
SOME THEOREMS ON BOUNDED ANALYTIC FUNCTIONS

BY

WALTER RUDIN

1. Introduction. In a paper by Bers [3] the following unpublished theorem

of Chevalley and Kakutani is mentioned in a footnote:

Theorem A. If to each boundary point W of a domain B there exists a

bounded analytic function defined in B and possessing at W a singularity, then

B is determined (modulo a conformal transformation) by the ring of all bounded

analytic functions on B.

The purpose of this paper is twofold. A proof of Theorem A is given

which, according to Professor Kakutani, is considerably simpler than the

original one (Theorem 9; a slight extension is stated in Theorem 12). In

particular, no use is made of the theory of normed rings and of the topology

of the maximal ideal space; our methods are more function-theoretic. Sec-

ondly, we investigate those properties of the boundary of a domain which are

connected with the existence of singularities of bounded analytic functions.

This leads to the consideration of two classes of boundary points (removable

and essential) and of their relation to Painleve null-sets (Theorem 5). A

theorem on cluster sets is established (Theorem 14), and it is shown (Theo-

rem 15) that the domains considered by Chevalley and Kakutani (we shall

call these domains maximal) are precisely those which are domains of exist-

ence of single-valued bounded analytic functions, i.e., those whose boundaries

are natural boundaries of some such function. Theorem 11 shows that every

domain D is contained in a unique smallest maximal domain D*.

2. Definitions. Let 73(7?) denote the set of all single-valued bounded

analytic functions on the domain D (by a domain we mean a connected open

subset of the Riemann sphere S; unless the contrary is stated, we shall always

assume that the boundary of D is bounded; this involves no loss of generality,

since all our results are invariant under conformal one-to-one mappings of S

onto S).

Let fGB(D). If 7?i is a domain such that DiC\D is not vacuous, and if

there is a function fiGB(Di) such that/(z) =/i(z) for zGDi(~\D, we say that

/ can be extended to Di.

A boundary point x of D is said to be removable if for every fGB(D) there

exists a neighborhood V of x such that/ can be extended to V. By an essential

boundary point of D we mean one that is not removable. If every boundary
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point of D is essential, we say that D is maximal.

The closed disc with center at x and radius r will be denoted by J(x, r).

3. Painleve null-sets. Let K be the complement of a domain D. If B(D)

consists of the constant functions alone, then A is called a Painleve null-set

[2, p. 107] or simply a null-set. It is known that A is a null-set if the linear

measure of A is zero [l, p. 2]; if K is a subset of an analytic arc, this sufficient

condition is also necessary [2, p. 122]; in the general case, no characteriza-

tion of this sort has yet been found.

It is trivial that null-sets are totally disconnected, and it is easily shown

[2, p. 108] that A is a null-set if and only if every fEB(A — K) can be ex-

tended to A, where A is any domain containing A. This remark leads to a

simple proof of the following property, which we state as a lemma:

4. Lemma. Let A be a domain, and let K be a closed set. Suppose that for

every xEAC\K there exists r>0 (r depending on x) such that J(x, r)EA and

J(x, r)C\K is a Painlevi null-set. Then every fEB(A — K) can be extended to A.

Next we show that if x is a removable boundary point of D, there exists

a domain Dx containing x and D, independent of/, such that every fEB(D)

can be extended to Dx:

5. Theorem. Let K be the complement of the domain D. A point xEK is a

removable boundary point of D if and only if the set KC\J(x, r) is a Painleve

null-set for some r > 0.

Proof. The sufficiency of the condition is evident. To prove the necessity,

suppose KC\J(x, r) is not a null-set for any r >0. Let V be a neighborhood of

x, and put A=V— {x}. If for every yEA there exists an r>0 such that

K(~\J(y, r) is a null-set, then every fEB(A — K) can be extended to A, by

Lemma 4, and hence to V, so that KC\J(x, r) is a null-set provided J(x, r) C V.

This contradiction shows that there exists a sequence of disjoint discs

/(*n,fn)CA (» = 1,2,3, ■ • •) such that #„—>x and such that Kn = Kr\I(x„,rn)

is not a null-set. The complement Dn of Kn contains D and is connected (be-

ing the union of two connected sets). Choose nonconstant functions/nG5(7>„)

such that \fn(z)\ <2~n in Dn, and define/(z) = 52/»(2)-
Then fEB(D). Since/= (/—/»)+/„ and/—/„ can be extended to a neigh-

borhood of Kn, whereas this is not true of fn, we see that/ cannot be extended

to any neighborhood of x. Hence x is an essential boundary point of D, and

the theorem follows.

