ON BIEBERBACH-EILENBERG FUNCTIONS. II

BY JAMES A. JENKINS

1. Let us denote by C the class of functions f(z) regular for |z| < 1 which have power series expansion about z = 0 beginning

$$f(z) = a_1z + a_2z^2 + \cdots$$

and which satisfy the condition

(1)
$$f(z_1)f(z_2) \neq 1$$
, $|z_1| < 1$, $|z_2| < 1$.

Let $C(\lambda)$ denote the subclass of C consisting of functions f(z) for which $|a_1| = \lambda$, $0 < \lambda \le 1$. If $f \in C(\lambda)$ it is subordinate to a function $g(z) \in C$ univalent in |z| < 1 [9] for which then $|g'(0)| \ge \lambda$. Thus the image of |z| < 1 by w = g(z) covers the circle $|w| < \lambda/4$ and hence by condition (1), for |z| < 1, $|g(z)| < 4/\lambda$. Consequently, for |z| < 1, $|f(z)| < 4/\lambda$ so that the functions in $C(\lambda)$ are uniformly bounded. Rogosinski [9] raised the question of the best possible bound $P(\lambda)$ for the functions in $C(\lambda)$. He gave certain upper estimates for $P(\lambda)$ but not the precise value. The object of the present paper is to give the complete solution of this problem by a method used earlier to solve certain other questions for the same class of functions [5].

2. We begin by solving first the related problem of the closest boundary point to the origin of the image of |z| < 1 by a univalent function in $C(\lambda)$. In the ζ -plane $(\zeta = \xi + i\eta)$ we regard the domain $\Delta(t)$ defined by

$$0 < \eta < \pi,$$
 $\xi < 0,$ $0 < \eta < \pi - t,$ $\xi = 0,$ $-t < \eta < \pi - t,$ $\xi > 0,$

where $0 \le t < \pi$. Let us denote the following boundary points of $\Delta(t)$ in the manner indicated: 0, B; -it, C; $i(\pi-t)$, E; πi , F. Further let the boundary point of $\Delta(t)$ at infinity between F and B in the natural cyclic order be denoted by A, the corresponding point between C and E by D. We map $\Delta(t)$ conformally onto the left-hand half-plane $\Im w < 0$ in such a way that A goes into w = 0, D into $w = \infty$. Let us denote by P the point $\zeta = (\pi - t)i/2$. Rotation of $\Delta(t)$ through 180° about P corresponds in the w-plane to a linear transformation of $\Im w < 0$ onto itself interchanging 0 and ∞ . This transformation has the form $w^* = a/w$, a real and positive. The fixed point $-a^{1/2}$ (positive root) of the latter transformation is the image of P. We adjust the original mapping from the ζ -plane to the w-plane so that this becomes the point -1 and the linear transformation becomes $w^* = 1/w$.

Let the images of B and C be i/l and i/m, $l \ge m > 0$. Then the images of E and F are -il, -im. If we extend ζ as a (non-single-valued) function of w to the whole w-plane by reflection in various segments of the imaginary axis we see at once that $d\zeta^2$ is a quadratic differential on the w-sphere with double poles at 0, ∞ , simple poles at i/m, -im and simple zeros at i/l, -il (except in the case l=0 when the simple poles and zeros coincide in pairs and cancel). Indeed we can write

$$d\zeta^2 = K \frac{(w+il)(w-i/l)}{w^2(w+im)(w-i/m)} dw^2$$

with K a suitable positive constant. In case t=0 this assumes a simple limiting form. The curves on which $d\zeta^2 > 0$ will be called trajectories, those on which $d\zeta^2 < 0$ will be called orthogonal trajectories.

