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1. Teichmüller enunciated the principle that the solution of a certain type

of extremal problem in geometric function theory is in general associated with

a quadratic differential. If in the problem a point is assumed to be fixed with-

out further requirement the quadratic differential will have a simple pole

there. If in addition the functions of the class considered are required to have

at the point, in terms of suitably assigned local uniformizing parameters,

fixed values for their first n derivatives, the quadratic differential will have a

pole of order n + 1 there. More generally, the highest derivative occurring

may not be required to be fixed but some condition on its region of variation

may be desired. Similar conditions apply to boundary points of a domain in

which the class of functions considered is defined. Teichmüller was led to this

principle by abstraction from the numerous results of Grötzsch [l—8] and by

his considerations on quasiconformal mappings [26]. He applied this principle

in certain concrete cases, the most important of which was his coefficient

theorem [25] which is the most penetrating explicit result known in the gen-

eral coefficient problem for univalent functions.

The object of the present paper is to prove a theorem which constitutes a

precise formulation of the above principle for a wide class of extremal prob-

lems. At the end of the paper we shall discuss how this theorem includes the

great majority of known results in geometric function theory.

2. We begin by collecting some definitions and known results.

We confine our attention to finite oriented Riemann surfaces. These are

Riemann surfaces of finite genus which may have a finite number of hyper-

bolic boundary components. Such a surface is conformally equivalent to a

domain lying on a closed oriented Riemann surface and bounded by a finite

number of analytic curves.

On a finite oriented Riemann surface 9Î we recall the concept of quadratic

differential. A quadratic differential is an entity which assigns to every local

uniformizing parameter z of 8î a function Q{z) meromorphic in the neighbor-

hood associated with z and satisfying the following conditions. If z* is a second

local uniformizing parameter of 9î whose neighborhood on 9Î overlaps that of

z and Q*{z*) is the corresponding function associated with z*, then at com-

mon points of the neighborhoods of z and z* we have

/ dz\2ran -<*>(-).
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In addition if z is a boundary uniformizing parameter of 9Î, the associated

function Q{z) is to be meromorphic on the closure of the semicircle in the z-

plane corresponding to the neighborhood of z on 9Î, i.e. also on the boundary

segment along the real axis. On the latter Q(z) is to be real when defined, i.e.

apart from poles. Naturally if 9Î is a closed surface this last condition becomes

vacuous. From this definition it is clear that we may speak of a quadratic dif-

ferential having a zero or pole of a given order at a point of $t or its boundary

independently of the particular choice of local uniformizing parameter. A

quadratic differential is to be denoted by the generic symbol Qiz)dz2 or some-

times _f2.

Of great importance are the curves on which Q(z)_z2>0. It is clear that

these are independent of the choice of local uniformizing parameters. Maximal

elements with this property will be called trajectories. They are either open

arcs or topological circles on 9Î. The totality of trajectories makes up a family

P which covers 9î apart from the zeros and poles of the quadratic differential.

By this we mean that through every other point of 9Î there passes a unique

element of P. It is advantageous to group the zeros and simple poles in one

set Cand the poles of ordere 2 in a second set 77. Points in CVJPf will be called

singular points of Qiz)dz2. The local structure of the trajectories in the

neighborhood of any point of 8Î including those of C and 77 is discussed fully

in [23, Chap. Ill] and summarized in [17, p. 8]. On this account we shall use

the appropriate results without further explanation. We observe then that

on 9Î punctured at the points of 77 the family P is much like the families

considered in the topological theory of functions [16]. The principal difference

is that the structure of P in the neighborhood of points of C is more general

than that usually allowed in the theory mentioned. Nevertheless, natural

generalizations of the methods used therein serve to establish various im-

portant results in the theory of quadratic differentials. Here, however, we

shall use only some of the notions and terminology from [16].

Chief among these will be the notion of F-set. An P-set K is defined here

to be a subset of 9Î such that any trajectory which meets K lies entirely in K.

Also we will use the notion of inner closure. The inner closure of a set K is

defined to be the interior of the closure of K and is denoted by K. It is

readily verified that the inner closure of an P-set is an P-set [16].

In the sequel we shall be primarily concerned with the important special

case in which the quadratic differential is regular on the boundary of 8Î and

satisfies (2(-)0_2 = O- In this case we say we have a positive quadratic dif-

ferential on 9î. Although we shall proceed without specifying whether 9Î has

boundaries or not, we shall use the above term without qualification, under-

standing that if 9Î is closed the boundary requirement is vacuous.

Finally we shall make use also of the curves on which Q(z)_z2 <0. Maximal

elements with this property will be called orthogonal trajectories.

3. We wish now to discuss the structure of the family F in the large, con-
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fining ourselves to the case of a positive quadratic differential. For this pur-

pose we define some basic sets occurring in the decomposition to be given of

dt [17].
An end domain © is a maximal connected open P-set on 9î which is free

from singular points, is swept out by trajectories each of which has a unique

positive and negative limiting point at a given element A of 77, and is such

that every neighborhood of A contains trajectories in @. An end domain

has the property that the integral Ç = f{Q{z))ll2dz defined by analytic con-

tinuation from one local uniformizing parameter to another is single-valued

in S and maps (S on an upper or lower half-plane in the f-plane. It turns

out that A must be a pole of order at least three.