The following two lemmas will be needed in the proof of Theorem 9.

6. Lemma. Suppose A is an open set which is dense in a domain D. If <f> is

analytic in D (with possible poles) and schlicht in A, then <p is schlicht in D.

Proof. Suppose there are two distinct points zlt z2 in D such that <b(zx)
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=<p(z2), and let Vi, V2 be disjoint neighborhoods of Zi, z2, such that ViCD'

V2GD.
Since <£(F,P\A) is an open set, dense in <p(Vi) (i = l, 2), we see that

<p(Vir\A) and <p(V2r\A) have a point in common; this point has two distinct

inverse images in A, a contradiction.

7. Lemma. Let Di be a domain. If Di is maximal and conformally equivalent

to D2, then D2 is also a maximal domain.

Proof. Suppose <p maps D2 conformally onto 7?i. We assume, without loss

of generality, that <p is analytic, rather than conjugate analytic. If D2 has

a removable boundary point x, there exists a neighborhood V of x such that

every fGB(D2) can be extended to Di = VVJD2, by Theorem 5 and Lemma 4.

D2 is clearly dense in D{ , and since <j> is bounded except in the neighborhood

of the point z0GL> such that <p(zo) = °° (if Di contains the point at infinity),

<p can be extended to Di. By Lemma 6, (p is schlicht in D2 , so that the domain

D{ =<p(D2) contains Di properly.

Choose fGB(Di), and set g(w) =f(<p(w)) for wGD2. Since gGB(D2), g can

be extended to D2, and the formula:/(z) =g(<p~1(z)) extends/ to D{ , contra-

dicting the maximality of D.

Hence D2 has no removable boundary point.

8. Before turning to the proof of the theorem of Chevalley and Kakutani,

we insert the following remark: We shall consider two domains, 77>1 and D2,

and an isomorphic mapping \f/ of the ring B(Di) onto the ring B(D2), i.e.,

a one-to-one mapping which preserves sums and products; it is clear that

yp(l) = 1. Since the imaginary unit i is a primitive fourth root of unity, we

must either have yp(i) —i or ^(i) = —i. In the former case, we call yp a direct

isomorphism. If \[/(i) = —i, conjugates must be introduced into (1) below in

an obvious manner, and the induced correspondence between the points of

Di and 77>2, while still conformal, reverses orientation.

9. Theorem. Let 7?i and D2 be maximal domains which are proper subsets

of the Riemann sphere, and let yp be a direct isomorphism mapping B(Di) onto

B(D2). Then there exists a one-to-one conformal mapping <p of D2 onto Di such

that

(1) f(<t>(w)) = f*(w) (w G D2),

where f* =yp(f).

Since the converse of the theorem is obvious, we can summarize the

situation by saying that 77>i and D2 are conformally equivalent if and only if

B(Di) and B(D2) are algebraically isomorphic.

Proof. We assume, without loss of generality, that 7?i and D2 are in the

finite plane.



336 WALTER RUDIN [March

Using the notation f*=$(/), we readily see that r*=r for any rational

number r (i.e., for any constant function whose range is the number r). Hav-

ing assumed that i*=i, we see that r* = r for any complex rational r (by a

complex rational we mean a complex number with rational real and imagin-

ary parts).

Let Q(f) denote the closure of the range of/. For any fEB(Di) and any

complex rational r, the following four statements are clearly equivalent, since

(f-r)*=f*-r*=f*-r

and ip preserves reciprocals:

(a) rEQ(f).
(b) f—r has no reciprocal in B(Di).

(c) f* — r has no reciprocal in B(D2).

(d) rEQ(f*).
Thus Q(f) and (?(/*) contain the same complex rationals.

It follows that for any constant c, c* is also a constant. Furthermore, if/

is not constant, then the same is true of/*; since Q(f) and Q(f*) are closures

of open sets, we conclude that

(2) Q(f) = Q(f*) (f E B(Di), f 9* const.).

Now let c be any constant, choose a nonconstant fEB(Di) such that

OEQ(f), and put

Uz) = c + f(z)/n      (z EDltn= 1,2,3, ■ ■■ ).