Let us regard now the mapping from the domain |z| < 1, $\Re z < 0$ in the z-plane onto the domain $0 < \eta < \pi$, $\xi < 0$ in the ζ -plane by the function $\zeta = \log(z/i)$ (with a suitable determination). Combining this with the above mapping from the ζ -plane into the w-plane and extending it by reflection across the segments joining i and -i in the z-plane and i/l and -im in the w-plane we obtain a function regular and univalent for |z| < 1. We denote this function by f(z;t) and the image of |z| < 1 under it by D(t). The latter domain is bounded by orthogonal trajectories joining i/l and -il and a rectilinear slit along an orthogonal trajectory from -im to -il. The latter slit degenerates to a point when t=0. Further $f(z;t) \in C$ since the transformation $w^* = 1/w$ carries D(t) into its exterior; also f'(0;t) > 0 and $f(z;0) \equiv z$.

The quantities m and l depend on the parameter t and when appropriate will be denoted by m(t) and l(t).

3. THEOREM 1. Let g(w) be regular and univalent in D(t) with g(0) = 0, |g'(0)| = 1 and such that $g(w_1)g(w_2) \neq 1$, $w_1, w_2 \in D(t)$. Let μ denote the modulus of the boundary point of the image of D(t) under w' = g(w) closest to w' = 0. Then $\mu \geq m(t)$ and equality can be obtained only for $g(w) = \pm \phi(w)$, provided t > 0, where $\phi(0) = 0$ and ϕ is a conformal mapping of D(t) upon itself. When t = 0, equality is attained only for $g(w) = e^{i\theta}\phi(w)$, θ real, ϕ as before.

The proof of this result depends on the consideration of the following module problem. Let L be a Jordan curve in the w-plane enclosing w=0 and having reflectional symmetry in the imaginary w-axis. Let L^* be the image of L under the transformation $w^*=1/w$. We suppose that L^* is exterior to L and denote by $\mathfrak D$ the doubly-connected domain bounded by L and L^* . Let G be a point on the positive imaginary axis in $\mathfrak D$ and G^* its image under the transformation $w^*=1/w$. Let C_1 denote the class of rectifiable Jordan curves lying in $\mathfrak D$ and separating L from G, G^* , and L^* . Let C_2 denote the class of rectifiable Jordan curves lying in $\mathfrak D$ and separating L^* from L, G and G^* .

Let ρ be a real-valued non-negative function of integrable square over \mathfrak{D} and such that, for $c \in C_i$ (i=1,2), $\int_{c\rho} |dw|$ exists and that $\int_{c\rho} |dw| \ge 1$. Then let the greatest lower bound of $\int_{\mathfrak{D}} \rho^2 du dv$ (w=u+iv) for all such functions ρ be denoted by M(L,G). This actually is a minimum attained for a particular function ρ . This can be proved by reducing the problem to a hexagon problem by a method similar to that of [2] or by a general construction method, but this result is not needed here.

Let us return now to the quadratic differential $d\zeta^2$ which we denote by $Q(w)dw^2$. We have seen that D(t) is bounded by the union of certain orthogonal trajectories. The orthogonal trajectories interior to D(t) are Jordan curves with reflectional symmetry in the imaginary w-axis. The orthogonal trajectory of this set which meets the positive imaginary axis at the point ir(r>0) will be denoted by H(r). As r tends to zero H(r) tends to circular form [10; 6]. Let H(r) for r sufficiently small play the role of L in the preceding module problem and let the point w=i/m play the role of G. Let the doubly-connected domain bounded by H(r) and the boundary of D(t) be denoted by E(r) and its image under the transformation $w^*=1/w$ be denoted by $E^*(r)$. These two domains have equal module (for the class of curves separating the boundaries) which we denote by M(r). We then verify readily that for a suitable constant r the metric r0 r1 r2 r3 r4 r4 r5 r6 and this independently of the value of r7. Further, in this case, M(L, G) = 2M(r).

With again the choice L = H(r) but for a point H with affix ih, h > 1/m, we have $M(L, G) \ge M(L, H) + d$ where d > 0 is independent of r but depends on h. This can be seen in various ways, perhaps most easily by observing that it is possible to modify the function $|Q(w)|^{1/2}$ by setting it equal to zero in a sufficiently small neighborhood of G to obtain a function admissible in the competition for the greatest lower bound M(L, H), independent of the choice of r.

