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1. The class of functions/(z), which are analytic and bounded, \f(z)\ <1,

in the unit circle U: \z\ <l and which have radial limit values of modulus 1

for almost all points e'9 of \z\ =1 is well known; for literature and general

properties of these functions we refer the reader to the papers of W. Seidel

[16] and A. J. Lohwater [lO]. Some of the results mentioned in these papers

can be obtained from general theorems in the theory of cluster sets of func-

tions analytic in U (cf. [4] and [13]). In recent papers Lohwater [9; 10; 11 ]

has extended the concept of this class to functions which are meromorphic in

U and whose moduli have radial limit 1 for almost all points of some arc A

of \z\ =1. In particular, we cite the following result [10; ll]: If/(z) is mero-

morphic in \z\ <1 with at most a finite number of zeros and poles and if

limr^i|/(rei9)| =1 for almost all eu belonging to an arc A of \z\ =1, then,

unless/(z) is analytic on A, there exists at least one curve (called an asymp-

totic path) terminating at a point of A along which f(z) tends either to 0 or

oo. If, in addition,/(z) is of bounded characteristic in \z\ <1, there exists at

least one radius having this property.

In the present paper, we are motivated by Lohwater's results to define

new boundary cluster sets of functions analytic in U and taking values on an

abstract Riemann surface 9t, and to establish relations between the cluster

sets and the asymptotic values of the functions.

2. We begin with the definition of boundary points of an abstract Rie-

mann surface 9t. Let g be a class oi filters such that each filter has a base con-

sisting of open sets of 5R which have no accumulation points on 9t. Further-

more we assume that of any two open sets of a base, one is contained in the

other; that is, we have a nested base. We obtain a countable sub-base {Gn}

from the base if we take an exhaustion {9?n}, 3tnC9?n+i, with compact clo-

sures, and if we choose an element G„ of the base so that G„P\9t„ = 0 for each

n. For, given any element G of the base, there is an 3t„ such that $R„P\G^0

and this shows G„GG. Each filter of g is defined to be a boundary point of 9c,

and we denote the set of all such boundary points by ^iR- Let Pf be a point

of gs with a base {G„}, and let {Pr} be a sequence of points of St-f^iR- If

for each n there exists an integer Vo such that every P„ v^v0, or some domain

of its base, is contained in Gn, we say that P, converges to Pp. We keep the

original definition of the convergence of points of 9c. Thus we obtain a topol-
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ogy for the space Sft + Sat. Boundary points obtained by the completion with

respect to a metric in $R can be reinterpreted in the way above. The ramified

boundary points and geodesic boundary points in [2 ] are examples.

3. Let/(z) be an analytic function defined in U: \ z\ <1 and taking values

on an abstract Riemann surface 9t (with boundary ^jr if 9t is open). For any

set EEU and any point z0 on C: \z\ = 1 we define the cluster set S^f at z0

along E to be the set of all values of JR + ^sn, for each point P of which there

exists a sequence of points {zn} of E tending to z0 such that/(z„)—>P as

n—»oo (2). We shall write S,0 for S^1, and TH for the cluster set along the radius

Oz0.

Let {A„} be an open base of 9t, and z0 a point of C. If, for a given integer

n, there exists at least one open arc C„ containing z0 such that the inner linear

measure of the set {zECn; zt^Zo, TIC\Kn9£0} =C„ (which may be empty)

is zero(3), we define A* by setting it equal to A„; otherwise we put K* = 0.

Denote the set C — U»C^ — z0 by C*, where the summation U, is taken over

all n, for which K*r = A„„. Next we take an open base {Ka} (this is not counta-

ble in general) of 9? + r5« and define K* in a similar way. We shall denote

the set 9t + rjW — U«A* by STzr This set is clearly a closed set in SR + ftiR and

may be considered as a sort of boundary cluster set(*).

