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1. Some problems arising in the study of value distribution of functions

of two complex variables. One of the objectives of modern analysis consists

in the generalization of methods of the theory of functions of one complex

variable in such a way that the procedures in the revised form can be ap-

plied in other fields, in particular, in the theory of functions of several com-

plex variables, in the theory of partial differential equations, in differential

geometry, etc. In this way one can hope to obtain in time a unified theory of

various chapters of analysis. The method of the kernel function is one of the

tools of this kind. In particular, this method permits us to develop some chap-

ters of the theory of analytic and meromorphic functions f(zit • • • , zn) of

the class J^2(^82n), various chapters in the theory of pseudo-conformal trans-

formations (i.e., of transformations of the domains 332n by n analytic func-

tions of n complex variables) etc. On the other hand, it is of considerable inter-

est to generalize other chapters of the theory of functions of one variable,

at first to the case of several complex variables. In particular, the study of

value distribution of entire and meromorphic functions represents a topic of

great interest. Generalizing the classical results about the zeros of a poly-

nomial, Hadamard and Borel established a connection between the value dis-

tribution of a function and its growth. A further step of basic importance

has been made by Nevanlinna and Ahlfors, who showed not only that the

results of Hadamard and Borel in a sharper form can be obtained by using

potential-theoretical and topological methods, but found in this way im-

portant new relations, and opened a new field in the modern theory of func-

tions.

As one passes from the theory of functions of one variable to the case of

two and more variables(2), the question of the value distribution becomes

more complex and many directions arise which can be considered as a gen-

eralization of the above mentioned chapter of the theory of functions of one

variable. However, the formulation of the problems which can be answered,

and generalization of methods used in one variable, is not immediate.

A function of two complex variables may vanish in a domain on a segment

Received by the editors July 6, 1953.
(') This work has been done under a contract with the Office of Naval Research.

(2) In the present paper we are considering the case of two variables. We note that a gen-

eralization of methods used in the following to the case of n variables, «>2, presents only tech-

nical difficulties.

413



414 STEFAN BERGMAN [November

of a (two-dimensional) surface and there exists an infinite variety of independ-

ent functionals which we can associate with these segments. Hereby the be-

havior of different functionals reflects different properties of the segments.

Further, a generalization of methods of Nevanlinna and Ahlfors to the theory

of functions of two variables is not immediate, and the whole problem of con-

necting the theory of analytic functions with a conveniently chosen class of

real functions for which a generalization of potential-theoretical procedures is

possible requires a revision.

Various investigations in the theory of functions of several variables (e.g.,

arising in the theory of the kernel function) teach us that, in contrast to the

situation in one variable, it is useful to classify domains of definition of func-

tions of two complex variables. In particular, so-called domains with a dis-

tinguished boundary surface are of great interest; these are domains on whose

(three-dimensional) boundary lies a (two-dimensional) distinguished boundary

surface. In many instances, a generalization of deeper results in the theory of

functions of one variable to two variables is possible in the case of these

domains, whereby the distinguished boundary surface (and not the three-

dimensional boundary), plays the role of the boundary curve.

In these domains an analytic function of two complex variables assumes

the maximum of its absolute value not only on the boundary of the domain,

but even on the distinguished boundary surface. There exist a generalized

Cauchy formula [B. 1, 2; W. 1. 2; So. l](3) and a development in terms of

functions which are orthonormal when integrating along the distinguished

boundary surface [B. 11]. In the case of domains with the distinguished

boundary surface, these facts permit us to generalize a number of results of the

theory of functions of one variable whose generalization is not possible in gen-

eral domains. If, however, one attempts to generalize results obtained by the

use of potential-theoretical methods, one realizes that the class of B-harmonic

functions (i.e., real parts of functions of two complex variables) is too special,

so that not necessarily to every (say, continuous) function defined on the

distinguished boundary surface does there exist a function which is .B-har-

monic in the domain and which assumes on the distinguished boundary sur-

face the prescribed values. This situation leads us to extend the class of B-har-

monic functions in such a way that the extended class possesses all prop-

erties needed in various function-theoretical procedures, but is sufficiently

large so that the boundary value problem with the values prescribed on the

distinguished boundary surface always has a solution. These requirements

lead us to introduce certain functions of the extended class which (in contrast

to the case of one variable) depend in general upon the domain of definition.

Once the functions of the extended class are introduced, one can easily

define Green's function of the extended class and derive various integral

(') Numbers in brackets refer to the bibliography. As a rule the name of the author is re-

placed by the first letter.
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formulas of Green's type. It has been shown in [B. 3, 4, 5; B.-S. 2] that, using

these formulas, one obtains certain functionals which can be considered as a

direct generalization of such notions as a number of points av for which

f(av)=a in a circle \z\ <r, as El«,l£r |a>'|~'x> etc., and that for these func-

tionals one obtains bounds in terms of expressions characteristic for the

growth of the functions on certain three-dimensional hypersurfaces. There

arises, however, a difference in comparison with the two-dimensional case;

namely, while a family of circles with increasing radii covers the whole plane,

a one parameter family of two-dimensional manifolds forms a three-dimensional

hypersurface; choosing different families we obtain different hypersurfaces

on which the growth of the function is considered.

The continuation of investigations of this kind can proceed in different

directions. At first one can use further types of domains with a distinguished

boundary surface to obtain analogous formulas connecting functionals of

similar type with the growth of the function on hypersurfaces of more com-

plicated structure than those considered in [B. 4]. On the other hand, the

variety of the functionals which one can associate with segments of a surface

is richer than those which one can associate in the case of one variable with

a set of points. Further, in connection with the theory of pseudo-conformal

mapping where we consider a mapping of a domain by a pair of functions, it

is of interest to associate functionals with a pair of functions.

In the present paper we introduce functionals of a new type, which are

considered in special domains 93. These domains are bounded by two segments

of analytic hypersurfaces. One of these segments lies in the analytic hyper-

surface [|z2| =l], so that the family of analytic surfaces z2 = const, plays a

distinguished role for the structure of the domain under consideration. In

domains of this kind (see for details §2), we introduce functionals which are

denoted by 9>f*(P), k = l, 2, which we associate with a pair (fi, f2) of mero-

morphic functions. These functionals are formed as follows: Let w(z), w(0)

= 0, w'(0)>0, be the function which maps a simply connected domain S32 of

the z plane onto the unit circle. We denote

w(z) — w(Z)
(1) (z,Z;S2)= _   /    ,

1 — w(Z)w(z)

as the C?(932)-distance between z and Z(4). For every z2, \z2\ ¿1, we form

the following four products: Pi(z2) and P2(z2) are the products of C(932(z2))-

distances between every zero of fi=fi(zi, z2) and every zero and pole of f2,

respectively, and P%(z2) and Pi(z2) are analogous products with zeros of /1

being replaced by poles of fi. (S2(z2) means the intersections of the domain S3

under consideration with the plane z2=z^ = const.)

We introduce further "exceptional points" (z^\ z2^), v = l, 2, ■ • • , of the

(4) (1) is connected in a very simple manner with the non-Euclidean distance, see p. 443).
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pair (fi,ft). (These are intersection points of zero and pole surfaces of/i with

zero and pole surfaces of /2, and certain other points. See §2.) We cut out from

the projection |z2| <1 of S3 on the z2-plane the projections |z2— z2"'| <P,

P>0 sufficiently small, and we denote by ©| the remaining part of the unit

circle. The function iWi(P) is the average of the generalized Blaschke product

[Pi(z2)Pi(zi)/P2(z2)Pz(zi)] over ©|.

The second functional 2)f2(P) is formed in a similar way. We obtain for

the sum 5iíi(P) +2íí2(P) upper bounds in terms of quantities which are con-

nected with the growth of the functions (fi, f2) and certain quantities which

we associate with exceptional points of the pair (fx, /2).

In §7 we show that the kernel function of the functions of the extended

class normalized in the sense of a conveniently chosen metric is finite.

Thus, in [B. 4] and in the present paper, we derive bounds for functionals

characterizing certain properties of segments of zero and pole surfaces of

analytic functions of two variables. These results seem to indicate that, in

analogy to the case of one variable, in the case of two variables after an ex-

tended class has been introduced one can also establish formulas of Green's

type which then can be used in deriving bounds for functionals characteriz-

ing in this or other respects the behavior of zero and pole surfaces of one or of

a pair of functions of two complex variables. In the domains with a distin-

guished boundary surface of more complicated structure, one obtains further

relations using Morse's theory of critical points. [See B.6].

Notation. Manifolds as a rule are denoted by German characters, and

the upper index indicates the dimension of the manifold. In the case of four-

dimensional manifolds the index 4 is omitted. Wl(z2)) means the intersection

of $D?n with the plane z2 = Z2 = const. In operating with the sets we use the

usual symbols S or + (sum set), — (difference set), f\ (intersection), and

so on. For instance, the sum set of a family of curves or domains 93n(£"2),

m = 1 or 2, each of which lies in a different plane z2 = f2, where f2 varies along

a curve or in domain Sím, mg2, will be denoted by S22gam 23n(z2) or by

[SS8"(z2)1 ZüGSI"1]. Arguments of the functions are abbreviated and omitted

as much as possible. zk, k = l, 2, is used, as a rule, as a complex variablexk+iyk

and as the point (xk, yk), as well.

A function, say/, is often considered:

Io. in the domain 3} = S|Z2|<i S82(z2), where Sß2(z2) is the domain bounded

by the curve b1(z2) = [zi = h(\, z2), 0^X^2tt], A(0, z2)=ä(2it, z2);

2°. in b3 = S|*2|<i 6'(z2) (£>3 represents a part of the boundary of $b); and

3°. on the distinguished boundary surface 3)2 = S0^2g2:r 61 (exp (¿02)).

As a rule, a function f(zi, z2), (zx, z2) £S8, when considered in 63, as a func-

tion of X and z2, i.e.,f[h(\, z2), z2], will be denoted by/*=f*(X, z2), and when

considered on SD2 as a function of X and</>2, i.e., f[hÇ\, exp (i<p2)), exp (i</>2)],

will be denoted by/. However, an exception is made in the case of the func-

tion h(K, z2) which is defined originally as a function of (X, z2) and only in
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very few cases is considered as a function of two complex variables Zi, z2.

We write then hi(zi,z2) so thatÂi (exp (i\),z2) = h(k,z2). We note that we write

h m h(\, <t>2) for h(\, exp (i<b2)).

Other minor abbreviations or conventions are explained in the body of the

paper.

2. Domains with a distinguished boundary surface. Functions of the

extended class. Let hi(Ç, z2) be an analytic function of two complex variables

f, z2 defined in [l—e^ |f | gl+e, |z2|^l], e>0. We assume that h

= h[\, exp (i<p2)], where h = h(\, z2) —hi (exp (¿X), z), and h\ = dh/d\ are con-

tinuously differentiable functions of <p2 and X and that

(1) 0 < Hi ^ | h\ ^ H2 < », \h\úH3

where H¡c<'x> are conveniently chosen constants (Hypothesis 2.1). We as-

sume further that for every fixed z2, |z2| ál,

(2) bl(z2) = [ai«í,0áXá 2tt],

is a smooth simple curve which bounds a simply-connected, schlicht domain

932(z2) of the Zi-plane. It includes the origin Zi = 0 in its interior (Hypothesis

2.II). Using the classical theorems about variable domains [C. 1, 2; R. l]

we conclude that h and h\ are continuously differentiable functions of x2 and

yi and that the function g(zi\ z2), g(0; z2)=0, g'(0; z2)>0, mapping 932(z2)

onto the unit circle is a continuously differentiable function of x2, y2.