Let now E'(r) be the image of E(r) under the function g of Theorem 1. We shall suppose it to lie again in the w-plane. Let K_1 be the bounded continuum complementary to E'(r) bounded by the image L' of L. Let K_2 be the other continuum complementary to E'(r). We obtain from E'(r) a circularly symmetrized domain $\tilde{E}(r)$ in the following manner. Let the intersections of |w| = R with K_1 and K_2 have respectively angular Lebesgue measure $l_1(R)$ and $l_2(R)$. Let \tilde{K}_1 be the set defined by $\pi/2 - l_1(R)/2 \le \Phi \le \pi/2 + l_1(R)/2$ for those values of R for which K_1 meets |w| = R where R, Φ are polar coordinates in the w-plane. Let \tilde{K}_2 be the set defined by $-\pi/2 - l_2(R)/2 \le \Phi \le -\pi/2 + l_2(R)/2$ for those values of R for which K_2 meets |w| = R. The complement of $\tilde{K}_1 \cup \tilde{K}_2$ is a doubly-connected domain which we denote by $\tilde{E}(r)$.

Let E'(r), $\tilde{E}(r)$ have modules M'(r), $\tilde{M}(r)$. Clearly M'(r) = M(r) while by a standard symmetrization argument $M'(r) \leq \tilde{M}(r)$ [8]. Under the assumption of Theorem 1 the point of K_2 closest to w=0 has modulus μ , thus the

point $-i\mu$ is a point of \widetilde{K}_2 and a boundary point of $\widetilde{E}(r)$. We verify at once that $\widetilde{E}(r)$ does not overlap with its image $\widetilde{E}^*(r)$ under the transformation $w^*=1/w$ (as a consequence of the condition $g(w_1)g(w_2)\neq 1$, $w_1, w_2\in D(t)$). Let us now denote the point i/μ by H and let $\mathfrak{C}(r)$ be the intersection of $\widetilde{E}(r)$ with the exterior of L. Let this domain, which is doubly-connected at least for r small enough, have module $\mathfrak{M}(r)$ (for the class of curves separating its boundaries as usual). Since H(r) tends to circular form as r tends to zero we have that $\widetilde{M}(r)-\mathfrak{M}(r)$ approaches zero as r tends to zero. We see also that $\mathfrak{C}(r)$ separates L from H, H^* and L^* , and $\mathfrak{C}^*(r)$, its image by the transformation $w^*=1/w$, separates L^* from L, H and H^* .

Suppose now that $\mu < m(t)$. Then, by an earlier remark, $M(L, G) \ge M(L, H) + d$ where d > 0 is independent of r. On the other hand, by a standard argument [4], $M(L, H) \ge 2\mathfrak{M}(r)$. Thus, combining this with the statements M(L, G) = 2M(r), $\tilde{M}(r) - \mathfrak{M}(r) = o(1)$, we have

$$2M(r) \ge 2\tilde{M}(r) + d + o(1),$$

a contradiction to the result $\tilde{M}(r) \ge M(r)$. Thus $\mu \le m(t)$.

Suppose next that $\mu=m(t)$. If \widetilde{K}_2 did not coincide with the complement of D(t) it would follow by a standard form of argument [3] that we would have $M(r) \ge \widetilde{M}(r) + \delta + o(1)$ for δ (>0) independent of r for r sufficiently small. This would be in contradiction to the inequality $\widetilde{M}(r) \ge M(r)$. Further, unless \widetilde{K}_2 is obtained from K_2 by a rigid rotation about w=0, we shall have $\widetilde{M}(r) \ge M(r) + p$ where p is a positive constant independent of r, for r sufficiently small [7, Theorem 3]. In this case we would have $M(L, G) \ge 2\mathfrak{M}(r)$ and we would get

$$2M(r) \ge 2\tilde{M}(r) + o(1)$$

contrary to the inequality $\tilde{M}(r) \ge M(r) + p$.