Let us denote the intersection of any set X with the circle [ z — z0| <p by

Xp. The cluster set STH has a minimal property in the following sense: Taking

any set HEC, z0EH, of linear measure zero, forming the closure Mf'^ of

U^c-i/),^, and denoting O^oMf'^ by STica~H), we have the relation

STHEST%-H). The set M^P will be used in the following Theorem 2.

If f(z)—^PGSt + SiR along a curve in U terminating at z0, this curve is

called an asymptotic path and the value P an asymptotic value. The set of

points on 9t taken in any neighborhood in U of z0 is called the range of values

and denoted by RZ(i.

4. We first prove the following lemma.

Lemma. Let T be a continuous transformation of U into a topological space

X. Let A be a domain in U whose image under T is contained in a closed set F in X

and, for almost all eieEAbr\C, where Ab is the boundary of A, let the image of

some end-part of the radius 0eie be contained in a closed set F', disjoint from F.

If there exists a continuous real-valued function g(P) in X which assumes the

value 0 on F and 1 on F', then m(Ahr\C) =0.

Proof. We denote by G(z) the function obtained by composing the trans-

formation T with g(P). By our assumption linwCf/e'') = 1 at almost all

points eie of Ahr\C. By Egoroff's theorem, for any integer p there exists a

(*) If SR+SjR is compact, S™ is never empty whenever z0 belongs to the closure of E.

(3) By means of the theory of functions of real variables, it can be proved that the set C'n

is linearly measurable. However, the set corresponding to Ka may be nonmeasurable in general.

(4) We used an idea in [4] in the definition of ST,0.
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closed subset Ep of Abr\C such that m(Ahr\C-Ep)<l/p and G^e") tends to

1 uniformly for euGEP. Thus we can find fi<l such that G(z)> 1/2 on the

set Y= {reie;ri<r<l, e^GEp}. We decompose the complement of 7 with

respect to the annulus: fi<f <1 into components {75„} (n = l, 2, • • • )• Let

{Bni} be the components which have points in common with A. Then its

number is finite: t==l, 2, • • • , k. To prove this, suppose that there are an

infinite number of {Bni} having points in common with A. Since A is a do-

main, we can connect a point of Bnif\A with a point of each 7Jn>.nA (i^2)

by a curve inside A. This curve must cross the boundary arc of every Bni on

the circle: \z\ =rx. Any point of accumulation of these points of intersection

is a boundary point of A, and, at the same time, a point of Y. This is impos-

sible because, by the continuity of G(z), G(z)=0 on the closure of A and

G(z)> 1/2 on 7. Therefore AhC\C is contained in (U<t.173Bi)5P\C. The linear

measure of that part of Abf~}C lying in the open intervals of (UJ.,17Jni.)*r>\C

has the same value as m(Ahr\C). But this part is the set AhC\C—Ep which

has linear measure less than l/p. Hence m(Ah(~\C) <l/p. Since p is an arbi-

trary integer we see that m(Abr^C) =0.

5. Our theorems are

Theorem 1. Let f(z) be an analytic function defined in U and taking values

on an abstract Riemann surface 9c (with boundary g« if 9t is open). Then a

point Po of S,„ — STt„ — 7?I0 is an asymptotic value at z<> or at points z„ of C

tending to z0 if there exists a path in 9cnSiro converging to Po-

Theorem 2. Let f(z) be the same function as in Theorem 1. A point P0 of

the set STZ(l — RZo is an asymptotic value at Zo or at points zn tending to z0 if

(i) there exists a number p>0 such that there is a path in 9tn(5l0 — Mf^)

converging to Po, and if

(ii) the set of points on \z\ =1 where the radial cluster sets Tz do not contain

Po is everywhere dense in a certain open arc C'GC containing z0.