In the present paper we consider a special class of domains

(3) 93 =   S  932(z2) m [zi E 932(z2), ( | z21 < 1)].

As it can be easily shown (see [B.-S. 2]), the boundary of 93 consists of two

segments of analytic hypersurfaces

(4) 63 =   S   V(Z2) = [zi E bl(z»), (| n| S 1)],

(5) a3 =   S   932(z2) > I| si | € 932(z2), ( | z21 = 1)].
1.-2I-1

The intersection

(6) £)2 = a3nb3=   S   b'(ii) = bi EV(z2), (| 221 = 1)]

of the two above segments forms the distinguished boundary surface of 93.

Let ÍQ2(\) and b/fX) denote the segment of an analytic surface

(7) §2(X) = [zi = h,  I z21 g 1] (0 ^ X =S 2t)

and the curve

(8) V(K) - [st - *, j fl| - 1] (0 ^ X ¿ 2ir),
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respectively. We note that we can also write

(9) b3 = S §2(X) = [(n, z2) E £2(X), (0 g X ^ 2t)],
x=o

(10) S)2 = S $»(X) = [f>i, z2) E ^(X), (0 ¿S X S 2*)].
x=o

Further we assume that A(X, z2) satisfy the inequalities

(11)
Ä»,

gF<oo, |.-(_-_X-)|gG<oo
3z2A*.,/

(Hypothesis 2.111).

Remark: If AZs vanishes (at some points or identically) in |z2| ál, by the

transformation

(12) zi = zi + az2,       z2 = Z2,

one can make h\\, z2) =A(X, z2)+az2 satisfy the first of the conditions (11).

As mentioned in §1, for a continuous real function, defined on the

distinguished boundary surface 3)2, there does not necessarily exist a B-har-

monic function defined in 33, which possesses the prescribed boundary values

on ÜD2. (See [B. 9].) In order to be able to apply potential-theoretical methods

in every domain 93, an "extended class of functions," £(33), have been intro-

duced in [B. 4, 6, 9; Bers l]. However, in the papers mentioned above, only

continuous boundary values on 3)2 have been considered. For our purposes,

the case is of interest where the boundary value function becomes infinite at

finitely many points of 3)2. In the following we shall describe the boundary

values in which we are interested and define the functions of the extended

class for this more general case.

According to (10), 2D2 is a one-parameter family of curves f)1^)- 0^X^27r.

Each of these curves bounds a segment §2(X) of the analytic surface [zi = h,

X = const]. Let a real function "t be given on SD2 which is continuous, except

at finitely many points, say

X = X  ,        <¡>2 = <t>2, K = 1, 2, • • • , m; v = 1, 2, • • • , vi(ki),

where 1 becomes + » or — °o.

A function e = e(zi,z2)=e(zi, z2; Í) will be said to be a function of the ex-

tended class 6(33) which possesses the boundary values ~t on 3)2 if e satisfies

the following two conditions.

Io. e* = e*[X, z2; 1], 0^\^2ir, for every fixed X in |z2| <1 is that har-

monic function of x2, y2 which assumes for |z2| =1 boundary values ~t, <j>2

= arc z2. If {\", <pK2}, \K"=\", k = í, 2, • • ■ , Ki, are infinity points of

7(X", $2), then we assume that [e*(Xv, z2)—cKV log |z2 —exp (ùpl*)\ ] remain
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bounded if weapproach the point Zi=Ä(X",<p!f), z2=exp (ap"") moving in thesur-

face Zi = fe(X", z2) and remaining in the domain whose projection on the

z2-plane is — ir/2< — a g arc [z2 ■ exp (—úp^ + í ]^a<ir/2. Here cK, are (posi-

tive or negative) integers.

2°. By the requirement Io the function e(zi, z2; 7)G£(93) is defined in

b3, see (10). According to (4) the boundary curve b1(z2) of 932(z2) lies in b3.

Thus by Io, e* is determined on the boundary curve of the domain 932(z2).

For every fixed z2 the function e is defined to be that harmonic function of

Xi, yi which on hl(z2) assumes the boundary value obtained above. As it can

be easily shown, these values are for | z2| < 1 continuous. For | z2| =1 they can

have (finitely many) infinity points. If JtÇK", </>£"), 4>2=(P2, »""Ii % ' ' *■» »«

are infinity points which lie on b1 (exp (úp2)), then we assume that

nK

e(zu exp (ifa)) — 2~1 c" l°g I zi — K^  < <t>i) I
»-i

remains bounded if Zi converges to Zi = Ä(X2", (p?), along a path lying in the

plane z2 = exp (iqb2) and remaining in 932(/<p2). Here c* are conveniently chosen

(positive or negative) integers. Using the fact that a function /, belonging to

6(93) in every lamina [zi = h(\, z2), |z2| <l], is a harmonic function of x2, y2,

and/ in every [zi£932(z2)], |z2| £1, is a harmonic function of Xi, yi, we can

derive for/ a generalized Poisson formula (see [B. 11; B.-M. 1; Bers l]).

This formula yields a representation of / when we approach a point Zi

= Â(X", <p2"), z2 = exp (ifâ) of £)2 along a path in [Re [zi— z2h¡2(\", exp (up?))

-h(\", #')]<0]x[Re [z2exp (-i«')-l]<0].

As mentioned in §1, the aim of the present paper is to give bounds for

certain functionals 2>ii(P) and 7¡Í2(P) (see §6) of segments of zero and pole

surfaces of a pair of functions /i and /2 which are meromorphic in 93- These

functionals are integrals over a domain ©|. @| is the projection of 93 onto

the z2-plane (i.e. [|z2| <l]) from which the projections [|z2 — z^'l <P] of the

neighborhoods of exceptional points (zi\ z2"') in 93 of the pair (flt f2) are cut

out.

These exceptional points consist of:

(a) Intersection points of the surfaces [log  |/i| = ± °o ] and   [log  |/2|

= + «>],

(b) On different places, see 4.II.2, 4.IIL, etc. (see §§4 and 5), we make

assumptions about some properties of the functions/i and/2; e.g., that/2,/i

or functions connected with them have at every point (zi, z2) of 93 or b3 series

developments whose first coefficients satisfy certain inequalities. In general,

these hypotheses are fulfilled. But there can exist some points where these

requirements are not fulfilled. These points (zf, z^) belong also to the set of

exceptional points. The projections of these exceptional points do not belong

to ©I (Hypothesis"2.IV).
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fk, k = l, 2, does not vanish or become infinite identically on a surface

z2=c = const., |e| ^1 (Hypothesis 2.V).

We assume that there are only finitely many exceptional points (Hy-

pothesis 2.VI).

3. An integral formula for functions of the extended class.

Definitions. 1. A function P=P(zi, z2) will be said to be a function of the

class M(33), if (P — log |/| )££(33), where /is a function of two complex vari-

ables which is meromorphic in S3-

2. If Zi = a(z2) is a zero of /=/(zi, z2), then sg (a(z2)) = l; if a(z2) is a pole

of/, then sg (a(z2)) = — 1.

Formulas of Green's type for harmonic functions, possessing in the do-

main logarithmic singularities, represent a valuable tool for the study of

meromorphic functions of one complex variable. As has been mentioned in

§1, in order to be able to apply potential-theoretical methods, and in particu-

lar to define some notions analogous to Green's function, we have to introduce

functions of the class 5frf(33) and to derive theorems of Green's type for these

functions.

Theorem 3.1. Let Pk=Pk(zi, z2), k = l, 2, be two different functions of the

class M(93), and let 33P= [z1G332(z2), z2E&P], @|^62- E?=X< ®2

= [|z2|<l]. Here b2 = ¡z2 — z2]\ <P, z^7' being projections of exceptional

points(s) (z(i\ z2°)), a = 1, 2, • • • , o-0 < », of the pair Pk, ¿ = 1,2, in [| z2| < 1 ].

(P is assumed to be sufficiently small.)

Let further Zi=aka = ak„(z2), <r = l, 2, • • • , Nk(z2), Nk(z2) ^NB< <», be the

singularity surfaces of Pk, k = l, 2. Then

7p(Pi, P0 + Bp(Pi, P2)

(1) If -i T   f    v-
= -— I     PiP2hzidzidz2-I      2L sg (au(z2))P2(au(z2), Zi)dw2,

4 J as 2 4; ,

where(a)

?l2  =    S    b1(2S),     7p(Pi, Pi) ="  f   Pi.^P^dco,     33p  =     S    332(s2),

B(P?hkZ)~
(2)

1   f      f'T ~i d(P*hxhZ2)-\
Bp(Pi, Pi) « — Pfpihh., + Pi*--   ¿Xda.,,

2iJ<&F2J\=o L dz2       J

- - H
\3z2/2l=

3P*
Pti,. m-,    ¡& = 1, 2;   »-1,2,    ¿*

ÖZn \ az2/ 2l_A(X,z2)

/¡\ = — )     AZ2 =->     duk = dxkdyk,     doi = ¿coido)2.
ax az2

(6) See the end of § 2.

(6) S82(zf) =»n[22=220>] have been defined on p. 415.
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Here 8p is the boundary of ©p, V(z2) is the boundary of 932(z2).

Proof. Let z2E&p and let akr be the infinity points of Pk, k = \, 2, in

932(s2), while akß are infinity points on the boundary curve hx(z2) of 932(z2).

By b*l(z2) we denote the boundary of the domain

(3) 93*2 = 932(z2) - £ E [ I zi - ak,(z2) I ^ e2],
*=i   m

and by b**1^) the boundary of

93**2(z2) = 332(z2) - ¿ { £ [ | zi - «»,(*,) | á «i]

(4) " V
+ 13 [ I zi — ockli(z2) | á «2]/- .

Here en=€4(z2), & = 1, 2, are chosen so small that all circles

I Zi — a;t,(z2) I = «i     and     | Zi — akl¡(z2) | = e2

have no intersection points with each other and that |zi —a*»(z2)| ^ei lies

completely inside of 932(z2). Applying (37b), p. 57 of [B. 8], we obtain

f Pl,ziP2,zid<»l  = —   f     Pl,HP2dZl
•/ffl**2r2,i 2îJb*1

y.2Z2Zf PuHP¿z
¿l *=1     v    J  |zi-a*i>(zi)l-<i(«i)

(5) - - 2.2- Pi.z&dzi
2i

JPl.«!»^^!.

Here the last (double) integral in the right-hand side of (5) is taken over

93**2(z2). This last integral vanishes since Pi is there a regular harmonic

function, and therefore PiiMl=APi/4 = 0 in 93**2(z2).