A strip domain © is a maximal connected open P-set on 9Î which is free

from singular points, is swept out by trajectories each of which has one

unique limiting end point at a first element A of 77 and another unique limit-

ing end point at a second (possibly coincident) element B of 77, but is not

an end domain. A strip domain has the property that the integral f

=f{Q{z))x,2dz is single-valued in © and maps © on a horizontal strip in the

f-plane.
A circle domain E is a maximal connected open P-set on 9Î containing

exactly one element A of 77 and otherwise swept out by trajectories each of

which is a topological circle. The element A must be a pole of order 2. If c is a

suitably chosen real constant the function

(1) exp L j {Q{z)y»dz\

maps S onto the interior of a circle.

A ring domain 3) is a maximal doubly-connected open P-set on dt, tree

from singular points, swept out by trajectories each of which is a topological

circle and not contained in a circle domain. For suitable choice of c it is

mapped by the function (1) onto a circular annulus.

It is necessary to point out that for complete precision the above state-

ments must be slightly modified. Consider, for example, the quadratic dif-

ferential dz2 on the z-sphere. It has only one singular point, a four-fold pole

at infinity, and we can take the integral f to be identically z. The finite z-plane

itself would come under the definition of end domain and thus not enjoy the

mapping property stated. It is convenient to divide the z-plane along an

arbitrary but fixed horizontal line and say that the two half-planes thus ob-

tained are both end domains. There are a finite number of such exceptional

cases which are easily enumerated, involving also the other types of basic

domains. In each case suitable modifications are readily made and in order

to avoid excessively complicated phraseology we do not give them explicit

mention in the statement of the following Basic Structure Theorem and in the

proof of the Main Theorem. We do, however, indicate their role in the
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question of equality in the Main Theorem.

We are now ready to state our

Basic Structure Theorem. Let <_ denote the union of all trajectories which

have a limiting end point at a point of C. Then 9î — «_> consists of a finite number

of end, strip, circle, and ring domains. Each such domain is bounded by a finite

number of trajectories together with the points at which the latter meet. Every

pole of order m>2 has a neighborhood covered by the inner closure of

m — 2 end domains and a finite number ipossibly zero) of strip domains.

Every pole of order 2 has a neighborhood covered by the inner closure of a

finite number of strip domains or has a neighborhood contained in a circle

domain. <_■ is an F-set consisting of a finite number of domains each of finite

connectivity. Each boundary of such a domain is a piecewise analytic curve com-

posed of trajectories and their limiting end points in C.

This theorem is essentially proved in §4 of [17]. Although only hyper-

elliptic quadratic differentials are spoken of there, no use is made of this in

the proof which applies to an arbitrary positive quadratic differential on a

finite oriented Riemann surface. The first two statements are proved there

explicitly. It may be mentioned that the exceptional cases indicated above

arise when the image of 9î by the integral f =/(<2(z)) ll2dz is the simply covered

f-plane and Qiz)dz2 has no simple pole. This point is not well clarified in [17].

The statements on the neighborhoods of points of 77 follow at once from the

nature of the basic domains and the fact that <_■"" is bounded away from

points of H [17, p. 9]. The two final statements then follow as indicated in §7

of [17]. Let it be remarked that while these statements were not made ex-

plicitly at that place they were used implicitly (and quite consciously) in the

proof given there.

4. Let now a finite oriented Riemann surface 9Î be given with a fixed

positive quadratic differential Qiz)dz2 on it. By an admissible subdomain A

of 91 we mean a domain obtained by slitting $R along a finite number of arcs

on trajectories of Qiz)dz2 or on such trajectories closed by a point of C. Thus

all points of H are interior to A but points of C may be on the boundary of A.

We shall further consider a special class of mappings / of A into 9Î. First of

all these mappings shall be homeomorphisms. Secondly as functions from

one Riemann surface to another they shall be regular. Thus in a generalized

sense they are univalent functions. Every pole contained in A is to be mapped

into itself by/. Moreover at each point A oí H we assign a fixed local param-

eter in terms of which / is to have a prescribed local behavior. It is advan-

tageous to choose a parameter z such that A is represented by the point at

infinity in terms of z. If A is a double pole of <2(z)_z2, we require that in

terms of this parameter we have locally

/(z) = 0z + 0o + 0i/z + • • -, aj*0.
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If A is a pole of order m>2, we require that in terms of this parameter we

have locally

zm-i

The same conditions are readily expressed in terms of an ordinary local uni-

formizing parameter.

