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1. Let us denote by C the class of functions/(z) regular for \z\ < 1 which

have power series expansion about 2 = 0 beginning

f(z) = axz + a2z2 + • • •

and which satisfy the condition

(1) f(Zx)f(zt) 9*1, | Si |    < 1, \z2\    <1.

Let C(X) denote the subclass of C consisting of functions f(z) for which

j«i| =X, 0<X^1. If/£C(X) it is subordinate to a function g(z)EC univalent

in \z\ <1 [9] for which then |g'(0)| ^X. Thus the image of \z\ <1 by w = g(z)

covers the circle \w\ <X/4 and hence by condition (1), for \z\ <1, \g(z)\

<4/X. Consequently, for \z\ <1, \f(z)\ <4/X so that the functions in C(X)

are uniformly bounded. Rogosinski [9] raised the question of the best pos-

sible bound T'(X) for the functions in C(X). He gave certain upper estimates

for P(X) but not the precise value. The object of the present paper is to give

the complete solution of this problem by a method used earlier to solve cer-

tain other questions for the same class of functions [5].

2. We begin by solving first the related problem of the closest boundary

point to the origin of the image of \z\ <1 by a univalent function in C(X).

In the f-plane ($ = t;-\-iri) we regard the domain A(t) defined by

0 < 77 < TT, £ < 0,

0 < 7? < Tr - /, £ = 0,

- t < v < t - t,       £ > 0,

where 0^/<tt. Let us denote the following boundary points of A(t) in the

manner indicated: 0, B; —it, C; i(w — t), E; wi, F. Further let the boundary

point of A(t) at infinity between F and B in the natural cyclic order be de-

noted by A, the corresponding point between C and E by D. We map A(t)

conformally onto the left-hand half-plane 3w<0 in such a way that A goes

into w = 0, D into w= 00. Let us denote by P the point f = (w — t)i/2. Rotation

of A(/) through 180° about P corresponds in the w-plane to a linear trans-

formation of 3w <0 onto itself interchanging 0 andoo. This transformation has

the form w*=a/w, a real and positive. The fixed point —a1'2 (positive root)

of the latter transformation is the image of P. We adjust the original map-

ping from the f-plane to the w-plane so that this becomes the point — 1 and

the linear transformation becomes w* = l/w.
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Let the images of B and C be i/l and i/m, T^m>0. Then the images of

E and F are — il, —im. If we extend f as a (non-single-valued) function of w

to the whole w-plane by reflection in various segments of the imaginary axis

we see at once that <£f2 is a quadratic differential on the w-sphere with

double poles at 0, oo, simple poles at i/m, —im and simple zeros at *//, — il

(except in the case / = 0 when the simple poles and zeros coincide in pairs and

cancel). Indeed we can write

(w + il)(w — i/l)
dt2 = K—--r— dw2

w2(w + im)(w — i/m)

with K a suitable positive constant. In case t = 0 this assumes a simple limit-

ing form. The curves on which d£2>0 will be called trajectories, those on

which d£2<0 will be called orthogonal trajectories.

Let us regard now the mapping from the domain |z| <1, 8tz<0 in the

z-plane onto the domain 0<rf<ir, £<0 in the {"-plane by the function

f = log (z/i) (with a suitable determination). Combining this with the above

mapping from the f-plane into the w-plane and extending it by reflection

across the segments joining i and — i in the z-plane and i/l and — im in the

w-plane we obtain a function regular and univalent for |z| <1. We denote

this function by/(z; t) and the image of |z| <1 under it by D(t). The latter

domain is bounded by orthogonal trajectories joining i/l and — il and a

rectilinear slit along an orthogonal trajectory from — im to — il. The latter

slit degenerates to a point when 1 = 0. Further/(z; t)GC since the trans-

formation w* = l/w carries D(t) into its exterior; also/'(0; t) >0 and f(z; 0) =z.

The quantities m and I depend on the parameter / and when appropriate

will be denoted by m(t) and l(t).

3. Theorem 1. Let g(w) be regular and univalent in D(t) with g(0)=0,

U'(0)| =1 and such that g(wi)g(w2) ^ I, wu w2GD(t). Let fx denote the modulus

of the boundary point of the image of D(t) under w'=g(w) closest to w1=0.

Then fx^m(t) and equality can be obtained only for g(w) = +<p(w), provided

t>0, where <p(0) =0 and <p is a conformal mapping of D(t) upon itself. When

t = 0, equality is attained only for g(w) =eied>(w), 9 real, <f> as before.

The proof of this result depends on the consideration of the following

module problem. Let L he a Jordan curve in the w-plane enclosing w = 0 and

having reflectional symmetry in the imaginary w-axis. Let L* be the image

of L under the transformation w* = l/w. We suppose that L* is exterior to

L and denote by 3) the doubly-connected domain bounded by L and L*.

Let G be a point on the positive imaginary axis in 3) and G* its image under

the transformation w* = l/w. Let Ci denote the class of rectifiable Jordan

curves lying in 3) and separating L from G, G*, and L*. Let C2 denote the class

of rectifiable Jordan curves lying in 3) and separating L* from L, G and G*.