In the neighborhood of ai„(z2), Pi = sg (ai,(z2)) log |zi— au(z2)\ +regular

harmonic function; and

d log I zi — ffli,(z2) I 1 yd log (zi — <*i„(z2))        d log (zi - ai„(z2))'tEôzi 2 L 3zi 3zi J

1 1
= — (zi - o;i,(z2))-1 = — r-ie-<*

where re^=Zi — ai„(z2). Since for z2 = const. along the circles |zi—ai,(z2)| =r,

dzi = d(zi — ai,(zi)) —ire^d^/ we conclude in the usual way that

(6) lim Pi.z1P2dzi = iwsg (ai,(z2)) ■ Pt(au(zi), z2).
ei->0    J I«i-«i,(íj)1-«i
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Remark. We note that P2(ai„(z2), z2), z2£©p, is always finite since, ac-

cording to the hypothesis 2.IV, the projections on the z2-plane of the inter-

section points of [Pi = + oo ] and [P2 = + oo ] do not belong to ©p.

Since Pi,Zl is regular in | Zi —«2^(22) | ^«i and P2 is there logarithmically in-

finite, we conclude in an analogous way

(7) lim   f Pi..,Pidzi = 0.
«i->0 J l»i-«^(H)l—«1

Thus we finally obtain

(8)

f PuziPi.iidwi =—\ Pi.^Pidzi
•'»'V,) 2iJi'\z%)

IT

11 sg (ai,(z2))P2(a1»(z2), z2).

We proceed now to the study of the four-dimensional integrals and to the

proof that the improper integrals e2—*0 can be replaced by ordinary ones.

Obviously

(9) f   dut f ^.„PuA -  f   Pi,HPt*M    33* =     S    33*2(z2).
•/©p2     Jsb*2<z2) Ja* 2'G©p2

According to our assumptions the integrand is infinite, not higher than of first

order on a two-dimensional manifold and therefore

(10) lim   f   Pi,ZlP2,zldw m  f Pi.ZlP2.Sldwlim   Í    Pi.ZlP2.Zldo3 =  Í  Pi,ZlP2,ifi
<2-o J sa* J &

Since Pi.ZlP2 in bl = Sz^BP' b1(z2) is infinite of the first order in a one-dimen-

sional manifold,

(
1 f If

11) — lim   I      Pi.ZlP2dzidw2 = — I     Pi,ZlP2dzido>2 = 3i,
2i e,->o J b*3 2iJi23

b*3 -     S      b*Kz2).
22G@P2

According to (2), see p. 416,

Pk* = Pk[h(\, z2), zt], pi m (dPi/dz2)zl=h(.\,z2).

Thus dPf/dz2 = (Pi,zl)*hZ2+pi and therefore

■dPi* 1 /dP? _ 3Pi*(X, z

\ dZi dz2

and

(12) (Pi,Zl)* = ft., ^— - #ij (j-
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3i = 33 — 34)

1   C dP*       -1 !   f -i
(13)      33 = — P2* -fahZi d\dw2,   34 = — I Pfptfah,, d\do>2

2í^í@p2xt1) dz2 2iJi®r\t1}

t1 =  [0¿XÍ 2ir].

Let z2 = ßkß(X) denote the singularities of P* in ©p, and z2=ßkv(\) the

singularities of P* on the boundary 8p of ©p. According to 2.IVb, for fixed X

the integrand of 33 becomes (at the most at finitely many points) infinite at

the most of the first order, and we can write (see (37a), p. 57 of [B. 8])

r2w r    api -1 1 r2* r -i
I -P2*h-hZ2dco2d\ =-j j      P?P2*hK2dz2d\

Jx=o J©p**2 dz2 2¿Jx=o Jep*1

+ -T.2Z j      Z I Pi*P2*hhH dz2d\

(14)

J 1=0   J ©p**2

I »2.-0*1-<MI-«8
-ls

3(P,*AxA„ )

X=0   •/ ©p**2 dZ2
¿0)2¿X,

where

©p*2 - ©*p*2(x) s @p - ¿ { £ [ IZ2 - MX) I ^ •»]
k-1   \     »

+ 2Z [ 111-MX) I á«.]},

4l denotes the boundary of ©*2 = ©?(X) =©|-ZLi Z„ [|ft-ft,,(X)|
^€4]. Here e3 = e3(X) and e4 = e4(X) are chosen so small that all circles

IZ2—jSjfc„(X) j =e3 and |z2— /3*„(X)| = e4 have no intersection points, and so that

I z2 —jSjfc,(X) j iïe3 lie completely inside ©p.

Since P*P* becomes at the most at finitely many points at the most lo-

garithmically infinite, the second integral in the right-hand side of (14)

vanishes if we go to limit e3—»0.

In the last integral on the right-hand side of (14) the integrand becomes

infinite at the most of the first order along a one-dimensional manifold. We

can therefore also pass to the limit and write

1 r2r r   dp?       -1 1 r2x r -t
33 = — I I       -P2*hxhZl da2d\ = — I I      PfPfhxh^ dz2d\

2jJx_o «/©p2   dz2 4 J \=o J «p1

_±r" r PfwWiM
2¿Jx=o J Sp2 dz2

Combining (8), (10), (11), (13), and (15), we obtain (1).
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4. A bound for |7p( — log |/i|, —log |/2| +e2)|. Formula (3.1) establishes

a relation between the sum of the integral 7p(Pi, P2) (over the domain 33p) and

the integral f3p(Pi, P2) (over b?. a part of b3, see (2.9), p. 422) on one side, and

the sum of certain integrals over the distinguished boundary surface, certain

two-dimensional surfaces lying in b3, and segments of zero and pole surfaces,

on the other side. If we choose

(1) Pi = - log | /i |,    P2 = — log | /21 + e2,    e2 = e(zi, z2; log | /21 ),

see p. 418, then, as we shall show in §6, the terms appearing on the right-

hand side of (3.1) can be interpreted as certain functionals associated with

the segments of zero and pole surfaces of/i and/2. (See for details §6.)

In the present section bounds for

(2) |7p(-log |/i[,   -log |/,| +«2)|,

and in the next section bounds for

(3) |«p(-log |/i|,  -log |/2| + g2)|,

will be derived. Using (3.1), we obtain in this way bounds for the above

mentioned functionals.

On the other hand, in order to be able to obtain bounds of this kind for

|7p(— log |/i|, —log |/2| +e2)|, we have to make a number of hypotheses

about the structure of the pole and zero surfaces of functions /i, f2. We pro-

ceed now to the formulation of these hypotheses.

Around every point

(4) [zi = ak„(z2)] =  [- sg (aka(z2) log | fk(zit z2) | = oo ]

we draw the circle

2        0 r j 0    i -,
(5) 6^(22, p)  =   11 Zi — ak„(z2) I  < p\

and form around every branch of singularity surface

2 r i
(6) û*„ =  [zi = a*ff(S2)],Z2G©P2

a (four-dimensional) tube

(7) Mp) -  s el(z2, p).
*se©p2

We assume that p is chosen so small that the tubes tk„(p) have no intersection

points(7).

Hypothesis 4.1.

(8) | (zi - aka(z2))Tfk \~l ^ Bk = Bk(p),        T = - sg (aka(z2)),

(7) This is possible since the singularity surfaces of log |/i| and log I/2I have no intersection

points in SBp.
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(9)
\d[( Zi —  or*,■(*))'/*]

ÚDk = Dk(p)

hold for (zi, z2)Et*„(p), and

1

dfk

(10)

(11)
azi

^ I/*I S¿*- i4*(p) < oo,

5= C* = C*(p)  <   oo

Ak> 1,

for (zi, z2)£33p — zZ' t*<,(p). Here p, B*, D*, ^4*, C* are conveniently chosen

constants.

Hypothesis 4.11. We assume that the zero and pole surfaces of /*, k

= 1, 2, intersect the distinguished boundary surface 3)2 at the most at

finitely many points:

, - /    O)      00)
/2 at /„ = {zi , z2   },

,     .   T j   OO      Oh
/i at J, = {zi  , z2   J,

v = 1, 2, ■ • ■ , n,

v = « + 1, • ■ • , Mi,

and we make the following hypotheses about the behavior of the functions

/*, ft = l, 2 in the neighborhood of the points Jy.

1. Through every {zi"', 4"'}» v = \, 2, • • • , w1? goes only one singularity

surface of log |/*|, where either k = 1 or 2.

2. Let Zi = a2ir(z2) be the equation of the singularity surface of log |/2|

in the neighborhood of Jv= {zi"', z^1}, v = \, 2, • • • , n. Then we assume that

in a sufficiently small neighborhood of J, the inequality(8)

(12) h(\, Zi) — or2»(z2) | è fl [ | X — X j_ I "Ml+ I z2 — z2    | J

holds where 0<a<l.

Hypothesis 4.III. We assume that the intersections [fi = 0]r\b3 and

[/i,n= °° ]P\b3 represent curves possessing the property that they can be

divided into finitely many intervals tj, such that in the neighborhood of each

i\= [zi = hÇK, Z2(X)), z2=Z2(X)], Z2(X) = Z2"(X),

(13)    fi(h(\, Zi), zt) = /i* - Ki(\)(z2 - Z2(\)) + • • •   and | Ki(\) \ ^ K > 0.

Hypothesis 4.IV. In our further considerations we need auxiliary func-

tions s,(zi, z2) which we associate with every intersection point Jv,

v = \, 2, •••,», of singularities of log |/2| with the distinguished boundary

surface. So as to be able to form these functions 5, we need some further

additional hypotheses.

(8) The hypothesis 4. II. 2 refers to the intersection of 352 with singularities of log '/2I only.
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Considering intersections of singularities of log |/2| with the distinguished

boundary surface, we distinguish two cases(9).

Case 1.

(14) a2„(exp (î'<p2)) E 93 (exp (i<f>2)) for <p2 > $2   ,
2 (v)

(15) <x2a(exp (ifa)) outside of 93 (exp (¿<p2)) for <p2 < 02   •

Case 2. Where the opposite occurs, i.e., (14) holds for <p2<<p2,'), and (15)

for (p2><p2''). Let

Zi    = A(a„, exp (icb2  )),        z2    = exp (i<j>2  ).

In case 1, the boundary values sw = s,(\, <p2) on 2)2 are defined as follows:

Se = log [ h(\ exp (ifc)) — a2„(exp (¿<p2)) \

for Xo/2 > | X - X, |,   $/2 ^ <p2 - 4>? ^ 0.

ForXoè|X-X,| èXo/2, ($/2) ^-(p^O and for X„è |X-X„|, *^<p2-<p2>)
><p/2, sv goes smoothly to zero, so that second derivatives with respect to

X and to <p2 are continuous. These values are chosen in such a way that i„

satisfies the inequality s*^ —log a+log |X— X,|, see (12) and p. 416. 4> is a

conveniently chosen positive constant, and Xo<l.

Everywhere else, i.e. forX0>|X-X,| ^0, 0>^2-<^') or «fe-«/^*, sr = 0.

At (p2 = <p2")> Xo> |X— X„|, sr has a jump.

In case 2, s„ is defined in an analogous manner with the only difference

that in the definitions everywhere <p2— (p^ is replaced by 02"'— <p2-

Let sv be the functions of the class 6(93) which assume the distinguished

boundary surface values sv, v = l, 2, ■ ■ • , n.

The function (—s,) is non-negative on the distinguished boundary sur-

face and therefore also in 93. At the point J, it becomes infinite.