Instead of fixing a single local parameter at A it would be enough to fix a

class of parameters related to one another in the manner

i   hm~2   ,
z = z-\- + • • •

2m-2

at a pole of order m = 2, the parameters being conditioned as above. In this

way we would obtain from 9î a "higher principal domain" in the sense of

Teichmüller [27].

Finally we require that / be homotopic to the identity in the following

sense. There shall exist a function F{P, t) defined for PGA, 0 = 7^1, with

values in 9Î, continuous in both variables together, satisfying

F{P, 0) = /(P),

F{P, 1) = P,

F{P, t) = P, P a pole in A,

F{P, t) 5¿Q, Qa. pole in 9Î, P ¿¿ Q, t arbitrary.

A homotopy of this type will be called an admissible homotopy. A function /

satisfying the above conditions will be called an admissible function on A.

We are now ready to state our

Main Theorem. Let 9î be a finite oriented Riemann surface, Q{z)dz2 a posi-

tive quadratic differential on 9Î, A a« admissible subdomain of dt {relative to

Q(z)dz2), and f an admissible function on A. Let Q(z)dz2 have double poles

Pi, • • • , P, and poles Pr+i, ■ • • , Pn of order > 2. We allow either of these sets

to be void but not both. At P¡, jûr, in terms of a parameter z conditioned as above

let f have the expansion

(?)
,, . (i) (¿)       ¿H

f(z) = a   z + a0   -\-h • • •
z

and Q the expansion

a(i)
Q(z) = ■-1- higher powers of z_1.

z2

At Pj,j>r, a pole of order m¡>2, let us have the corresponding expansions
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(i)

/(z)=z+-^+...,

Qiz) = a(j)zm'-4 + decreasing powers of z.

PAew

(2) m(±aa)\ogaU) +   £«">«£,)__<).
\ j'=l 3=r+l /

Equality can be attained in (2) only for f the identity in the following cir-

cumstances.

(i)  There is a pole of order > 2.

(ii)  There is a pole P¡, /_=r, of order 2 with corresponding coefficient a(i) = 1.

(iii) There is a simple pole or a point on a trajectory ending in a simple

pole in A.

Equality can occur with \a('">\^l, j^r, for a(i)<0 ow/y when 9î is the

sphere and Qiz)dz2 a quadratic differential whose only singular points are two

poles of order 2. Then f may be an arbitrary linear transformation with these as

fixed points.

Examples of equality occurring for nonidentical / in other cases can be

constructed with almost arbitrary degrees of complexity.

To make the statement of the theorem complete it is necessary to give the

determination of the logarithms in our fundamental inequality (2). Under

the deformation P a given point PGA, not a pole, describes a path FiP, t),

0_s¿_=l. If P is sufficiently close to a second order pole P¡ this path will lie

in the neighborhood of the parameter z associated with P,. The change in

argument of the value of z corresponding to FiP, f) as t runs from 0 to 1

tends to a limit —.,- as P approaches P¡, where 6¡ is one value of the argu-

ment of au). Then we understand

log «<« = log | 0<»> | + id,-

to hold in (2).

Basic in our proof is the use of the metric | df | = | Qiz) 11/2| dz\ which is a

conformally invariant metric on the surface 9Î. It will frequently be referred

to as the (X-metric. In the metric space thus obtained from 9Î the points of 77

are to be excluded, being at "infinite distance."

5. We shall now collect a number of fundamental results due to Teich-

müller which will be used in our proof.

First we recall the simplifying remark that we may assume that the quad-

ratic differential has no simple poles on 9Î [26, p. 160] (see also [23, Chap.

VII ]). Indeed since there is at least one element in 77 we can replace 9Î by a

two-fold covering surface 9Î*, doubly branched at the simple poles of the

quadratic differential and possibly at one pole of higher order. The positive



268 J. A. JENKINS [September

quadratic differential, an admissible subdomain, and an admissible function

induce similar entities in a natural fashion on 9Î*. In terms of these the left-

hand side of (2) is replaced by just twice that expression. Thus it is enough

to prove the fundamental inequality (2) on 9f*. To discuss equality we return

to the surface dt in a manner which will be clear later. Until then we shall

assume that the present situation holds for $R itself. Actually the argument

to follow can be carried out with proper conventions even when simple poles

are present but it complicates some of the arguments.

Fundamental for the following is the consideration of the geodesies in the

Q-metric on dt. By a geodesic we understand as usual a curve of which every

sufficiently small subarc is the shortest join of its end points. Locally an arc

is a geodesic if on it is satisfied

(3) arg Q(z)dz2 = constant

except at a zero of the quadratic differential. Two arcs satisfying (3) and

meeting at an ra-fold zero of Q(z)dz2 make up a geodesic arc if and only if

each of the angles they form is at least 27r/(777+2).

Let now A and B be any two points of 9i — 77. We regard the homotopy

classes of curves in 9Î — 77 joining A and B in the sense that the end points

are to be fixed at A and B during the deformation. We then have the result

due to Teichmüller [26, §138].

I. 7t7 every homotopy class of curves in dt — 77 joining A and B there is a

unique geodesic which is the shortest join of A and B among curves of the homot-

opy class.