Then

fn*(w) = c* + f*(w)/n (w E Dt, n = 1, 2, 3, • • • ),

and cEQ(fn), c*EQ(f*). By (2) we have

C   =    0  <3(/n)   =   fl  Q(fn*)   =   C*,
n=l n-1

so that c* = c for every constant c.

Now, if Dx is unbounded, the identity function 7(z) =z is not a member

of B(Dx). This difficulty cannot, in general, be eliminated by mapping Dx

conformally onto a bounded domain: Ahlfors and Beurling [2] have shown

that there are domains D on which there exist no bounded schlicht functions,

although B(D) contains nonconstant functions; such a domain D is not con-

formally equivalent to any bounded domain.

However, let F(D,) be the quotient field of B(Dj) (j—1,2), and extend rp

in the natural manner to an isomorphic mapping of F(Di) onto F(D2). We

shall see that IEF(Di) and that the function <p=$(I)EF(D2) is the desired

mapping function for which (1) holds.
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For any nonconstant/(E73(7)i) and any point aGDi, put

g(z) = (f(z) - f(a))/(z - a)

so that

7(Z) = z = a + (f(z) - f(a))/g(z).

These formulas show that gGB(Di) and hence that IGF(Di).

Now set <p =yp(I), <p(D2) =D3, D =DiC\Dz. For any constant c, the follow-

ing four statements are clearly equivalent:

(a) cGQ(I).
(b) The reciprocal of I — c is not in B(Di).

(c) The reciprocal of <p — c is not in B(D2).

(d) cGQ(<p).
Thus 77>i and D3 have the same closure; it follows that D is dense in 7?i

and in Z>3.

We have to show that </> is schlicht, and that Di = D$.

Choose any point aGD and let Ma be the set of all functions fGB(Di)

such that/(a) =0. Ma is evidently an ideal. If gGB(Di) and g (a) 9^0, then the

identity

_ g(a) - g(z)      g(z)

g(a) g(o)

shows that every ideal containing Ma and g contains the constant 1 and hence

the whole ring B(Di). Thus Ma is a maximal ideal of B(Di), which yp maps

onto a corresponding maximal ideal M* of B(D2).

For every fGMa, f/(I-a) GB(Di), so that f*/(<p-a)GB(D2) for every

f*GM£. It follows that/*(w)=0 whenever <p(w)=a, for every f*GMa*. Ii

there were more than one such point wGD2, the ideal ilfa* would not be maxi-

mal. We conclude: for every aGD, there exists precisely one point bGD2 such

that <p(b) =a.

If A is the set of all bGD2 such that <p(b) GD, the fact that D is dense in

Di implies that A is dense in D2, since the analytic function <f> is an open map-

ping. Lemma 6 now shows that <p is schlicht.

Thus 7?3 is conformally equivalent to 7?2; by Lemma 7, 7)3 is maximal.

To complete the proof, choose fGB(Di), aGD, bGD2 such that <p(b) =a.

Then f—f(a) GMa, so that/*— f(a)GMf. But Mf consists of those functions

of B(D2) which vanish at b. Thus f*(b) =f(a), or

(3) f(z) = /*(*-»(«)) (/ G B(Di) ,zGD).

Since <p maps D2 conformally onto Ds, there is a function gGB(D3) such

that

(4) g(z) = f*(4rKz)) (z G Dt).
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The functions/and g coincide in D; thus every fEB(Dx) can be extended to D3.

On the other hand, for every gEB(Di) there is an f*EB(D2) for which

(4) holds; defining f=ip~l(J*), we obtain a member of B(Di) for which (3)

holds; thus every g=B(D3) can be extended to Dx-

Since Dx and D3 are maximal domains, we conclude that Dx=D3. The

theorem follows.

10. Remark. Let us apply Theorem 9 to the case Dx=D2=D, say. Let

$i, ^2 be two direct automorphisms of B(D), and let <j>x, <p2 be the correspond-

ing conformal transformations of D onto itself, in accordance with formulas

(1). Then it is easily seen that the automorphism \f/2ipx corresponds to the

mapping <f>x<j>2, i.e., the mapping taking z into <px((p2(z)). Replacing the auto-

morphisms \p by their inverses, the following is evident:

For every maximal domain D, there is a natural isomorphism between the

group of all direct automorphisms of the ring B(D) and the group of all directly

conformal one-to-one mappings of D onto D.