We assume that for conveniently chosen constants p and q there exist

domains 93„, v = l, 2, ■ • ■ , n, 93,P\93^ = 0 for vj^p, possessing the property

that 930(93n[ —j,kp]) and such that the part of the boundary of 93»

which lies in b3 includes (b3C\ [| dsf/dz21 s^q]). Further we assume that zero

and pole surfaces of/i lie outside of the 93», v = l, 2, ■ ■ ■ , n.

Hypothesis 4.V. After a function s, E £(93) has been introduced for every

intersection point {zf\ z2"'}, v = 1, 2, • • • , n, of S)2 with a singularity surface

of log |/2(zi, z2)|, we define a further function s££(93), which on the dis-

tinguished boundary surface assumes the values

n

5(X, <p2) = log I /2(A(X, exp (ifa)), exp (ifo)) | + £ r,s,(\, 02),
(17) _i
_ r, = — sg [a2>,(exp (¿02»))].

(9) For simplicity's sake we assume that the case in which (14) holds for fa><t>i"^ as well as

for </>2 <02"' does not occur. In the following we shall consider, as a rule, only the case 1. The

modification of the formulas, when passing to the case 2, are obvious.
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We assume that

ds
(18) | s | ^ S, -

azi

where S, Ti are conveniently chosen constants.

^ Ti for (»j, z2) E

Theorem 4.1. Let fk—fk(zi, z2), k = 1, 2, be two analytic functions which are

meromorphic in 33 and such that Pi=— log |/i| and P2=—log |/2| +e2,

e2 = e(zh z2; log |/2|) satisfy the hypotheses of Theorem 3.1.

Let

Zi = aka(z2), k = 1, 2; a = 1, 2, • ■ ■ ,

¿>e the equations of the singularities of log |/*(zi, z2) |.

We assume that for a conveniently chosen p<l at every point of 33, the

hypotheses 4.1 hold. Further, we assume that in the neighborhood of the inter-

section points J, of singularities of log |/*| with the distinguished boundary sur-

face ü)2 the hypotheses 4.II-4.IV hold, and that the function s introduced in 4.V

satisfies the inequality (18). Then

I 7p(- log I /i |,  - log | /21 + e2) |

^ Y [ ¿ (p + y b*d*0 A • ̂  3-*c3_* 1 • ¿ s 2 (s 9ll)

+ IttTi (p + — BiDip'Xl ■ Z q^(21

(19) 1
+ — AiCi(A£t + 2T{)-Vm

4

n

+ AiCiHM- log « - log Xo + 1)- ̂ S i(33„)
»=i

+ irnAiCipPXo + 2rmn\opP (pJ-BiDipA + — np S 2 (S 3íL),

where cyf(a2) denotes the area of a2, 1^(33) denotes the volume of 33, and S *(©""),

ft = 1, 2, means the area of the projection cP(®m) of @m, on the z2-plane. Here Ak,

Bk, Ck, Dk have been introduced in (8)—(11), H3 in 2.1, a in (12), Tx in 4.V,

Xo and p in 4.IV, n in 4.II, m is an upper bound for the number of segments of

singularity lines

zi = h(\ Z(X)),        z2 =Z(X)

of log |/i| i« f, = Sx'_+^lXo §2(X) (see (2.1)) P an upper bound for \dzi/dk\,
and when we move along these lines.

I)
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Remark. S i(®m) means the area of the domain of z2-plane consisting of all

z2 coordinates of the points (zi, z2) of ®m. S2(9Î2) is the area of (in general

multiply-sheeted) projection of 9Î2 on the z2-plane. (S2(9Î2) is the sum of the

areas of all sheets.)

Proof. Obviously

7p(- log I /i |,   - log I /2 I + e2) - Jr(- log \ fi\,  - log \f2\+s)

(20) » .     .
- £ t,Jp(- log |/i|, si)

(see (17)) and we proceed to the derivation of upper bounds for each term on

the right-hand side of (20) separately. We consider the first integral in a tube,

say Mp). Using (5), (8), (9), (10), (11), (18) we obtain

/.

d log | /, |   ¿»(log | /21 - s)

u («s./»ns5 (»,) dzi dzi
du>i

2 Ja i, («j.pjn»
/u._Zl — Oil„(Z2) |    *'

d(zi — ai„(z2))

+
I a log [(s, -Mz2))r/i]|)    I d log | /, |

dzi dzi

dzi

ds

dzi
do) i

(21)
1   çp     ç2*  [\

4 J p«_o J ¿2_o \p*

\±&_ 2*_\

I f2    dzi dzi I

+

¿0)1

ö log [(zi - otu(z2))Tfi]

dzi

1   /• "    /•2r /1 \
^ —I I — + ^i-Di ) (^C* + 2Ti)p*dP

4 J p'=0 J it=0 \p*        ,      /

= 7 v + T 5l-Dl"2) (^2C2 +2Ti)-

Thi

If
! J 2*-i22-4

5 log I fi I   d(log I ft I - j)
(p) dZi dzi

do)

(22) ^ -J- I" ¿ (p + — B.D.p2) A^»CJ • ¿ De/i(«L)
2 L *=i \ 2 / J    k=l   <r

+ ItTi (p + y ¿iAp2)"] ■ S 2 (S 9ll) •

When considering 7p(-log |/,|, -log |/2| +s) in 93? = 93P- 2Xi  E*»M
we obtain, using (10), (11), (18),
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a log | /i | a(iog \fi\- s)

429

azi azi

a log | fi | a(iog | /21 - s)

(23)
^ 5BP*

Js8p*l 2       azA2       azi     azj
do>

^—AiCi(AiC, + 2Ti)-V(%).
4

We proceed similarly to determine abound for | Jp( — log |/i[, 5„)|, but certain

modifications are needed. They are caused by the fact that in the neighbor-

hood of the intersection point /„{z^, z^'} of the distinguished boundary sur-

face with the surface Zi = a2<r(z2), s> becomes infinite.

We proceed now to determine the bounds for

!/•J SR

a log  | /i I   ds,
-dco

dzi dzi

(We choose the constants(10) p < oo , q < oo , see 4.IV, so large that log |/i|  is

regular in every 33,.)

According to (37b), page 57 of [B. 8], we have

(24)

f l0g|/l1   ̂ 1=lf
•^sBt2(Z2)    azi     azi 2iJf,\Zi)

ö log   | /i

azi
srdz

ti,'(«!,«)

3 log | A j

azi
s,dzi.

Here 33t2(z2) = 332(z2) — ¿Zff S?,(z2, p2). Concerning <£?„ see (5), cî„ are boundary

curves of S2,.  Since outside  the interval   {X„—Xo, X„+Xo!, sv vanishes on

bl(zi), we have for z2G$>(33,), see (16), (12), (2.1),

j 1_ r       a log 1 fi \

12i'Jf,'<22)       azi
5„ifZl

(25)

(26)

2 J»

>>„+>>0

X=Xj*—Xq

5 log  I /l I

azi
log a + log I X — X, I I I ft\(X, z2) | d\

(Xo sufficiently small),

ItT   fI 2i J S ,(»»)•/a'

^ ^ iCiH3\o | log a + log Xo — 1

3 log [ /i 1

i*)     azi

^ ^iCi£T3Xo(- log a - log X0 + 1)S i(33„).

■ s„dw2dzi

(10) We note that the inequality [ ds*/dz2\ >q is used only in §5.
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We proceed now to the derivation of bounds for

r     r     à log | fi

J <BV J J b\zi) dzi
soldiez = — f -Sydzido.

2 -'©p.,2 Jb\zi)     /i

©p,»=©p-Si(a).

According to the hypothesis 4.III, one can cover the neighborhood of

b3n([/i = 0]+ \fi= =o ]) in b3 by finitely many tubes £»„ each possessing the

"axis" il=[zi = hÇk, Z2ÇK)), z2 = Z2(X)], -X„gX¿X,Tl. In each £*„ we can

represent/i in the form

log I /i I = !°g I (zi - ai<r(z2))~T | + log | (zi - ai„(z2))r/i |,

T = - sg (ai„(z2)),

d

(27)        d log 1 fi 1 _    i_

2azi

0 !°g I /i I

d log (zi - au(z2))  T dzi
[(zi - ai„(z2))r/i]

dzi (zi - au(z2))rfi

dzi
^ — |i-—-r + B&i >

2   U Zi — au(z2) )

by 4.1. Consequently, since according to 4.IV in the tube Xl„ with the

axis il, \s,\ ^p, and since IdzA ̂ Pd\,

\L
d log I /i |

dzi
s,do>2dzi

X-X^-Xn    J \z,-Z-,

d log  I /i

X=X>—X0    >>  |22-Z2(X)|<p ÖZi

i i c x»+x°  r 2t c p r i

2 Ux,-x„    Jo     Jo   Lp*

= 2ir\0pp(p + — BiDip2\.

Svdo)2dzi(k)

pPp*dp*d<j>2d\

Since we assumed that in SxL+x^lx0 €>2(X) there are at the most m tubes 2?

and there are only n points {z^, z2v)}, the sum of these integrals

"  ._ I C     d log I /i I / ! \
(28)       Z Z   I      -±_±LA stdudz!   è 2-KmnhopP ■ ( p + — BiDip2 ).

v-l   M   I^STk/ 3zi \ 2 /

On the remaining part of b3 accordingly, (10), (11),

3 log   I /i |

ÖZi

1
<— CiAi

2
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and therefore

/■   a log I /i I c x»+*o i
•—'-■-Syduidzi   is   I —

a,3      azi J u~\„   2
AiCipPwdX = irAiCipPXo.

(The integration on the left-hand side is taken over 2I^ = b3 —i'(33,)Xb1(z2)

— 2~L"-i  zZf 2^»-) Since we have n intersection points {ziv), z^},

2 I r

v=l I •* a.

^ irnAiCipPXo.
8k

It still remains to determine bounds for

! ̂  log | /i |I/..(4/., »/ @p  \ Z  ^ Cl (j2,p2) azi
í»ázi )   ¿C02.

Now

1f2 JtJ,

3 log i/ii      ,
hm  — I -srdzi
P2—01 2 Jtuizt.pi) dzi

IT

= — sv(au(zi), z2)

where zi = au(z%) are infinity points of —sg («^„(z*)) log |/i(zi, z%)\. But

for z2GiP(33,) these points lie outside 33„ for z2<E©p-f(33,), |s,| Up on the

boundary curve bl(z^ of 332(z2), and therefore also in 332(z2). Consequently

0 á y s,{aM) áyí

everywhere in 33, so that

(30)     lim I f    ¿Z (— f 9 l0g '    - s,dzï) do>21 Ú — PS i (S 2tl)
p^olJgjp2 a   \2 Jclc\z2,n) dzi /        I       2 \»       /

where S 2(S<,9l2(r) is the area of the projections of the zero and the pole surface

of/i on the z2-plane.

Let us finally mention that the integrals    ■

a log I /i I a(iog | f21 + s,)

f doii
wVj.p) dzi dzi

tend to zero for p—>0 since the integrand is infinite of the first order and the

integration is taken over a two-dimensional domain whose area tends to zero.