Also we have

II. Let A be an admissible subdomain of di, Ka compact subset of 9î — 77.

Let Abe a subarc of a trajectory in A(~\K and A' its image under f, an admissible

mapping on A. Then there exists a real constant M depending on K but not on

A such that

f   | dt | =   f \d{\- M.
J A' »7 A

The present situation is slightly different from that considered by Teich-

müller but his proof [26, §136] goes over almost word for word so is not re-

peated here. By 9Î we naturally mean 9Î together with its boundaries (if any).

Finally

III. Let $ be as defined in the Basic Structure Theorem, let A be an ad-

missible subdomain of 9î, let '$fl = &~~r\A, let W be the image of 9JÎ under f,
an admissible mapping on A, and let dA (P) denote the element of area at P in the

Q-metric. Then

( (  dA =  f f dA.
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Once again the situation is slightly different from that considered by

Teichmüller but this time we shall give the proof, even though it differs very

little from that of Teichmüller [26, §135], in order to bring out the essential

properties of <_■    on which the result depends.

We consider then 2JÎ and the mapping/. By |/'(P)| we mean the distor-

tion produced by/ at the point P in terms of the (X-metric. Now on the tra-

jectory through PG2IÏ— C we draw in each direction a segment of length P/2

in the (X-metric lying in _)?(/. >0). This is possible for all values of L unless

P lies on a trajectory ending at a point of C or on one which has been slit

along an arc to obtain A from 3Î. Since there is only a finite number of each

kind it proves we can neglect them. We denote arc length measured alge-

braically from P on the arc so obtained by / and write the curve in parametric

form as Sit, P) (-P/2__í_¡¿/2). S{t, P) is a point of M and 5(0, P) =P.

From II we obtain at once

/.
| f'iSit, P)) | A __ L - M.

■_/2

We integrate this over 5DÎ with respect to area in the (X-metric to get

fff      I f(Sit, P)) | dtdAiP) ^ (7 - M) f f dA.
J JfmJ __/2 J J m

Now on the left-hand side we take |/|, 5 as independent variables in place

of t, P noting that

077/1 (P) = d\t\dAiS)

and changing the order of integration we obtain

2 f f I f'(S) | dAiS) f     d | 11 ̂ (7 - M) f f dA
J J m Jo J J m>

or

L f f I /'(S) I dA(s) = (L - M) f f dA-
J J mi J J m

Dividing by L and letting it approach oo we obtain

ff |/(5) | ¿4(5) i_  ffdA.
J J 'HI *'«'_?

An obvious application of Schwarz's inequality gives

f( |/'(5)[2__t(5)ii  ffdA,
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thus

f f   dA =  f f dA

as stated.

Further it follows that equality is possible only if the mapping is every-

where on 97Î isometric in the (?-metric.

We point out the two essential properties used in this proof: first closure

$    is compact on 9Î —77, second i>    is an P-set.

6. We are now ready to begin the proof proper of the Main Theorem. A

general outline of this is as follows. First we must remove from A suitably

fashioned neighborhoods of the points of 77. Then we obtain evaluations of

the area of the residual domain and its image under/, one from above using

the behavior of / on the boundaries of the neighborhoods removed, one from

below using the method of Grötzsch. The combination of these gives the de-

sired inequality (2).

First we describe the neighborhoods to be removed. Let PjEH,j>r, be a

pole of Q(z)dz2 of order m¡>2. Let U be a neighborhood of P¡ covered by the

inner closure of the m¡ — 2 end domains and possible strip domains associated

with Pj. We slit this neighborhood along a trajectory A running to the point

Pj and in the other sense leaving U, say a boundary curve of one of the end

domains. In the set 77—A, Ç=J{Q.{z))ll2dz is single-valued (choosing any

particular determination) and it maps this set on a portion of Riemann

surface over the f-plane. We regard in the f-plane a square of side 2L, center

at the origin, and with sides parallel to the real and imaginary axes. We take

the trace of this square on the Riemann surface and its inverse image on dt.

The latter is a sequence of arcs as follows. First there is an arc of an orthog-

onal trajectory with initial point on A. Then there is an arc of a trajectory

lying entirely in an adjacent end domain (for L large enough). Next there is

an arc of an orthogonal trajectory. They alternate in this manner until we

reach an arc of an orthogonal trajectory ending on A. Its terminal point will

not in general coincide with the initial point of the first arc above. Joining

these points with an arc of A if necessary we obtain a simple closed curve

which we denote by y{P,-, L). It divides 9Î into two components and the

one which contains Pj is the neighborhood to be removed. It will be denoted

by U{Pj, L).