Thus equality is possible at most when g(w) has the form $e^{i\theta}\phi(w)$, θ real, with $\phi(w)$ a conformal mapping of D(t) onto itself and $\phi(0)=0$. The function $e^{i\theta}\phi(w)$ can satisfy the conditions of Theorem 1 only if neither 1 or -1 is interior to the image of D(t) by this function. Let us assume first that t>0. Then the only boundary points of D(t) on |w|=1 are the points $w=\pm 1$. This can be verified by observing that |w|=1 has the direction of an orthogonal trajectory only at the points $w=\pm i$ and that this situation will occur between any two boundary points on |w|=1. That $d\zeta^2<0$ on |w|=1 only at $w=\pm i$ is the consequence of a simple direct numerical calculation. Thus the open arc |w|=1, $\Im w>0$ is interior to D(t), the open arc |w|=1, $\Im w<0$ is exterior to D(t) and the only values of $e^{i\theta}$ for which $e^{i\theta}\phi(w)$ satisfies the conditions on g(w) in Theorem 1 are ± 1 . When t=0 all values $e^{i\theta}$, θ real, are clearly admissible. This completes the proof of Theorem 1.

4. The uniqueness part of Theorem 1 implies that no two values f'(0; t) are equal. By an argument involving the theory of normal families we see that

f'(0;t) tends to zero as t approaches π . Also for t=0, f'(0;0)=1. Thus as t takes the values $0 \le t < \pi$, f'(0;t) takes the values $1 \ge f'(0;t) > 0$. In particular for $1 \ge \lambda > 0$ there is a unique such function with $f'(0;t) = \lambda$. We denote this function by $F(z;\lambda)$ and the modulus of the closest boundary point to the origin of the image of |z| < 1 under this function by $\mu(\lambda)$. Clearly $F(z;\lambda) \in C(\lambda)$. We then have the following result.

THEOREM 2. If f(z) is a univalent function in $C(\lambda)$, then for the modulus μ of the boundary point of the image of |z| < 1 under f closest to the origin we have $\mu \ge \mu(\lambda)$ and equality can be attained only for $f(z) = \pm F(e^{i\psi}z; \lambda)$, ψ real, when $\lambda < 1$ and for $f(z) = e^{i\theta}z$, θ real, when $\lambda = 1$.

This is an immediate consequence of Theorem 1.

5. We now turn to the determination of $P(\lambda)$, the best possible uniform bound for functions in $C(\lambda)$. We observe first that we obtain the same result if we restrict ourselves to univalent functions in $C(\lambda)$. Indeed $f(z) \in C(\lambda)$ is subordinate to a univalent function $g(z) \in C$ [9]. The function g(z) will not in general be in $C(\lambda)$ but $|g'(0)| \ge \lambda$. Thus, producing a slit from the boundary of the image under g of |z| < 1 toward the origin and letting h(z) be a function mapping |z| < 1 on the slit domain with h(0) = 0, for a suitable length of slit we shall have $|h'(0)| = \lambda$. Further the least upper bound of |h(z)| for |z| < 1 will be the same as the least upper bound of |g(z)| for |z| < 1 and this is at least as large as the same quantity for f(z).

Now, if for f(z) a univalent function in C we have

l.u.b.
$$|f(z)| = M$$
,

for the modulus μ of the boundary point of the image of |z| < 1 under f closest to the origin we have $\mu \le 1/M$ so $M \le 1/\mu$. Thus $P(\lambda) \le (\mu(\lambda))^{-1}$. We shall now show that the precise value is $P(\lambda) = (\mu(\lambda))^{-1}$.

First we observe by an argument similar to that of the first paragraph of this section that for $\lambda' \ge \lambda$, $P(\lambda') \le P(\lambda)$.