512 J. A. JENKINS [March

Let p be a real-valued non-negative function of integrable square over 3)

and such that, for cEC, (i = l, 2), fcp\ dw\ exists and that fcp\ dw\ Sgl. Then

let the greatest lower bound of Jfop2dudv (w = u-\-iv) for all such functions

p be denoted by M(L, G). This actually is a minimum attained for a particu-

lar function p. This can be proved by reducing the problem to a hexagon

problem by a method similar to that of [2] or by a general construction

method, but this result is not needed here.

Let us return now to the quadratic differential d£2 which we denote by

Q(w)dw2. We have seen that D(t) is bounded by the union of certain orthog-

onal trajectories. The orthogonal trajectories interior to D(t) are Jordan

curves with reflectional symmetry in the imaginary w-axis. The orthogonal

trajectory of this set which meets the positive imaginary axis at the point

ir (r>0) will be denoted by H(r). As r tends to zero 77(r) tends to circular

form [10; 6]. Let 77(r) for r sufficiently small play the role of L in the preced-

ing module problem and let the point w = i/m play the role of G. Let the

doubly-connected domain bounded by 77(r) and the boundary of D(t) be

denoted by E(r) and its image under the transformation w* = l/w be denoted

by E*(r). These two domains have equal module (for the class of curves

separating the boundaries) which we denote by M(r). We then verify readily

that for a suitable constant v the metric v\ Q(w)\ ll2\dw\ provides the ex-

tremal metric in the module problem defining M(L, G) and this independently

of the value of r. Further, in this case, M(L, G) =2M(r).

With again the choice L —H(r) but for a point H with affix ih, h > 1/m, we

have M(L, G)^M(L, H)+d where d (>0) is independent of r but depends

on h. This can be seen in various ways, perhaps most easily by observing

that it is possible to modify the function | Q(w) |1/2 by setting it equal to

zero in a sufficiently small neighborhood of G to obtain a function admissible

in the competition for the greatest lower bound M(L, 77), independent of the

choice of r.

Let now E'(r) be the image of E(r) under the function g of Theorem 1.

We shall suppose it to lie again in the w-plane. Let Kx be the bounded con-

tinuum complementary to E'(r) bounded by the image L' of L. Let A2 be the

other continuum complementary to E'(r). We obtain from E'(r) a circularly

symmetrized domain E(r) in the following manner. Let the intersections of

|w| =R with Ai and K2 have respectively angular Lebesgue measure h(R)

and l2(R). Let Ai be the set defined by ir/2-h(R)/2£*£ir/2+k(R)/2 for
those values of R for which Ai meets |w| =R where R, <$ are polar coordi-

nates in thew-plane. Let A2 be the set defined by —tt/2 — 12(R)/2^$^ —it/2

+l2(R)/2 for those values of R for which A2 meets \w\ =R. The complement

of Kx^JKt is a doubly-connected domain which we denote by £(r).

Let E'(r), R(r) have modules M'(r), M(r). Clearly M'(r)=M(r) while by

a standard symmetrization argument M'(r)^M(r) [S]. Under the assump-

tion of Theorem 1 the point of A2 closest to w = 0 has modulus p, thus the
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point — ip. is a point of K2 and a boundary point of £(r). We verify at once

that £(r) does not overlap with its image E*(r) under the transformation

w* = l/w (as a consequence of the condition g(wi)g(w2)^l, wi, w2GD(t)). Let

us now denote the point i/fx by H and let @(r) be the intersection of £(r) with

the exterior of L. Let this domain, which is doubly-connected at least for r

small enough, have module <$[l(r) (for the class of curves separating its

boundaries as usual). Since H(r) tends to circular form as r tends to zero

we have that M(r) — W(r) approaches zero as r tends to zero. We see also

that @(r) separates L from H, H* and L*, and S*(r), its image by the

transformation w* = l/w, separates L* from L, H and H*.

Suppose now that fx<m(t). Then, by an earlier remark, M(L, G)

^M(L, H)+d where d (>0) is independent of r. On the other hand, by a

standard argument [4], M(L, H)^2^fft(r). Thus, combining this with the

statements M(L, G)=2M(r), M(r)-M(r)=o(l), we have

2M(r) ^ 2M(r) + d + o(l),

a contradiction to the result M(r) ^M(r). Thus fx^m(t).

Suppose next that fi = m(t). If K2 did not coincide with the complement of

D(t) it would follow by a standard form of argument [3] that we would have

M(r) 5: M(r)+8+o(l) for 5 (>0) independent of r for r sufficiently small.

This would be in contradiction to the inequality M(r) ^ M(r). Further, un-

less K2 is obtained from K% by a rigid rotation about w = 0, we shall have

M(r) 2: M(r) +p where p is a positive constant independent of r, for r suffi-

ciently small [7, Theorem 3]. In this case we would have M(L, G)^2W(r)

and we would get

2M(r) ^ 2M(r) + o(l)

contrary to the inequality M(r) ^ M(r) +p.