Now let PjEH, j^r, be a pole of Q{z)dz2 of order 2. There are two cases

according as Py lies in a circle domain or not. In the first case we slit a neigh-

borhood U of Pj lying in the circle domain along an orthogonal trajectory N

running from the boundary of U to Pj. In the set U—N, f = f(Q(z))1/2dz is

single-valued (again any particular determination) and it maps this set on a

vertical strip in the f-plane. We may suppose that 3f becomes positively in-
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finite in the strip. Then we take the intersection of the strip with the line

3f = P (where P will be a large positive number). Corresponding to this on

9î will be a closed trajectory in the circle domain which we denote by yiPj, L).

This divides 9Î into two components and the one which contains P¡ is the

neighborhood to be removed. It will be denoted by P(Py, P).

Finally let Pj be a pole of order 2 which has a neighborhood U lying in the

inner closure of a union of strip domains. We slit U along a trajectory A

running from its boundary to Pj. In the set U—A, ^=JiQiz))ll2dz is single-

valued (any particular determination) and it maps this set on a horizontal

strip in the f-plane. We may suppose that 9îf becomes positively infinite in

the strip. Then we take the intersection of the strip with the line 9îf = P

(P again large and positive). Corresponding to this on 9Î will be an arc of an

orthogonal trajectory with end points on A. These will not in general be co-

incident. Joining them with an arc of A if necessary we obtain a simple closed

curve which we denote by yiPj, L). It divides 9Î into two components and

the one which contains P¡ is the neighborhood to be removed. It will be de-

noted by UiPj, L).
Removing all the neighborhoods P(Py, P), j = 1, ■ ■ • , w, from A we obtain

a domain A(P) which is the domain we shall treat. It should be observed that

A(P) depends not only on the parameter P but also on the various choices

of the determination of f = /(C(z))1/2_z in the neighborhoods of the points of

H. However we shall keep one fixed determination for every point of 77 and

thus A(7) will be a well defined domain for given P. In the sequel we shall

always suppose L so large that no slit boundary of A meets any yiP¡, L) or

penetrates into the interior of any P(Py, P).

We now compare the area of A(P) in the (X-metric with that of its image

A'(P) under/. From the form of A(P) and the properties of / it is clear that

each of these is finite. Our first step is to estimate the area of A'(P) from

above by the area contained by the image curves of the curves y(P,-, P), i.e.

the area of the domain on 9î having these images as boundaries. For this it is

enough to determine the change in area arising from each such boundary.

Let first PyGP,/>r, be a pole of ordermy>2. Under ?=fiQiz))l'*dz there

corresponds to the curve in question a finite sequence of segments differing

from m¡ — 2 half-boundaries of squares by at most two vertical and one

horizontal segment, each of fixed length. To determine the resultant change

in area we shall find the mapping induced in the ¿"-plane by the mapping/.

First we observe

(m       \-1
-1 I   zmt2~l + decreasing powers of z1'2

where we have written a, m for a(í), m¡ and for m even there may be a loga-

rithmic term in the expansion. The choice of roots appearing depends on the

determination of f. Let co be the point corresponding to f under the mapping
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induced by/. Then

a   =   {•  +   (al/2zm/2-2  +...)(-h   •  ■  ■     )

\zm_3 /

= t + aam-J™ - lVr1 + 0(| f h(1+4))

where k = 2/(m — 2) and we have written am_3 for a^_3. Thus the change in

area arising from the effect of the mapping on the half-boundary of a square is

9.{- f (? + if-*)(l - &r2)* - — f ?#} + 0(7-*)

where the integrals are taken on the half-boundary of the square and we have

written b for aams(m/2 — l)-1. The whole expression is seen at once to be

0(L~k). As for the change arising from the segments mentioned above it is

clearly O^-1). Thus the total change is 0(L~X) or 0(L~k) whichever is larger.

In any case the change in area arising from the effect of/ on y{P¡, L), j>r,

is o(l) which is all we need.

Now let PjEH, j^r, be a pole of order 2 lying in a circle domain. It is

clear that this corresponds to having a(i)<0. Under f = f(Q(z))ll2dz cor-

responds to y{Pj, L) a horizontal segment of length 27t| a(í) |1/2. To determine

the resultant change in area we find the mapping induced in the f-plane by

the mapping/. First we have

f = a1'2 log z + powers of z-1

where we have written a tor a(l~>. The choice of determination previously

made for f implies that this root a112 has positive imaginary part. (It is pure

imaginary.) Let co denote the point corresponding to f under the mapping

induced by/. Then

co = f + a1/2log a(,) + terms in z_1.

The image domain has side boundaries corresponding to A^ which are obtained

from one another by a translation of 27r|a|1/2. Thus the change in area is

2tt|û:| V* Sia1'2 log a">)+o(l) = -27r9t (a log a«')+o(l).

Finally let PjEH, jSr, be a pole of order 2 not lying in a circle domain.

Under f =f(Q(z))ll2dz to 7 (Py, L) there correspond a vertical segment and a

horizontal segment (the latter possibly degenerating to a point), each of

constant length. They have one end point in common and the segment joining

their other end points corresponding to a circuit about Pj leaving Pj to the

right is given by 2Tri(au))112, (au))112 to have positive real part corresponding

to the choice of determination of f previously made. Once again

j = a1/2 log z + powers of z-1
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with the same simplified notation as before. Letting o> denote the point cor-

responding to f under the mapping induced by / we have

w = f + a1'2 log 0(i) + terms in z_1.