5. A bound for |£Bp( — log |/i|, —log |/2| +e2|. In determining an upper

bound for the absolute value of the integral 33p(Pi, P2) (over b2), see (3.2),

the line following (3.10), and (4.1), we write again e2 = s+ ¿3"-i s' ancl shall

determine a bound at first for | <Bp( — log |/i|, —log |/2| +s)\ and later for

XXi |«p(-log |/»|,*o|.
In addition to the hypotheses made in §§3 and 4, we make now the fol-

lowing further assumptions.
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Hypothesis 5.1. In the part b3 (see (2.4), (2.9), and p. 416) of the boundary

of 93

—,        log | fí |,    ¿=1,2,
dZ2

m
\ dz2/zí=h(K,Zi¡

become infinite along lines z2 = y2„(\), z2=ßk„(\), k = l, 2, z2 = yu(\), respec-

tively. As before we assume that in a conveniently chosen (three-dimensional)

tube t3 with the above mentioned line as axis and intersection with §2(X),

see (2.7), being a circle of radius p,

(1) (Z2   -   72t(X))
dfl
dz'.

^ c2 = c2(p),

(2) — á | (z2 - MX))'/** I S Qk - Qk(p), r = - sg (MX)),

(3) - 7i,(X)) m
\ dz2/ zl=A(X,z2)

g II ■ Li(p)

holds, while outside of the corresponding tube t3 in b3 the inequalities

I a/*1
(4)

(4.10)

(5)

ds2
:£ c4 = e4(p),

1
ú\fk*\^Ak = Ak(P),

\ 9z2/i1=/i(x,zi!)
á«i

are valid.

Hypothesis 5.II. The functions .s„ introduced in §4,  IV satisfy in nf.

[zi = h(\, Zi), \z2 — ô(X„) j <p0|X—X,| <Xo] the inequality

(6)
ds*

dz2

K

X - X> + I z2 - 5(X„) '
5(X) = exp (i\),

where K<<x>, p<°°, 17 Si 2 are conveniently chosen constants.

Remark. Here we assume for simplicity's sake that 5(X) =exp (i\), but

we note that it would be possible to choose for S(X) some other function.

Hypothesis 5.III. For the function s introduced in §4, Hypothesis V,

see (4.17), the inequality

(7)

holds.

ds(h(\ z2), Zi)

dzi

ds*

dz2
á Tí < 00
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Let jtio» il». k = l, 2, ¿2o0, 3i« denote the respective intersections of

[|/*|=0], [|/*| = »], [|3/i/a*|=oo], [(dfi/dz2),1=h«,Zl) = oo ] with b23, see

p. 422. Let further iî=iJ0+îl„.
Finally we assume that p and q have been chosen so large that ,3î«, iî

lie outside of the nl, v = l, 2, ■ ■ ■ , n. See page 432.

We remark also that we can assume that j2„ does not intersect the lines

îii Í20, nor 3\« intersect j}0, j¿ in b3. (If necessary we can exclude these inter-

section points assuming that their projections belong to ©|, see 2.IV.b.)

Theorem 5.1. Let /*, k=l, 2, be two analytic functions which are mero-

morphic in 93 and satisfy hypotheses of the Theorem 4.1. If in addition they satisfy

the hypotheses 5.I-5.III, then

(8) «p(- log I fi \,  - log I f21 + e2) =■ Bi + B,

where

Bi = jÍ2H\\ogAi\ p[(c2A2 + r2p)£(32„) + &Q» + 7»-C(Í2o)J

+ 4( I log A21 + S)pH[AiLi£(3L) + 5iQiZ(ho)}

+  Èi^P2 [BRk + 2G( I log A^k\ + 5(2 - k)) j
*=i U

(°) X [y - log p + [ log Qk \+S(k- 1)J £«!)

+ — [(log |¿»| + (*- l)S) Uk]V(b3)} ,

Ri = (A2ct + 2P2),        R2 = diAi, Vi = CiA2 + 2T2,

U2 = -4iôi + 2GH    I log Ai I,        j* = i*o + i*«,,

andB2is given in (34a). ^(j1) denotes the "length" of the line segment j1, see (17).

Proof. I.  In this part we derive an upper bound for  |£Bp( —log  |/i ,

— l°g I/2I +s)| while in II we shall compute a bound for |'Bp( — log |/i|, sr)\.

According to (3.2)

/i 2x      />
I       (ri + r2 + r3)du2d\,

0      J ©p2

where

(H) n--|_log|/f| -¡¡—— —j,
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(12)

(13)

Since

r2

T3

STEFAN BERGMAN

1 V/d log | /i '

[November

i r/a log | /i |\

2¿ L\ dz2 /zi=A(X,z2)

i-Tlog |/i*| -(log |/2*|
2îL

a log | /2* |

-1
«*.J

s*) -(-ÏI-
az2 \ ft*2/J

dz2 2   f*  dz2

ti becomes infinite along the curves iî—iîo+iî«, J2« and Ûo- The second inte-

grand t2 becomes infinite along jl0, Ü¡=il0+il« =îlo+ [\f*\ = °° ], and «3!«,.
Finally, the third integrand t3 becomes infinite along ß, ft = l, 2.

Around every point (z?, zjj), Zi = ft(X, z"), of a singularity curve, say j\

we form in the lamina §2(X) a disc [zi = ft(X, z2), |z2 — Z2I <p] = b2(z?, z°) and

form a (three-dimensional) iw&e

(13a) t3(i>) =       S       b2(Zi, z2).

(ít.íüjGi

The curve i1 will be denoted as the axis of the tube. Determining bounds for

the absolute value of the left side of (10), as before, we derive them sepa-

rately at first in the tubes, and later in the remaining part of b|. Considering

n in t3(ä2»), see p. 433, we write

Tl S log \fí

(14)

Yllog I/*I

1 a/2*       ds*

f2*   dz2 dz2        hz_

(Z2 -72,(X)) (df2*/dZ2)   _ OS*

(z2 — Y2„(X))/2* ÔZ2

Thus by (4.10), (1), (4.18), (2.11) ,(7)

(15)

f
J b2(zlp22)

Tldix¡2 S— |log^,|¡? /."/.' {~ + 2r.jp-*-*

H I log Ai I (C2A2P+ 2V).

Consequently

(16)

where

(17)

L «L Tidw2

b¿(2l,í2)

S y H I l°g Ai I (M2P + P2P J-CfoJ

•C&L) = J*t¿X.
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In the case of jß0 we proceed exactly in the same way. Using (4.10), (2.11),

(4), (2), (4.18), we obtain

(18)

(19)

f Tido>2  ¿ — I log Ai | H f       (P i^- + 2T21 P*dp*d<p2
«/&»<*!,»„) 4 J o     J o    { p* )

=  — fl-|  log^xl   (C4Ö2P+   T2P2),

f   /J U¿   J b2
TidlC2d\ S y H I l°g ¿i I IAQ* + 7>2)"C(Í2o)-

¡20        * («i.*a)

Considering ti in the tube t3(}}) (around the zero and the pole lines of /i)

we use (2), (7), (4), (4.10), (2.11), (4.8) to obtain

U i>   («1,^2)

Tidoil

(20) — (A& + 2T2)H f       f   ( | log p* | + | log Qi | )p*dP*d4>2
4 Ji     Jo

(1= — HP2(A2ci + 2T2)   — - log p +   log Qi
4 \2 )'

and therefore

(21)
f    f Tido)2d\

-->)

^— Hp2(Ä2Ci + 2T2)
4 (7

log p + I log Qi
)-G¿

Considering the next term r2 in the tubes around singularities, we observe

that by 5.1 in the tube t3(3}„)

(22)

/* log I /11\ = ±/^A .1
\ az2 /=A(X,j2)i1 2   \ ÔZ2/ Zl=hCK,Z2)   f*

-il—^iï-)    <•■---2     lZ2   —   7l(r(X) L\ dZ2/z¡=h(\,z2) A*

Thus by (3), (4.10), (4.18), (2.11)

(23)
1 ¿1

r%\ £--Ai(\\ogA2\ +S)H,
2 p*

(24) f       fJai.1 J¡>\*i
r2dw2d\

n)

:g x( I log ¿, I + 5)/i^iLip^(âlo=).
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Considering r2 in t3(j}0) we have, according to 5.1, (5), (2),

>d log | fi |

(25)

/¿log |/i|\

\ dz2 / z1=k(\,z1)

-Mi-)
2 I \ dz2J zv

(Z2 - MX))'1

=*(X,z2,      [(Z2   -   MX))"1/!*]

1    hQi

2     p*

and therefore

IJ.J ho   •'i' (21.22:

TiduidX

(26) = —    I —— (   log ¿t   + S)HP*dp*do)2d\
2 I ■/ i,»1 «/ 0     Jo      P*

= T5iÖ1(|log^2|+5)Jf7p^(i1„).

Similarly in the tubes t3(j¿) around zero and pole surface j£ using 5.1, (2) we

have

I log I ft I I = I log I (z2 - MX))-T(z2 - fcW)'/* I I
(27) = I log I (z2 - MX))' I + log I (z2 - MX))'/2* I I

^ - log p* + I log Q21

and therefore by (5), (4.10), (2.11), (4.18)

\ r   r I
I      I T2dü)2d\
1   1   1 2

I   •/ IS   •/ b  («Ltj) I

11 r  r2* r p Mi ¡       ¡
= T I    -^- (- log P* + I log Ö, I + S)Hp*dP*d<b2d\

= y Mi»P2 (y - log p + | log Ç21 + 5) £(12).

(28)

Finally, determining bounds for the integral of t3 we note that in t3(ß) by

5.1 and (2), |log |/*| | ^-log p*+|log Qk\ and therefore by (8), (4.10),

(4.18), (2), (2.11)

(29)

T3¿C02¿\

i*     fP   G

IL
-     f    f       fP — (\logA2\+S)(-logp* + \logQi\)P*dp*d<b2d\

\ J ¡^ J 0     J 0    2

= yG(|log^2|+5)p
(t

log p + I log Qi
)-C(iî).
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//*/Í21   J b'U,, z2)

T¡dco2d\

^— Gp2 ¡log A
2        '    5 ■'(t-

log p + | log Q21 + S)C(h).

Considering the integrands n, t2, t3 in the complementary parts of b\ we have

by (4.10), (4), (4.18), (2.11), (5), (7)

(31) \ri\^—\\ogAi\(ciA2 + 2T2)H,

(32)

(S3)

r.| ^— ^i5i(|log^2|+5)/i,
4

log^i| (| log .1,1 + S)G,

so that the integral over the complementary parts

I    Tidí02d\ +    I     T2<fi02<2X +    I     T3¿C02¿\

(34) *{î , log ill   (Mí + 2r3)H + — ^i«i( [ log A21 + S)H
4 4

1
+ -  ■ | log ̂ ! | ( | log ̂ l, | +S)g\ V(bl).

Combining (16), (19), (21), (24), (26), (28), (29), (30), and (34), we obtain Bu
II. In this part we shall show that

¿«p(-iog |7i|,#,)
v=l

^ B2 = j p2(y - log P + [ log <2i |) (?# ¿ £,(£) + ¿«G-C«1!))