We now return to our investigation of the properties of essential boundary

points.

11. Theorem. If K* is the set of all essential boundary points of a domain D,

then K* is perfect (if not vacuous). If D* is that component of the complement

of K* which contains D, then D is dense in D*, and D* is the smallest maximal

domain which contains D.

Proof. Theorem 5 shows that D* may be obtained in the following man-

ner: cover every removable boundary point x of D with an open disc Ux

which does not intersect A*; D* is the union of D and these discs Ux. Since

null-sets are totally disconnected, D is dense in D*.

By Lemma 4, every fEB(D) can be extended to D*. Thus there is no

smaller maximal domain containing D. To show that D* is maximal, let x

be a boundary point of D*. Then x is an essential boundary point of D, there

is some fEB(D) which cannot be extended to any neighborhood of x, and

the same is of course true of the extension of/ to D*. Thus x is an essential

boundary point of D*.

Thus D* is maximal, and since isolated boundary points are removable,

A* is perfect (or vacuous).

As a consequence of Theorem 11, Theorem 9 may now be restated as fol-

lows:

12. Theorem. Let Dx* and D* be the smallest maximal domains containing

the domains Dx and D2. If B(Di) and B(D2) are algebraically isomorphic, then

Dx* and D2* are conformally equivalent.

13. Definition. Let x be a boundary point of a domain D, and let/ be

analytic in D. Put Dn = D(~\J(x, 1/n), and let E„ be the closure of /(£>„) (the

range of the restriction of/ to Dn). The set



1955] SOME THEOREMS ON BOUNDED ANALYTIC FUNCTIONS 339

CO

C(f; x) = n En
n-=l

is called the cluster set of / at x.

It is clear that for every wGC(f; x) there is a sequence {z„} such that

ZnGD, z„—►#, and f(z„)-+w as n—»».

If x is an essential boundary point of D, then there is some fGB(D) with

a singularity at x. The question as to how "bad" this singularity can be is

partially answered by our next theorem; the example given at the end of this

paper has its origin in the same question.

14. Theorem. Let x be an essential boundary point of the domain D. There

exists a function f GB(D) whose cluster set at x consists of the entire closed unit

disc, although \f(z) \ < 1 for every zGD.

Proof. Since the set of essential boundary points of D is perfect, there is

a sequence {xn} of distinct essential boundary points such that XnT^x and

xn—*x as m—> oo. Choose {r„} such that no two of the discs T„ = J(xn, rn) inter-

sect and such that Tn contains no point of the interior 7 of K if xn is not a

limit point of 7. Let Kn — Kr\J(x„, rn/3), let G„ be the complement of Kn,

and put dn = D(~\J(xn, r„/2). As usual, K denotes the complement of D.

We shall construct an increasing sequence {nk} of positive integers, and

functions fkGB(Gnk) (k = l, 2, 3, • • • ) such that

(i)  |/*(«)| <1 iorzGGnk,fk(x)=0;

(ii) for some sequence {z,} of points in dnu/fc(z»)—>1 as *—>°° ;

(iii)   \fk(z)\ <2-*-* for zGGnk-Tnk;

(iv)   YLi\fi(z)\ <2-k~2 for zGTnt+1.
Ii xn is not a limit point of 7, choose a nonconstant unGB(Gn) such that

sup I m„(z) | = 1 for zGGn, hence also for zGdn, since dn is dense in G„.

If xn is a limit point of 7, choose y„GI such that | xn — yn\ <rn/6, let pn be

the distance from yn to D, and set m„(z) =pn/(z — yn)-

In either case, let us multiply un by a suitable constant of modulus 1

so as to make un(x) real, and let us define

un(z) - un(x)
Vn(z)   =  - •

1   -   Un(x)Un(z)

Then vnGB(Gn), |»n(z)| <1 in G„, and vn(x) =0; multiplying vn by a suitable

constant of modulus 1, we may further arrange it so that vn(zi)—>1 for some

sequence {z,} in dn.

Now take »i=l, gi=t>i. Having picked »i, • • • , »* and gi, • • • , gk, take

nk+i>nk such that (iv) holds with gt in place of/,- (this is possible since g,-(x)

= 0 and #,—>£), and put gk+i=Vnk+1.