Let t be the value corresponding to λ as in §4. We may assume t>0, $\lambda<1$ since in the special case excluded the result is evident. Let us denote by $D(t,\epsilon)$ the domain obtained from D(t) by shortening the slit from -il to -im to a slit from -il to $-i(m+\epsilon)$, $0<\epsilon< l-m$. Let $f(z;t,\epsilon)$ be the function mapping |z|<1 onto $D(t,\epsilon)$ such that $f(0;t,\epsilon)=0$, $f'(0;t,\epsilon)>0$. Clearly $f'(0;t,\epsilon)>\lambda$. Let $U(\sigma)$ denote the open set of points whose distance from the segment joining i/l to $i/(m+\epsilon)$ is less than σ . Let $U^*(\sigma)$ be the image of $U(\sigma)$ by the transformation $w^*=1/w$. Let

$$D(t,\,\epsilon,\,\sigma)\,=\,(D(t,\,\epsilon)\,\cup\,U(\sigma))\,-\,\overline{U}^{\textstyle *}(\sigma).$$

For σ sufficiently small this is a simply-connected domain containing the point w = 0. Let $f(z; t, \epsilon, \sigma)$ be the function with $f(0; t, \epsilon, \sigma) = 0$, $f'(0; t, \epsilon, \sigma) > 0$

mapping |z| < 1 onto $D(t, \epsilon, \sigma)$. By the general theory of kernels of domains [1], $f(z; t, \epsilon, \sigma)$ converges to $f(z; t, \epsilon)$ as σ tends to zero. Thus $f'(0; t, \epsilon, \sigma) > \lambda$ for σ sufficiently small. However

l.u.b.
$$|f(z; t, \epsilon, \sigma)| = (m + \epsilon)^{-1} + \sigma$$
.

Thus by the monotone property given above

$$P(\lambda) \ge (m + \epsilon)^{-1} + \sigma$$

for ϵ , σ positive, sufficiently small. Hence

$$P(\lambda) \geq m^{-1} = (\mu(\lambda))^{-1}.$$

We summarize these statements in our principal result.

THEOREM 3. If $P(\lambda)$ is the best possible uniform bound for functions in $C(\lambda)$, $P(\lambda) = (\mu(\lambda))^{-1}$. There is no function f(z) in $C(\lambda)$ having $P(\lambda)$ as least upper bound of |f(z)|, |z| < 1, except for $\lambda = 1$.

The final statement of Theorem 3 follows from the uniqueness part of Theorem 2, since for such a function f(z) the modulus μ of the boundary point of the image of |z| < 1 under f closest to the origin would satisfy $\mu \le \mu(\lambda)$, thus $\mu = \mu(\lambda)$ and f(z) would be $e^{i\theta}F(e^{i\psi}z;\lambda)$, θ , ψ real. However $|F(e^{i\psi}z;\lambda)|$, for |z| < 1, has least upper bound strictly less than $(\mu(\lambda))^{-1}$ except when $\lambda = 1$.

BIBLIOGRAPHY

- 1. C. Carathéodory, Untersuchungen über die konformen Abbildungen von festen und veränderlichen Gebieten, Math. Ann. vol. 72 (1912) pp. 107-144.
- 2. James A. Jenkins, Some problems in conformal mapping, Trans. Amer. Math. Soc. vol. 67 (1949) pp. 327-350.
- 3. ——, Remarks on "Some problems in conformal mapping," Proc. Amer. Math. Soc. vol. 3 (1952) pp. 147-151.
- 4. ——, Symmetrization results for some conformal invariants, Amer. J. Math. vol. 75 (1953) pp. 510-522.
- 5. ——, On Bieberbach-Eilenberg functions, Trans. Amer. Math. Soc. vol. 76 (1954) pp. 389-396.
- 6. ——, On the local structure of the trajectories of a quadratic differential, Proc. Amer. Math. Soc. vol. 5 (1954) pp. 357-362.
- 7. ——, Some uniqueness results in the theory of symmetrization, Ann. of Math. vol. 61 (1955) pp. 106-115.
- 8. G. Pólya and G. Szegö, Isoperimetric inequalities in mathematical physics, Annals of Mathematics Studies, No. 27, Princeton University Press, 1951.
- 9. W. Rogosinski, On a theorem of Bieberbach-Eilenberg, J. London Math. Soc. vol. 14 (1939) pp. 4-11.
- 10. A. C. Schaeffer and D. C. Spencer, Coefficient regions for schlicht functions, Amer. Math. Soc. Colloquium Publications, vol. 35, 1950.

JOHNS HOPKINS UNIVERSITY, BALTIMORE, MD.