+ (— 4i3iF + | log Ai | g) X0(- log a - log X0 + 1) ¿ Si(9¿)
V 2 / „=i

+ -J Í2» I log Ai I HK(p\o(l - log Xo) + *) + ¿ (ppLiAHJ(l,(£iK)
2   \ v=i

+ pH8iQiP^(i\o)) + — [AiSiHp + I log Ai | (Hq + Gp)]V(bl)

where ^ is a constant for which the inequality

2Xo log po á <A á (Xo/2) log (XÎ + po2)

(34a)
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holds, and ^(i1) denotes the length of that part of j1 which lies in

(34b) b„ =    S    § (X).

In order to prove (34a) we proceed to derive bounds for the absolute

value of

(35) £p(- log i /i i, j,) = - r r (rf1+T?+u)do)id\,
J X=0   J ©p2

„,. w     i/aiog|/i|\ *x
(36) t4    =— Í-— ) ,•—-,

¿i\       aZi       / Zv=h(K,ti)        »2s

ir\       1 ,       , ds*   h\
(37) r5(> = -log    /,*—-—,

2% dZi   hZ2

c)       1 ii d   / h\\
(38) r¿;} = -iog  /x* ,* —( —).

2i dZi\hZi/

We repeat the same considerations as before. The only modification is

that in this case instead of ( — log |/2| +s) the function sr appears which is

regular in 93 except in a neighborhood of the point {z({\ 4"'} so that we have

to derive separately bounds at first in the neighborhood nf. of \Zi\ z2"'j (see

5.II) and then in the complementary part b3, — nj! of b|. See p. 422.

In the case of the term (36) we consider r4"' at first in t3(3i«), t3(j}0), n¡!

and then in the complementary part.

Considering t^ and r^' we shall determine bounds in the tubes t3(jj)

and ttj!, and then in the complementary part b2 — t3(j]) — nj!.

We consider at first the term t^ in t3(3i») and t3(j]0). See p. 433 and

(13a). Using (22), (23), 4.II we obtain

(39)

r4   dü)2d\

•Sl   ^i»  (21-22)

1 /. /. 2t      f. p      I £

g— I        |        I     — H — AiSr(\)p*dp*d<t>2d\
2 J3^1J0     Jo     2       p*

where S„(X) =p for X„ — Xo^XgX„+X0 and 5„(X) =0 for the remaining values

of X. Consequently

(40) /r4  do)2d\
•3i«,'"'i>,<2,.z2)

áyPÍ¿l¿lH-&G8Í.)-

(*Cv(3U) denotes the length of that part of Si« which lies in i)l- See (34b)).
Similarly, in t3(j]0) using (25) we obtain
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J  ÍWJ  ¡>2 (21.22)

doj2d\

(41)
i c   r2" c i     öi

g— I      I        I     —Hdi—Sr(\)p*dp*d<pidk
2 Ji^Jo     Jo     2 p*

^ Y pH8iQip£,(iio).

We proceed now to the determination of the bounds in nj!. See p. 432.

In accordance with the hypothesis 5.Ill, t3(,3i«>) and t3(i}0) lie outside of

itü so that by (4.10), (5), we have

(42)
d log I /i |

dz2

1
á— Ath

for (zi, z2)EnlCb32-t3(8¡„)-t3(i[0).

According to (4.12) and the definition 4.IV.2

(43)
Sv(\ fa) è — log a — log | X — X„

(r)

for    X — X»   < Xo, 0 < fa — <£2    á <t>

s„(X, 4>i) =0 on the remaining part of the distinguished boundary surface.

Since s*(X, z2) is for every fixed X, X^X, an analytic function of a complex

variable regular in |z2| <1, it assumes the maximum value of its absolute

value on the boundary and therefore in every §2(X) and consequently in

it?n£2(X)

(44) | s,*(X, *s) | á - log a - log | X - X, |,

X=X_X„ J n, .

4 J x-x„-x0 J n,
(45)

> Xy+Xß

' X=X,-X0«^ nv3n©2(X)

<

ii^ns'(X)
.¿^(log a + log | X — X, | )Hdœ2d\

^ —^i5iFX0[- log a - log Xo + l]Si(n,).

In the remaining part, 1)1 —nl, we have by hypothesis 4.IV (see (4.16),

(34b)) |s„| gp. Therefore by (42) and (2.11)

(46)
Ç <»)

«^  02 —tl»

dbo2dK
1 3

g— AihiHpV%),

where 7J(Í)^) denotes the volume of bj!.

In deriving bounds for r£° we observe at first that by (2), 4. IV (p. 426),

(2.11) in t3(iî)
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(47)

/T5   dco2d\
II'   J¡>2(21,22) I

= V'\   f    ( l0S !/*(X,z2)
¿     I    •/   Í, '   •/   b!(Z,.2,l

3j„*(X, z2)    «x
— do)2d\

dz2 hz

g — f     f       f ' (- log p* + | log 0! I )qHp*dp*d<t>2d\
2 J \¿ J o     Jo

= y ?ffp2(y - log P + I log <?! I ̂ jC(Ù)

where jQr(i\) denotes the length of that part of j} which lies in

3 Xtü» 2

(34b) \,m    £    §(X).
X=Xi<—Xq

We proceed now to the derivation of the bounds in it', see p. 432. Ac-

cording to Hypothesis 5.11 in it',

5s„*(X, z2)

dz2

X

X - X„ " + p*

where K< «¡, p< oo. Therefore according to (2.11), (4.10)

(48)

and

(49)

o 1 K
n < — I log Ai \H -.-,-"  2 ' ' X - X, " + p*2

Jn,!
du2d\ t¡   do)2d\

91/(X)

I/» Ajz+Ao     /»

J Xi--Xo   J 9

1 /»   Xy+Xg        /»   2tT /•

g-llog^xlM
¿ •/ X»-Xo    J 9 J 0

x„+x„   -2r    ~p„       p*dp*d<p2d\

X-XJ" + p*2

= 7TI log 4,1 H.K[pXo(l - log Xo) + *]

where i^ = 2/0x°¿X*[log (X*"+Po)] satisfies the inequality

Xo ix 2
(50) 2X0 log po g ^ g — log (Xo + po).

In the remaining part, b2 — n3., by 4.1 V, |ds*/dz2| ^ç and therefore^1)

(51) f
J (is3-*'«!1)-!!

T5   do)2d\ è-\logAi\HqV(bl).

(") We remind the reader that s?=0 in ba — Ej„.
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Considering r^ we proceed exactly in the same way as in the case of t^\

and using (2), (2.11), 4.IV we obtain in t3(jî)

/e) 1 I C iit6  ¿o)2dX   ^ —    I        Gp(— log p* + | log Qi I )dw2d\
t3(jl) 2    |   J t3(¡l)

- 7 ^p2 [t " log p + 'log Ql ' J^'

(52)

and in nj! using (4.10), (43)

Xv+Xq

(53) X=X«-Xn J It,

To    diOidK

g|logili|GXo[- loga- logX0 + l]i(SSWÎ).

Finally, integrating in the remaining part, b\ — n3y — t3(ji), we obtain

(54) I re  aa>2<fX
I   *>  62 -t (11 )

3
^YUog^il^^)-

Combining (40), (41), (45), (47), (49), (52), (53), (46), (51), and (54) we ob-
tain B2.

6. A geometric interpretation of terms on the right-hand side of (3.1).

In §§4 and 5 we derived upper bounds for the absolute value of Jv( — log |/i|,

-log |/2| +e2)+<BP(-log |/i|, -log |/2| +e2). According to (3.1), this last

sum equals

1   f 11 11 -1
— I    (log   /1   )(l°g \h \— «2)hZi dzidz2
4 Ja2

T      /» JVl(22)

+ — I 2    {sg («1.(22)) [log  I f2(au(z2), z2) I — e2(ari„(z2), Z2)] }dco2,
2 J ©p2  r_i

see p. 420, so that the sum of expressions obtained in (4.19) and (5.8) (see also

(5.9), (5.34a)) represents an upper bound for (1). In this section we shall give

a geometrical interpretation of the terms appearing in (1). P2= —log |/2| +e2

vanishes on the distinguished boundary surface, so that

(2) I     PiP2hZ2dzidz2 = ¿2 I    (log |/i| )(log |/2| - e2)hZidzidz2
Ja' » Ja,2

where Sl2 = [Sb1^), z2Ecl], see (2.2), are distinguished boundary surfaces of

subdomains of 33 which include the exceptional points Qy of the pair /1, /2.

Here c'= [|Z2 — z2v)\ =P] (see Hypothesis 2.IV, 4.II) are boundary curves of

the domains b2., see Theorem 3.1. The double integrals (2) can be expressed

bylines integrals over the curves b3(z2 = z2r)) and some additional terms. The
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behavior of these integrals, as we shall discuss elsewhere, depends to a large

extent upon certain properties of the product log |/i| • (log |/2| —e2) at excep-

tional points. (In particular one can derive for these integrals upper bounds,

which depend essentially upon the local behavior of/i and/2 in the neighbor-

hood of exceptional points.)

We proceed now to the geometric interpretation of the second term in (1).

We write

(3) log | /21 — e2 = [log | /21 — £2] + [£2 - e2].

Here £3(21, z2), z2 = const., is that harmonic function of Xi, yi which on the

boundary curve bx(z2) of 932(z2) assumes the values

log  | fi(zi, Zi) | = log  | /2*(X, z2) |.

The second term on the right-hand side of (3.1) will assume the form

Ttfx^+ftfüfF-) where

v     /»      Arl<2s)

5Kl(P)  = —  I £    {sg (ai,(Z2)) [log   \ft(au(Zi), Zi) |
(4a) 2 Jib?1 r=i

— £i(au(Zi), z2)]}do)2,

M2(P) = — I       Z)   {sg (ai»(z2))[£2(û;i,(z2), Z2) - e2(o:i,(z2); z2)]}do)2.
(4b) 2 J©p2 „=i

If Zi = a2n(z2) are the zeros and the poles of/2(zi, z2) in 932(z2) and g(zi, Z\, z2) is

the Green's function of 932(z2)

log |/2(zi, Zi) I — £2(zi, z2) = — Y^ sg (ot2n(zi))g(zu ctin(zi); z2)

(5) n*m
—    2-,    Sg  («2n(z2))  log (Zl, <*2*(Z2) ! 932(Z2)).

n-1

Here

i»(z\\ Zi) — w(Zi, z2)
(zi,Zi;932(z2))

and

w(zi; Zi) = w(zi; Zi, Zi),        w(0; z2) = 0,

w(Zi, Zi)w(zi\ Zi)

dw(zi\Z2)

dzi
> 0,

zi—0

denotes that analytic function which maps 932(z2) onto the unit circle.

We shall denote (z, Z; 932) = (Z, z; 932) as the (j?(932)-distance between the

points z and Z. (z, Z; 932) is invariant with respect to conformai transforma-

tions. If 62 is the unit circle with center at Z, then (z, Z; S2) is the Euclidean

distance between z and Z. We note that
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(z,Z;W)
exp [z,Z; S32] - 1

exp [z,Z; 332] + 1

where [z, Z; 332] is the non-Euclidian distance between the points z and Z

measured with the invariant metric defined in 332. Thus

(6) log | /2(zi, z2) | - £2(zi, z2) = log b(zi, /2; z2),

where b(zh /,; 332(z2)) = ffîif  [(«i, «2m(z2); 332(z2))]^»^))> is a quotient,

b = bi/b2, of generalized Blaschke products bk, ft = l, 2  (¿>i vanishes at zero

points, ¿>2 at poles of/2 in 332(z2)). Functions b will be denoted as Blaschke

functions. (See p. 415 and N. 1, p. 137, B.3.)