In case a is not real and positive we now take the neighborhood of Pj slit not

along a trajectory but along an arc meeting the trajectories at equal angles

and having a limiting direction at Pj. £" will map this on a region with sides

parallel to a112 and of constant width 27r| a|1/2. Then as before we get for the

change in area 27r9t(|a| log 0(î))+o(l). In the above considerations we may

for definiteness assume log 0()) to have the determination given following the

statement of the Main Theorem but we see that the determination plays no

role in the present final result.

If we divide the poles of order 2 according to the above criterion into

Pi, • • ■ , P„, lying in circle domains, Ps+i, ■ ■ ■ , Pr not (where we understand

that either or both of these sets may be void) we have our first evaluation:

f f       dA ̂    f f       dA - ¿ 27r9î(a") log 0<>>)
J d A'(L) J J A(£) j'=l

+    ¿   2xft( | a"'» | log a"') + o(l)
J=«+l

where again dA denotes the element of area in the (Xmetric.

7. We next estimate the area of A'(P) in the (X-metric from below, making

use of Grötzsch's method. We now interpret this quantity as the area of A{L)

in a new metric, namely |/(P)| | _f (P) | where the derivative has the same

meaning as in §5. We denote this for brevity by p\ dÇ\. It is clear that

f f      P2dA =  f f      dA.
J  J A(L) J  J A'(_)

Now A(P) is decomposed into 9)2 = $   f\A, the union £)* of a finite number of

intersections of ring domains with A and the union of a finite number of inter-

sections of end, strip, and circle domains with A(P).

The result III shows that

f f pHA ^  f f dA
J J m \J J Wl

and quite similarly

f f   p2dA ^  f f   dA.
J J D* J J n*

Further if S(P) denotes the intersection of a circle domain S with A(P) we

have again
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r r P2dA ^ f f dA.

Let now (S be an end domain adjacent to a pole Pj, j>r, of order m¡ = m

for simplicity, and let @(7,) =©f\A(X). First we take the extended domain

@* of © in the sense of Schaeffer and Spencer [23, pp. 80, 97]. This is a

simply-connected subset of dt containing (§. which is mapped by the given

determination of f on the entire ¿"-plane slit along a finite number of vertical

half-infinite segments each starting at the image of a zero and not entering

the image of @. We denote the f-plane so slit by E.

Now

0 =:  i* Í*      (p - l)2dA =  f f      P2dA + \  f      dA - 2 f f      pdA.

Setting f = £+7-?7 and passing to the f-plane we have

f f      pdA = f C      pdtdv.

The range of integration on the right-hand side is the image E(L) of @(P), a

rectangle of horizontal dimension 27, and of vertical dimension P+X where X

is fixed, real, possibly either positive or negative. Let us suppose for definite-

ness that 3f becomes positively infinite in E(L) as L approaches infinity.

E{L) then differs from the half square — 7,^£ = 7,, 0 = ?7=7, at most by a

horizontal strip of finite width.

Let tr(r¡) denote the horizontal segment of length 27, lying in E(L) on the

line at height n. This will exist for all but a finite number of n in 7, = ??= —X

(i.e. unless we encounter the image of a boundary slit of A(L)). Then

Jciropd^ is just the length in the (7-metric of the image t under/ of the ante-

cedent of a(i?) by the mapping f. Since / is continuous at P¡ the images A

and B of the end points of a(in) under the mapping in the f-plane induced by

/ will lie in E when L is large enough. A similar remark applies to the images

by f of the paths described under the homotopy F by the end points of the

antecedent of o(r¡) (}). Consider the shortest polygonal line lying in E and joining

A and B. Clearly it is the image by f of a geodesic on 9Î. A standard device

shows that this geodesic is in the same homotopy class as r. Thus fa^)pd^ is

estimated from below by the difference of the values of £ at A and B. Since

the mapping induced by/ is given by

fm       \-»
«-r + ««-, — -i   r'+ o( r-«+»)

(') For the complete justification of this statement it may be necessary to modify the de-

formation F in a neighborhood of Pj. This can be done but a better method is to avoid this

question by the use of a suitable direct homotopy argument.
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we have, taking the current point on the right-hand vertical side of P(P) to

be L+iL tan 6 and writing a0m_3(w/2 —1)_1 = Me1",

I pdi, _: 27 + 2ML-* cos p cos2 8 + Oiir^+V).

Integrating this over the range of n corresponding to P(P) we get (there being

only a finite number of exceptional values of r¡)

ff      pdA ̂  27(7 + X) + 2ML-1 cos p f       cos2 6dL tan 8 + OiL~k)

where 80 is the value of the angle d corresponding to the lower bound of inte-

gration. Replacing it by 0 changes that term only by an amount 0(P_1). Thus

f f      pdA^   f f      dA + rim- 2)-13?(a0m_3) + o(l).

