is not complete on any interval of length

exceeding 2wD.

For proof, let F(z)=Jl(l-z2/X„), as usual. With H(u)=uy(u), the

hypothesis implies that 77/« is decreasing and II(u) increasing, so that XVI

applies. Since f™H(u) log (u/H) du/u2< oo, the lemma follows from XVII.

To obtain XVII, let D' = D-\-e with e>0. Form a sequence of points {x„},

defined recursively by

(78) xn+i = xn + xny(xn).

If Xi is large enough,

A(x„+i) — A(x„) < 7>'x„

for n = l, 2, 3, • ■ • . Add enough zeros in (xi, x2) so that (within +1, say)

A(x2)=77'x2. Equation (78) shows that A(x3) <7)'x3. Add enough zeros in

(x2, x3) to make A(x3) = 7>'x3, and so on. Thus, we can adjoin a sequence X*

so that for the new function, A*, we have A*(xn)=D'xn within +1. Since

A*(m) is increasing

| A*(«) — D'u | < D'(xn+i — xn) = D'xny(xn) < D'uy(u)

when x„<w<xn+i, hence for all large u. Hence the enlarged set {X, X*} is
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not complete on an interval of length greater than 27r77', by the lemma.

It is worth mentioning that the restriction to real X„ plays an essential

role in the character of our theorems. If complex X's are allowed, one can

give other criteria for completeness. For example, let {X„} be a set of complex

numbers such that

| Im (X„) |
2^ —i—¡7— = °°-

x   2i  n i

Then {eiXnX} is complete T,2 on every finite interval. This is an immediate

consequence of the work of Levinson.

Sets with finite excess. Paley and Wiener [2] say that a set (e**»*} has

deficiency dona given interval if the set becomes complete when d but not

fewer functions {eiax\ are added to the set. An excess e is similarly defined,

and the set is said to be exact if d = 0.

Theorem XIX. Let {Xn| be a nondecreasing sequence of positive real num-

bers with A(u) the number of X's = w. If \A(u) —Du\ =77, then the excess of the

set {e±iX»x} on an interval of length 2irD does not exceed 477—3/2. Moreover,

there is a distribution A(u) satisfying |A(m) — 77« | =77 with excess as large as

[477—2] or, if 477—2 is an integer, as large as 477—3.

The first part of the theorem improves, and the second completes, a

theorem of Paley and Wiener. With the results of Levinson, this particular

question concerning completeness is practically settled. He shows that the

deficiency is sometimes as large as [2/1—3/2 — 5], and never as large as

2A—3/2. We show that the excess is sometimes as large as [477—2] or

477—3, and never larger than 477—3/2.

To prove the result, let F(z) = H(l — z2/\n) as usual, and let N be an

integer with 7^ = 477—3/2 + 5, 5>0. To remove N terms {eiX»x} is to divide

F(x) by a polynomial P(x) of degree N. Theorem XV yields

G{x) = F(x)/P(x) = o(x-1'2-i).

Also lim sup log | G(z) \/\z\ =irD, since A(«)~7>«. Using a theorem of Paley

and Wiener [2] (as extended by Plancherel and Pólya [6]) we can write

/wD g(x)e"*dx, g(x) G L\
-tD

Hence the curtailed sequence {e**»*} is not complete.

To prove the second part of the theorem, with 5 = 477—2— [477—2] >0

let X„ be a sequence satisfying | A(«) —Du\ =77 and such that

P(x) > x4*-2-*

for an infinite sequence x = x¿—»oo. That such an F(x) exists follows from

Theorem XV with C(x) =x~s. To remove [477—2] X's is to form
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G(x) = F(x)/P(x),

where P(x) is a polynomial of degree [477—2]. For x = x¿ we have

G(x)  >  X4*-2-^-!«'-2!  =  1.

Hence /ü_|G(x)| 2_x= » ; in the contrary case we should have

/wD e™gix)dx, gix) G 72,
-*D

and this entails G(x)—>0 by the Riemann-Lebesgue lemma (cf.   [6]). The

curtailed set {eiX»x} is therefore complete [l].
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