It is clear that the integral

(7)
/

#1(22)

¿2   sg (ori„(z2))
©p'   n=l

JV2(22)

¿2    Sg  (0T2m(z2))  log
m—1

w(ain(z2) ; z2) — w(a2m(zi) ; z2)

1 w(ai„(z2) ; z2) w(a2m(z2) ; z2)
¿w2

exists. Indeed, for z2G©p,

0 < a á
w(ai„(z2) ; z2) — w(or2m(z2) ; Z2)

1 - w(ai„(z2) ; z2) w(a2m(z2) ; z2)
< 1,

since according to Hypothesis 2.IVa the intersection points of zero and pole

surfaces of/1 and f2 lie outside [S332(z2), z2£|©p]. If we approach to values

of Zü for which w(akr(z2), z2)—>1,

w(ain(z2) ; z2) — w(or2m(z2) ; z2)
1.

1 — w(ori„(z2) ; z2) w(or2m(z2) ; z2) I

Thus we see that for z2£©p,

0 g I log (orin(z2), or2m(z2) ; 332(z2)) I ^ I log a \

uniformly in z2 as it can be easily shown by classical arguments. (Concerning

a, see Hypothesis 4.II.)

Since according to our hypotheses, see Theorem 4.1, for the number,

Nk(z2), of zeros and poles akn(z2) of /*(zi, z2) we have Nk(z2) ^Ñ< <», the in-

tegral (7)exists. ThusJtfi(T) = (t / 2) f<g¿¡ log A (z2)do)2 where A (z2) is the product of

Q(W(z2))-distances between the poles of fi and f2 and their zeros, divided by the

products of C(332(z2))-distances between the poles of fk and zeros 0//3-*, ft = l, 2;

fk=fk(zu z2), z2 = const.

A (z2) can also be interpreted as the product of Blaschke functions

iVl(Z2)

II     [K«ln(Z2),/2;332(z2))W".-.<*2»
n-1
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where ctin(z2) are zero and poles of fi(zx, z2), Zj.£932(z2).

In the present paper we consider functions fk, k = l, 2, which for every

fixed Zi, \z2\ ¡gl, possess finitely many, say N(z2), zeros and N(z2) S Ñ, where

Ñ < «>, is independent of z2. The methods applied here can be easily general-

ized to the case where limr2^! N(r2 exp (itffi)) = °°, for finitely many cp^ or

even (under some additional assumption) in the case where <p2^ have ac-

cumulation points. See also N.l, p. 137, B.3, etc.

We proceed now to the interpretation of the second term in (4). For every

z2 for which the zero or pole surface of /2 does not intersect bx(z2) (see (2.2)),

£a(zi, z2) — e2(zi, z2) is a regular harmonic function of xi, yi in 932(z2). Therefore

(8) _
1      C 2* rr, T «*' W(Zl.  Z2)

= - [£2*(X, z2) - e2*(X, z2)]   —- +
1-kJ 6=0 L e" — w(zi, z2)

M2(X)

£2* - e2* = 2Z  sg (MX)) log

(9)

w(zi, Z2)       e-ie — w(zi, z2)J

where exp (id) =w*(K, z2) =w(h(\, z2), z2), and w(zi, z2) is the function which

maps 932(z2) onto the unit circle. (See p. 416.) For every fixed X

Z2 — MX)   I

1 — Z2ßi,(\)  I

/M2(X) \

log j II    ((Z2, MX))sl ««/»>)>

where (z2, Z2) = (z2, Z2; @2)= | (z2-Z2)/(l-z2Z2)\ denotes the Q(d2)-distance

between z2 and Z2, and M2(\) the number of zeros and poles of /*(X, z2)

in |z2| <1. Substituting (9) into (8) (multiplying by 7r/2 and integrating

over ©p) we obtain

*   r    ( »tí«»
Mi = * T I     1   ^ sg '(M*))

4 J ep2 (  p~i

(10)

where

4

Z2 - MX)
/. 2l  rAÍ2(X)£ sg (MX)) log

x=o L »-.1

X <P(w(aiß(zi)), w*(\, z2))|

1 - Z2MX)  U

dw*(\ Zi)      d\díi¡2

d\ w*(\, Zi)

<D(   1      t    \\      *A       « W*^' Z2) -w(aiß(z2), Z2)
cP(w(alll(z2)), w*(\, z2)) =     ^r-—■- +

w*(\, Z2) — w(aiß(zt), z2)       w*(\, zt) — w(aiß(z2), z2)

1 — I w(aiß(zi), Zi) |2

1 + I w(ai„(z2), Zi) |2 — 2 I w(ai^(z2), z2) | cos $
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$ = arc w*(\, z2) — arc w(ai„(z2), z2).

The integrand of (10) can become infinite only if w*(X, z2) =w(«iM(z2), z2)

(i.e., at a point where a zero or pole surface of/i intersects b3) or if z2=/32(,(X).

1. Let Zi = ft(X, f2(X)), z2 = f2(X) be a segment of the intersection line of

log |/i(zi. z2)\ = + =° with [zi = ft(X, z2), |z2| álj. For every fixed X in the

neighborhood of z2 = f2(X), z2 = f2(X)

(11)
w(h(\, z2); z2) — î^(q:im(z2) ; z2)

= ^io(X)(z2 - f2(X)) + Aoi(\)(z2 - r2(X)) -I-.

We make now the additional Hypothesis 6.1. For z2£©p,

\Aio(\)\   9^\Aoi(\)\.

If we introduce polar coordinates z2 — f2(X) =r2e**2, ¿«2 = r2¿r2¿02, then for

a fixed X

¿10(X)(Z2 - f,(X)) + Aoi(\)(Z2 - f,(X)) +  • • •

= f2[^io(X)ei*2 + ^oi(X)É-í*2] +

and

¿a>2 dr2d<j>2

(12)
w(ft(X, z2), z2) - w(ai„(zi), z2)        Uio(X)ei*2 + .40i(X)e-i*2] + r2[ ■ ■ ■ ]

Consequently (12) remains bounded also in the neighborhood of intersection

points of b3 with the zero and pole surfaces of/i for z2£©p.

2.  For every fixed X,

log
Z2 - 02,(X)

1   -  Z202»(X)

becomes infinite at finitely many points, say /?2*(X), v = \, 2,

iö2l,(X) lies inside S2 obviously

, Af2(X). If

/, I 22-02, (X> I ="S

log
Z2 - ft,(X)

Z2|82,(X)
dr2d(¡>2

is bounded. (If /32„(X) lies on the boundary of E2 the integrand vanishes.)

Thus Víí2 represents the following integral: For every value X, 0 ^X ;£ 2-7T, z2iE©p,

wß /om the sum of the products of the logarithm of the Blaschke function

b(zi,f2*(\,Zi);(E2) = 11
Z2 — /32,(X)

sg (0(X2„))

by

1 — z2/32,(X)

Sg (orv(z2))'P(w(ori(,(z2), Z2), w*(\, Z2)).
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Here ft,(X) are zeros and poles of f%(\, z2) in |z2| ísL 'P is the Poisson kernel,

and aiß(z2) are the zeros and poles of /i(zi, z2) ¿n 932(z2). % ¿5 /&e integral of this

sum multiplied by the weighting function

1 dw*(X, z2)

4iw*(X, z2) dX

oner [0áX^27T, z2<E©p].

7. The kernel function of the extended class £(93). In [B.4, 5, 6, 10]
as well as in §§2-6 of the present paper it has been shown that the extended

class represents a useful tool in the study of various problems of the theory of

functions of two complex variables. It is therefore of interest to investigate

further properties of these functions. In the present section we shall consider

functions of the extended class in domains described in §2. These domains

are bounded by two segments of analytic hypersurfaces a3 and b3 (see (2.4)

and (2.5)). In addition to the hypotheses of §2, we are making in the present

section the following assumption 7.1 about the structure of the domains 93.

By a transformation^)

(1) Z* =  w(Zi, Z2)  =  W(zi\ Zi, Zi), Z2* = Zi,

where w is a conveniently chosen function which is analytic in Zi (but not

necessarily in z2) and which satisfies the conditions

(2) w[h(0, Zi), Zi] = w[h(2ir, z2), z2] = 1,        a>(0, z2) = 0.

93 is mapped onto the bicylinder 93*=[|zf|<l, |z2[<l]. Every segment of

the analytic surface \zi = hi(eiK, z2), |z2| _»l], X = const., goes over into the

segment

[arc z* = arc W(eA, z2), | z* | = 1, | z21 S l],

W(eiX, Zi) = W(eiK, Zi, z2) s w[hi(ea, z2), z2, z2] (see p. 416).

We shall assume in this section that the domain 93 has the property that

arc W(e*, z2) — arc W(ei", z2)
(3) 0 < a 5Í-—^—-V g A < «

X — p

where a and A are conveniently chosen constants. (Hypothesis 7.1.)

Notation. The functions H*(xi, yi, x2, y2) of £(93) which are continuous

on the distinguished boundary surface and satisfy the condition

(4) Ht(0, 0, *,, y2) = 0

will be said to belong to £0(93).

Theorem 7.1. There exists a system of real functions 4>l(xi, yi, x2,  yî)

(12) Since z*=z%, we omit the asterisk at zj.
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— TP(zi, z2), p = \, 2, • ■ • , of the class £o(33) which are orthonormal in the

sense that

t „   t t       t
r rdfa dfa    dfa dfa-i r r dTv dT,    i
I-1-, .-,   ¿oj = 4 Re      I-dw

J S3 LdXi  dxi      dyi  dyiJ LJ S3  dzi   dzi      J

ÍÍ if y = M)

lO if v ^ M.

(5) -      **  **
[1 if p

and possess the following properties :

Io. The system { Tp] is (uniformly) complete on the distinguished boundary

surface $D2, i.e., possesses the property that every continuous function defined

on SD2 can be uniformly approximated by a linear combination

M

12 apTp(zi, z2), (zi, z2) E £)2, N < oo, (ap = ap    are constants).

3>=1

2°. The kernel function of the system {Tp} converges in 33, i.e., we have

«o      t

(6) ]T [<j>,(xi, yù x2, y2)]2 < oo    for (xu yu x2, y2) G 33.
,=i

Proof. The proof of the theorem follows in the usual way (see also pp.

451-452) from the following

Lemma. IfJ= 2JT-i ^T, satisfies the condition

(7)

then

(8)

(—-) -I,       (fi,f2)G33,
\ OZi/Zl=rl,zi=ri

(   I —
JsbI azi

i
¿co ̂  c(f i, it) > o

wftere C(f i, f2) ¿s a ./weed positive constant which depends only on 33 and fi, f2.