Since there are m — 2 end domains associated with a pole of order m and

Jfa(LiP2dA +ff<£(L)dA S: 2ffs(L)pdA we have

Zff       p'dA^Zff       dA + 2^ í ¿ «" *£4  + oil),
J J <S(L) J J g(_) V/=r+l /

the first two summations being taken over the totality of end domains.

Next let © be a strip domain and let ©(P) = @f\A(P). As before we have

f f      P2dA + f f      dA ̂  2 f f      pdA
J  J <S(L) J  *^_(_) J  «^©(_)

and the right-hand side can be evaluated from below as before using in the

argument the corresponding extended domain [23, p. 80] and geodesies. It is

verified at once that the increment of ff®iL)pdA over //_(_)_/! accruing from

a pole of order >2 is o(l) while the increment to the totality of //_(_)p_/l

for © ending at a given pole P¡, s + 1 újúr, of order 2 is 27r|a(,)|1/2 cos <p¡

9Î {(«(j))1/2 log 0())}+o(l) where (a('>)1/2 is the root with positive real part,

(«(i)) 1/2 = |a(i)| 1/2e«'*i, and log a1'1 has the determination previously given.

(This is the only place where the choice of determination of log aU) has an

actual effect.)

Combining these results for all strip domains we find

Hff      P*dA^Zff      dA
J J ©(_) J J ©(_)

+ 4tt9í i ¿   I a<« | e^i cos 4>{ log 0»>i + o(l)
\j=€+l 1

where the first two summations are taken over all strip domains.
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Adding up the results given for all the domains into which A(L) is de-

composed we obtain

f f       P2dA ^  f f       dA + 4ir9î | ¿   | a<« | e**' cos 4>i log a('>l

2x9í{¿a(í,«^3l   +0(1)

which is our second evaluation.

8. Combining the two evaluations, recalling that ffA(L)P2dA =ff¿'(L)dA
we obtain

- 2xr9î i ¿ «<« log <i«)| + 2x5R | ¿   | «<fl | log a<>>} + o(l)
V. ¡=1 ' W=»+l '

= 4ttÜÍ { ¿   | a(i> | e'"*' cos 0, log a")}  + 2tt9Î j ¿ a°'}a^U}  + o(l).

The explicit terms occurring are independent of L and an elementary calcula-

tion gives

. / »A    (j) .       (i)       A    eft tfl  \    . -
< 2-, a     l°g «     +   2^ «    a™y-3>   á 0
I ¡=1 i-r+1 '

which is just the fundamental inequality (2).

As regards the possibility of equality in (2) we first observe that by a

standard type of argument [10] every trajectory or portion thereof lying in

the intersection of an end, strip, or circle domain with A must be mapped by

/ into another such, the mapping being isometric in the (7-metric. In view of

the condition for equality in Teichmüller's result III the same must be true

in the set 3JÎ and in the intersection of any ring domain with A. Further no

open set on 9Î can be left uncovered by the image A' of A under / and the

boundary of A' relative to Ht must consist of a finite number of arcs on trajec-

tories or on trajectories closed by a point of C. We have so far considered only

the modified surface 9î on which there are no simple poles but it is clear that

the above conditions on it imply the analogous statements for the original

surface.

If a pole Pj,j>r, of order >2 exists the prescribed form of the mapping/

there combined with the above conditions implies immediately that / is the

identical mapping in a neighborhood of P¡ and thus everywhere in A. A similar

remark applies if there is a pole Pj, j^r, of order 2 for which the correspond-

ing coefficient a(i) = l.

If a pole of order 1 exists interior to A it must be mapped into itself and

the remaining conditions imply at once that / is the identical mapping in a

neighborhood of this point and so everywhere.
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Suppose a pole P of order 1 exists on a slit boundary of A but part of the

trajectory bearing the slit is interior to A. Then the homotopy condition on

/ implies that P lies in the component of the complement of A' corresponding

to the slit. It is readily seen that this must coincide with the original slit in

view of the isometric property of/. A can then be enlarged to include this slit

and f extended to have the same properties as before. That / is the identity

then follows from the preceding paragraph.

Finally if we have a double pole P¡ with au)<0, Pj will lie in a circle

domain. If the circle domain is proper, i.e. has a singular point on its bound-

ary, we see at once that it must be mapped onto itself so that | aU) | = 1. The

alternative case can occur only in the following situations:

(a) dt the sphere, Q{z)dz2 a hyperelliptic differential whose only singular

points are two poles of order 2.

(b) ÍR the sphere, Qiz)dz2 a hyperelliptic differential whose only singular

points are one pole of order 2 and two poles of order 1, the two latter being

limiting end points of a single trajectory, A obtained from dt by slitting at

least along this trajectory.

(c) dt a simply-connected hyperbolic surface, Q{z)dz2 a positive quadratic

differential on 9Î whose only singular point is a pole of order 2.