Thus equality is possible at most when g(w) has the form eie<p(w), 9 real,

with 4>(w) a conformal mapping of D(t) onto itself and 0(0) =0. The function

eie<p(w) can satisfy the conditions of Theorem 1 only if neither 1 or —1 is

interior to the image of D(t) by this function. Let us assume first that t>0.

Then the only boundary points of D(t) on \w\ =1 are the points w=+l.

This can be verified by observing that | w\ = 1 has the direction of an orthog-

onal trajectory only at the points w= +i and that this situation will occur

between any two boundary points on \w\ =1. That d£2<0 on \w\ =1 only

at w=+i is the consequence of a simple direct numerical calculation. Thus

the open arc \w\ =1, 3w>0 is interior to D(t), the open arc \w\ =1, $w<0

is exterior to D(t) and the only values of eie for which ew<f>(w) satisfies the

conditions on g(w) in Theorem 1 are +1. When t = 0 all values eie, 9 real, are

clearly admissible. This completes the proof of Theorem 1.

4. The uniqueness part of Theorem 1 implies that no two values/'(0; t)

are equal. By an argument involving the theory of normal families we see that
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f'(0; t) tends to zero as / approaches ir. Also for t=0,f'(0; 0) = 1. Thus as t

takes the values 0^<7r,/'(0; t) takes the values 1 ̂ /'(0; t) >0. In particular

for 1 S;X>0 there is a unique such function with/'(0; t) =X. We denote this

function by F(z; X) and the modulus of the closest boundary point to the

origin of the image of \z\ <1 under this function by p(X). Clearly F(z; X)

EC(\). We then have the following result.

Theorem 2. If f(z) is a univalent function in C(X), then for the modulus p

of the boundary point of the image of \z\ < 1 under f closest to the origin we have

M^p(X) and equality can be attained only for f(z) = +A(ei*2; X), \j/ real, when

X < 1 and for f(z) = e**z, 0 real, when X = 1.

This is an immediate consequence of Theorem 1.

5. We now turn to the determination of P(X), the best possible uniform

bound for functions in C(X). We observe first that we obtain the same result

if we restrict ourselves to univalent functions in C(X). Indeed f(z) E C(X) is

subordinate to a univalent function g(z)EC [9]. The function g(z) will not

in general be in C(X) but | g'(0) | ^X. Thus, producing a slit from the boundary

of the image under g of \z\ < 1 toward the origin and letting h(z) be a function

mapping \z\ <1 on the slit domain with h(0) =0, for a suitable length of slit

we shall have | h'(0) \ =X. Further the least upper bound of | h(z) | for | z\ < 1

will be the same as the least upper bound of | g(z) | for | z\ < 1 and this is at

least as large as the same quantity for f(z).

Now, if for f(z) a univalent function in C we have

l.u.b.  ] f(z) |   = M,
l*l<i

for the modulus p of the boundary point of the image of | z\ < 1 under/closest

to the origin we have p^l/M so M^l/p. Thus P(X) ^ (p(X))-1. We shall

now show that the precise value is P(X) = (p(X))-1.

First we observe by an argument similar to that of the first paragraph of

this section that for X'^X, P(X') ^P(X).

Let t be the value corresponding to X as in §4. We may assume />0, X < 1

since in the special case excluded the result is evident. Let us denote by D(t, e)

the domain obtained from D(t) by shortening the slit from — il to — im to a

slit from —il to — i(m + e), 0<e<l — m. Let/(z; t, e) be the function mapping

\z\ <1 onto D(t, e) such that/(0; t, e)=0,f'(0;t, e)>0. Clearly/'(0; t, e) >X.

Let U(a) denote the open set of points whose distance from the segment join-

ing i/l to i/(m + e) is less than a. Let U*(a) be the image of U(a) by the trans-

formation w* = l/w. Let

D(t, e, a) = (D(t, e) U U(c)) - U*(o).

For o- sufficiently small this is a simply-connected domain containing the

point w = 0. Let/(z; t, e, a) be the function with f(0; t, e, a) =0,f'(0; t, e, o-)>0
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mapping | z| <1 onto D(t, t, a). By the general theory of kernels of domains

[l],/(z; t, e, a) converges to/(z; t, e) as a tends to zero. Thus/'(0; t, e, <r) >X

for a sufficiently small. However

Lu.b.   | f(z; t, t,a)\   = (m + t)'1 + a.
I«l<i

Thus by the monotone property given above

P(X) >(m + e)-1 + <r

ior e, a positive, sufficiently small. Hence

P(X) 5; m-1 = (m(X))"1.

We summarize these statements in our principal result.

Theorem 3. If P(X) is the best possible uniform bound for functions in C(X),

P(X) = (fx(X))~1. There is no function f(z) in C(X) having P(X) as least upper

bound of \f(z) \, \z\ < 1, except for X = 1.

The final statement of Theorem 3 follows from the uniqueness part of

Theorem 2, since for such a function f(z) the modulus p of the boundary

point of the image of |z| <1 under/ closest to the origin would satisfy

p^p(X), thus fx=fx(X) and f(z) would be eieF(ei*z; X), 9, yp real. However

| F(ei*z; X)|, for |z| <1, has least upper bound strictly less than (p(X))-1

except when X = 1.
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