Finally, let fk = (gk)mk, where mk is a positive integer chosen large enough

for (iii) to hold. Then all of the conditions (i) to (iv) are satisfied.
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Next, let E be a countable dense subset of the open unit disc, and let

{wn} be a sequence of complex numbers which contains every member of E

infinitely many times, with the additional requirement that | wn\ <1 —2~n.

The function

f(z) = E wkfk(z) (z E D)
k-X

has the desired properties. By (iii) and (iv) we have, for zEDC\Tnm,

m—X oo

I/(*)I < E I /*(*) I + I »-1 + E I h(z) |
1 m+1

00

< 2--"-1 + 1 - 2-m + E 2-*"1 = 1.

m+1

If zG7J>-r„m for every m, then \f(z)\ < £2-*-1 = l/2. Thus \f(z)\ <1 for

every zED.

Finally, choose zEdn„ such that \fm(z) —1\ <2~m. Then

m—1 oo

| f(Z)   -Wm\     <   Z   I MS) |    +    |   Wm |   ■   | /„(«)   -   1 |    +   E   I /*(«) I     <   2-m+1-
1 m+1

Thus every member of E is in C(f; x); since C(f; x) is evidently closed, the

theorem follows.

15. Theorem. If D is a maximal domain, there exists a function fEB(D)

which has the boundary of D as its natural boundary.

Proof. Suppose, without loss of generality, that D contains the point at

infinity. Let {xn} be a countable dense subset of the boundary of D. The pre-

ceding theorem, applied to each x„, shows that there exist functions fnEB(D)

and points znED such that J/„(z)| <1 in D, /n(°°)=0, \xn — zn\ <l/n,

fn(zn) =an, where a„ is real and

00

E(l   -   0,)   <   «».
n-1

Define

„_i 1 — anfn(z)

By a generalization of Schwarz's lemma, for every closed subset C of D

there is a constant ilf<l such that \fn(z) \ <M on C. For zGC, we have

an-/n(2) 1 + Jtf   ,
1-< - (1   —  On),

1 - anfn(z)       1 - M
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so that the product defining/(z) converges uniformly on C. Since /(z„)=0

and every boundary point of D is a limit point of the set {z„}, the theorem

follows.

16. An example. In view of Theorem 14, one may ask the following ques-

tion: given an essential boundary point x of the domain D and an arc L

which lies in D, except for one of its end points, which is at x, does there exist a

nonconstant function fEB(D) such that (a) f(z) does not converge as z—>x

along L, or, (b) such that \f(z)\  tends to its maximum as z—>x along 7?

It can be shown that if for some x the answer to (b) is affirmative, the

same is true for (a). We shall give an example in which the answers to both

(a) and (b) are negative.

Let {an} be a sequence of distinct points on the positive real axis, con-

verging to zero. Choose {Rn} such that the discs J(a„, Rn) are mutually dis-

joint, let {cn} be a sequence of positive numbers such that c„<l and

OO

E C„/(l — C„) < «,
n=l

where e>0 is given, put rn = cnRn, Vn = J(an, rn), let A consist of the origin

and the union of the Vn's, and let D be the complement of K. Since every

boundary point of every Vn is an essential boundary point of D and the set of

essential boundary points is closed, the origin is an essential boundary point

of D.

Let fEB(D), and suppose |/(z)| <l,/(°°) =0. At almost all points of the

circumference C„ of each Vn, f(z) has well-defined nontangential boundary

values, so that the path of integration in the Cauchy integral formula can be

moved to C„. If we put

■f-to = T^ I    -7^dt (z&Vn),
2irt J c„ t — z

then it is easily verified that

M   =   E/n(z),
71=1

the series converging uniformly in every closed subset of D. Moreover, if

zEGn, where Gn is the interior of J(an, Rn), we have

■K-n   —  r„ 1   —  Cn

If G = UG„, it follows that the series defining f(z) converges absolutely and

uniformly on the complement 77 of G. Thus f(z) is continuous on 77, which

includes the origin, and |/(z) | ^ e on 77.
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If L is now any arc in 77, with one end point at the origin, then lim/(z)

exists as z—»0 along L, and does not exceed e in absolute value. This is so even

if the cluster set of/at 0 consists of the entire unit disc.
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