In saying 9î is the sphere, we mean 9Î is a closed surface of genus zero,

i.e. conformally equivalent to the sphere. The same interpretation is to be

attached to the term in the statement of the Main Theorem, and an anal-

ogous one to the term "linear transformation."

These results follows at once from the familiar formula for the algebraic

sum of the orders of poles and zeros of a positive quadratic differential to-

gether with a simple topological observation in the case of (b). It is verified

directly that for equality in (2) we must have | a\ = 1 for the coefficient a at

the pole in cases (b) and (c). In case (a) we can have equality if and only if

/ is a linear transformation with the two poles as fixed points.

This completes the proof of the Main Theorem.

9. The Main Theorem can readily be extended in the following manner:

Extended Theorem. Let the conditions be the same as in the Main Theorem

except that now the quadratic differential is only required to be regular on the

boundary of 9Î. Further f is required to admit a continuous extension to any

maximal open boundary arc or complete boundary of 9Î on which Qiz)dz2^0

and to map such an arc or boundary into itself, the homotopy FiP, t) is to admit a

similar extension and also to satisfy a similar mapping condition for each given t.

Then the same conclusions obtain as in the Main Theorem.

It follows at once that/ is actually a homeomorphism into on the above

arcs and boundaries and / is analytic thereon in terms of boundary uni-

formizers. The Extended Theorem is most easily proved by "doubling" the

surface 9î across those boundary arcs and boundaries on which C(z)_z2_;0.
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The quadratic differential extends by reflection to give a positive quadratic

differential on the new surface and the entities corresponding to A, f, and F are

obtained in a standard manner. The Main Theorem in its original form applies

to the new surface and we obtain at once the Extended Theorem.

It should be observed that the Extended Theorem can be proved directly

in the same manner as the Main Theorem. Indeed we can obtain a decom-

position of 3Î relative to the more general type of quadratic differential

analogous to that given in the Basic Decomposition Theorem for a positive

quadratic differential and the remainder of the proof carries over with only

trivial modifications.

10. At the end of §1 we remarked that the theorem to be proved includes

the great majority of the results of geometric function theory. Among these

let us mention particularly the extremal properties of certain normal maps

of multiply-connected domains [2l],the Koebe 1/4 Theorem, the bounds

for the modulus of a normalized regular univalent function in the unit circle,

the distortion theorem, generalizations of these to bounded regular univalent

functions [19] and to circular rings [l], the fundamental inequalities in the

parallel slit theorem, Grotzsch's distortion [2] and displacement [4] theo-

rems, and Teichmüller's coefficient result [25].

Indeed, in each of these situations the extremal domain is an admissible

domain for a (positive) quadratic differential either on the sphere or on a

circular domain and the competing functions provide just admissible map-

pings. In all the above cases the homotopy condition is trivially satisfied. In

results such as Grotzsch's distortion and displacement theorems there is in

general in addition to the fundamental inequality an auxiliary result which

provides the exact domain of variation of some entity. This auxiliary result

usually depends on some special explicit consideration and does not come

under the general theorem.

Moreover there are many results which while not directly included in the

enunciation of the theorem are easy consequences of the method employed in

its proof. Among these we may mention the extremal properties of certain

other normal maps of multiply-connected domains [l ; 21], Komatu's gen-

eralization of Löwner's Lemma [18], the results concerning the closest

boundary point on equally spaced half-rays for the image by normalized

univalent mappings of the unit circle and their generalization to circular rings

[8; 20]. The present approach makes particularly clear why in the case of

more than one ray we can allow the functions considered to be meromorphic

while in the case of the Koebe 1/4 Theorem and its generalizations the func-

tions must be regular, a fact first pointed out by Rengel [20 J.

Moreover combining the above methods with certain other ideas [l 1 ]

we can obtain proofs of Schwarz's Lemma, Löwner's Lemma, the Bieberbach-

Eilenberg Theorem, and various other results.

Finally it should be remarked that the Main Theorem can be applied in
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the coefficient problem for multiply-connected domains [24] in the same

manner that Teichmüller's coefficient result has been applied for simply-

connected domains [23].

11. We conclude with two remarks. Remark 1. The above Main and

Extended Theorems and the other applications of the method employed in-

dicated above by no means exhaust the scope of Teichmüller's principle

enunciated in §1. For other illustrations see [12; 13; 14; 15].

Remark 2. Royden [22 ] has recently written a paper which has some rela-

tion to the present one. In the case where poles of order >1 are present his

result becomes a weak form of the equality statement (i) or (ii) of the Main

Theorem, i.e. instead of assuming merely that the left-hand side of (2)

vanishes he assumes that every term in the expression of which we take the

real part vanishes. In the case where no pole of order > 1 is present his result

can be derived in a straightforward manner from the results of Teichmüller

[26]. In his formulation Royden allows a homotopy of a priori more general

type than that stated here. However it can be readily modified to give one

of the latter type so there seems to be for the present purpose no advantage

in the apparently more general formulation.
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