Proof. We consider at first the case of 33 = S= [\zi\ <1, |z2| <l]. In this

case the real and imaginary parts of the set

"i      m   n      m_n -

(9) Zi, zi z2, zi z2, m = 0, 1, 2, 3, • • • , « = 1, 2, 3, • • • ,

form a complete system. Using polar coordinates, i.e., writing z* = x*+fy*

= r*(cos <pk+i sin $*), ft = 1, 2, the real and imaginary parts of functions of the

system (9) can be written in the form(13)

(la) We note that in (10) and in the following we use the double index {m, n) instead of

the index [p], p = l, 2, ■ ■ ■ . The functions of the set (10) are assumed to be ordered in such a

way that {l, 0}, {2, 0}, {l, l), {l, -lj, • • -, correspond to [l], [2], [3], [4], • • • . We

omit the terms corresponding to m =0, since the derivatives of these terms with respect to Zi

vanish.
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SAf\\ m m wi |/i| .       m \n\    ,

(10) fi  cos m<pi, r2 sin rrupi, ri r2 cos (m<j>i + n<p2), rx r2 sin (m<pi + n<pi),

m = l, 2, ■ ■ ■ ; » = 1, —1,2, —2, • • • . The functions (10) are orthogonal to

each other in the sense (5) (with 93 =S). Dividing them by conveniently

chosen constants we obtain a system which is orthonormal in £.

Using the well-known development of a (real) continuous function F

defined on the distinguished boundary surface [see e.g. [B.9], [B.-Marcin-

kiewicz l], [Bers l]], we conclude that every F can be developed in g in a

series

=   Y ]<Xmo(Zl
m-=l   \

+ Zl )  -  ißmo(zi   - Zi )

(ID

V^    T /   m   n -m-7K .r,        f _m_nv

+   2-,   [amn(Zl Z2 + Zi Z2)   —   lßmn(Zl Z2  —  Zl Z2)

n=l

+ ymn(Zl Z2 + Zi Zi)   —   Í5mn(Zl Z2 îîzlm .

The condition (7) with fi = 0, f2 = 0 yields aio=l, /3io = 0. On the other hand

Fi — Zi is orthogonal in the sense (5) to each of the functions z™, m = 2, 3, • • -,

z™z2, z^zZ, m = l, 2, 3, ■ ■ ■ , n = 1, 2, 3, • • -, and consequently

/'  I dP    2 C Pi, f-      do)   =     I     d0)  +    I       \S\2dù>   ̂     \    dû)   =   TT2   =   C,
s    fe              Je          Je                   Je

00 00

Wi — 1 ^—\    ^—v     r . Wi—1    n*   > ï«—l ^—\   ^—v   r .    m—i  n

S  =»   2-,m(a<n0   ~   »M)Zl        +   2^  2_,   |W(am„  —   lßmn)Zl      Z2
(13) m-2 m=l n-1

+ w(7„,„ — î5m„)zi    z2J

and C is independent of P (satisfying (7) with fi = f2 = 0). If instead of the

origin we choose an arbitrary interior point (ft, f2) of 6, an analogous con-

sideration leads to an inequality (12) with C = 7r2(l — | fi| 2)(1 — | f2|2).

We proceed now to prove an inequality analogous to (8) for general do-

mains 93, as described in §2 and satisfying 7.1. By the transformation (1)

satisfying (2) 93 is mapped onto the bicylinder 93*=[|z*| <1, |z2|<l].

Every segment of the analytic surface [z* = hi(eiX, z2), |z2| ^l], X=const.,

goes over into a segment

(14) [arc z*i = arc W(e{\ z2), | z* | = 1, | z21 á l], W(e'\ z2) = w(hi(e*, z2), z2].

The class of functions £(93) goes into the class S (93*). Every function Kp(zu z2)

of the system (10) assumes continuous values, say Kp(eiX, e'*) on [|zi| =1,

|z2| =1]. Let now rn(z*, z2)GS(93*) be so determined that

Tplwty^e*, e{*2), e'*2), e^2] = Kp(e*, e*'*2),      ¿i(eix, e^2) ■■ h(\, e;*2),

0 á X á 2«r, 0 á <j>2 Sg 2v, p - 1, 2, • • • .
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In the following, the lamina [z* = exp (iw(h(\, z2), z2)), \z2\ <1, X constant]

will be denoted by ë2(X).

Through every point {exp (ip), ft} of [|z*| =1, |z2| ^l] goes a lamina

ê2(X) where X is the solution of the equation

(16) exp (ip) = w[h(\, ft), ft].

Since in every lamina ê2(X), the function rp[w(h(\, z2)), z2), z2] isa harmonic

function of x2, y2 it follows from (15) that

(17) Tp[w(h(p, z2), z2), z2] = Kp(eiX, z2) for | z21 < 1

where

(18) n = p(\ z2), ju(0, z2) = 0.

By orthogonalizing the system jr„j we obtain the system {PP}, P

= 1, 2, • • -, of functions of the class S (33*) which are orthonormal in the

sense (5). We proceed now to prove the inequality (8) for functions F of the

class S (33*) satisfying the condition (7). Since (ft, ft)G33*, |ft| <1, |ft| <1.
Let us form a function

N

Jn(Zi,  Z2)   =   12 ßnT„(Zl,  Zi)
n=l

possessing the property that Jn satisfies the condition (7).

As we mentioned before through every point \eili, ft], [ft| ^1, goes the

lamina 82(X), where X has to be determined from (16). In every segment ê2(X),

Jn assumes the values Jn [exp (iß(\, z2)), z2]. Jjv[exp (*m(X, 22)), z2], X const.,

is a harmonic function of x2, y2.

We determine now a function Pn(zi, z2) of the class £((£) by requiring that(14)

(19) P;v[exp ((ip(\, ft)), Zi] = 7Ar[exp ((ip(\ Zi)), z2].

Pn(zi, ft) and Jn(z*, ft) are harmonic functions of Xi, yx in |zi| <1, and

of jc* y* in I z*| <1. Therefore from PN(eiX, ft)-^«*, ft) follows Pjv(zi,

ft) =7n(z*, ft), |zi| ál. Therefore, in particular

(20)
/¿PA _ /_37v\ = j

V  aZl  /Zl=tl,Z2=t2        \  ÔZ*  /2Î=fi,r2_fj

According to (11) and (12), we have

dPN 2

azi(21) f ¿« 2 C(ft, ft) = ir2(l -ft  )2(1 -ft  )2.

(") We note that the mapping z* = z*(zi, z2), z» = z2 defined in [|zi| =1, |z2| ¿l] has the

property that z, (zi, f2) =Zi.
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Let us now compare

(22a)

and

(22b)
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3(z2) =   f
J l*il<i

3t(22) = r
J  lz,*IO

For z2 = f2, as we mentioned, 3(f2) = 3tG'2).

According to a formula of Douglass [D. 1, 2], [Sh. l], [M.-T. l],

(23)    3(z2)

(24)   3t(z2)

16tt

/> 2i     /• 2jr

0=0  J 0=0

P;v(exp (O), z2) - Pw(exp (id), Zi)

sin [10-0)]
£»if<p,

i r 2t c 2i 17*(exp (***). *») - 7^(exp (¿e*)> *)

16tt

/2ir       /» 2

J -0 J 6*
d6*d<b*.

sin [i(** - 0*)J

Here 0*(z2)=arc z* = arc [w(/z(e'*, z2), z2)] and the same formula holds for

0*(z2) as a function of 0. Since by (19), Pw(ei*, z2) =JN(ei4'', z2),

3t(z2)

(25)

1   ç2t  r

1Ó7T J A»_0 J «=

PAr(exp (¿<p), z2) — Pjv(exp (id), z2)

sin (i(<p - 0))
d(bdd

X
sin (|0 - 6))    d<t>* dd*

sin (i(<p* - 0*))   ¿<p    ¿0

For every |z2| ¿1, according to (3)

(26)
d<b* de*

0 < a2 ^-^ ¿2 < oo.

¿</>    ¿0

In order to obtain bounds for | sin ((<p — 0)/2)/sin ((<p* — 0*)/2) \2 we distinguish

two cases (a) and (b), assuming

(27a)     0 è | <p - 0 | é

and

(27b)

24
(27'a)      O^27T-U-0g

2A

2A      '

In the case (a), we have

sin (s/2)
(28)

<2^-iA-\

sin (s*/2)

2 sin (s/2)/s

2 sin (s*/2)/s*

Here s=|<p-0|, s*=|cp*-0*| in the case (27a) and s = 2tt-|<p-0|, s* = 2tt

— \(p*— 0*| in the case (27'a), respectively. From (3) follows in the case (a)
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(29) Ogi*^ x/2.

Since 2/ir¿¡ [(sin a)/a]|l for \a\ <ir/2, in the case (a) we have

a- sin (s/2)/s
(30)

sin (s*/2)/s*

In the case (b) according to (26)

-"(#

xa       .
- <    <A*
24  ~ '

(31)

and therefore

(32) |_sin (ra/4A)]2 ^

9*   < 2%
ira

2A

sin (s/2) 1

sin(s*/2)|   ""  [sin (Tra/4,4)]2

If therefore

(33)        b = min [(sin (ira/A-A2)), (2a/ir)],       B = max [l/sin (ra/4A), tA/2],

we see that

(34)
3*(z2)

0 < b2a? g ——- g B2A2 < oo.
3(z2)

Using (34), (20), and (13), we see that

(35)

r \dFN  2 r c
I      -   du =   I 3f(z2)<fco2 Ï; ¿>2a2 | 3(z2)¿o>2

Js3'\ azi* J |Z2i<(i-ir2i) J |i,i<u-ir,i)|22|<(l-|f2|)

=   T&V(l-|ft|)2(l |ft|)2.

After the inequality (35) for functions F% satisfying (7) have been derived

the proof that the kernel function is finite follows in the usual way. (See [8,

pp. 21 ff.].)
We determine the an, n = \, 2, ■ • ■ , N, so that the expression

(36) ¿2 anTn
B 1 n-l

2 N

dos = 12 I or„ |2,
n-l

T   =J- n  —

ar„

azi

becomes minimum (I6) under the condition that

N

(37)

If we write

12 ctnTn(Çi, ft) = 1.
A-l

(15) Since the function w(zi, Z2) in (1) is analytic in Zi the value of the integral (36) remains

unchanged when we pass from the domain 93* back to the domain ©.
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«»   =   [(XiCl,  f2)   + ¿,)/ £ I   ̂ 2(fl,   r2)  |*1,

the condition (37) assumes the form

N

(38) HA.T'n(tu f,)=0
n=l

and

w ¿|r;(fi, r2) + ^„|2     El r»(fi<f2)|2 +EU»I2

(39) Z|«n|2=     "

( £ I r:ai, f2) |2)2       (£| iío-i. rol1)'

The minimum of (39) will be attained if and only if An = 0, n = 1, 2, • • • , N,

and equals

(40) -¡¡--— ^ 4C(?„ f2 ) > 0

E I T'n(ti, ft) |2
n=l

by (8). Since the right-hand side is independent of N it follows that

(4D t|r:a-i,f,)M—-i—< ».
n=i 4C(fi, f2)

(6) follows from (41) and from the relation

(42) E | Tn(zi, z2)\2 =  f    f '      E Pntti, Z2)T'n(ïi*, Z2)dïidt;i*
n=l J f i=0 J f i*=0    n=l

which holds for the functions of the class £o(93), see (4).
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