We shall prove Theorem 2 for PGiStt. The proof for the case P£9c and

the proof of Theorem 1 are easily obtained by modifying the proof given

below.
Let L be the path in dtr\(Sz„ — Mf^), converging to P0. We form two

paths on each side of L and close enough to L that the domain D between

them is contained in 9c — Mf'\ Let {G„} be a nested countable base of the

filter defining P0 and let Dn be that component of the intersection of G„ with

77> which contains an end-part of L. Obviously, 7)077>0 • ■ • —►Po-

We take two points Zi and z2 on C near z0 so that arg Zi<arg z0<arg z2,

\zq — Zi| <p and |z0 — z2\ <p, and such that TzlVJTlt does not contain P0.

Let r'<l be a number sufficiently near 1. Denote the sector {re*; r'<r<1,

arg Zi<0<arg z2} by Q and its boundary inside U by q. We may assume

that the image of q lies outside some neighborhood of P0. The inverse image of

Dn in Q is not empty since LQSH. For n sufficiently large, some component,
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say An, together with its closure, has no common point with q.

Suppose that, in A„,/(z) does not assume values of Dn+x- Then the closure

of the image/(A„) of An is compact in 3£, and for almost all z of C„ the radial

cluster sets Tz lie outside the closure of/(A„). Then by our lemma, the meas-

ure m(At„r\C)=0, the continuous function g(P) of the lemma being defined

by the aid of a metric in Sft. Therefore the harmonic measure of A„C\C with

respect to A„ is zero. We take a small compact Jordan domain A0 inside

Dn+i and form a harmonic measure function of the boundary of A0 in the

domain Dn—A0. If we regard this function as a function defined in A„, it has

boundary value 0 except for points of AjHC which has harmonic measure

zero. By the maximum principle this function must be the constant zero,

which is a contradiction.

Thus we have shown that f(An)r\Dn+i 9*0. Consider the inverse image

of Dn+x in A„ and let An+i be any component of the image. We can show as

above that f(A„+x)r\Dn+29i0. In this manner we obtain a sequence of do-

mains A„DAn+0 • • • where f(Ak) EDk (k = n, » + l, • • ■ ). Taking a point

z* in A* and connecting it with any point z*+i of A*+i by a curve in Ak, we get

a path I in Q along which f(z)—*P0. By assumption (ii) (we may suppose

that the arc ZiZ2 is contained in C), I terminates at a single point of | z| =1.

Since Q may be taken arbitrarily near z0 the conclusion of Theorem 2 is ob-

tained.

Remark. If we allow a path to oscillate, we may infer the existence of such

a path with asymptotic value P0 in any neighborhood of z0, with the following

condition replacing (ii):

(ii') there exist points f on | z| = 1 on both sides of z0 and arbitrarily close

to z0 such that Po does not belong to 7f. If we assume only (i), then we know

that either there is a path (which may oscillate) in any neighborhood of z0,

or there is a sequence of curves which accumulate on a closed arc containing

z0, such that/(z)—>P0 uniformly along these curves(6).

6. In the theory of cluster sets the difference between a cluster set such as

Sz„ and a boundary cluster set such as STH is an open set. In the case of an

abstract Riemann surface, it is not generally true that SH — STZ„ is an open

set in 9? + Ssr. On the one hand, suppose that there is a point PoE^JtC\((Sz<l)h

— STZ0). Since STH is a closed set, there is a domain G on 5ft, containing P0

and with compact closure corresponding to a parametric circle | co | ^ 1, such

that GC\STH = 0. We denote the open set which is the inverse image in U

of G by A, and its boundary by 5. It follows from the lemma that, if we take

a part H of bC\C sufficiently near z0, its linear measure, and hence its relative

harmonic measure with respect to A, is zero. The cluster set Szf of the com-

posed function co(/(z)) contains the point co = 0 but does not coincide with the

whole | co j 2» 1, and the boundary cluster set 5^_fl) (this is defined by setting

(•) This fact is expressed by the notation Po£*(/) «n [6].
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E = 5—Hin Sz^ of §3) is contained in |w| =1. This fact contradicts the fol-

lowing theorem which is easily deduced from a theorem in M. Brelot [l]:

Let A be an open set with boundary 5 in the z-plane, z0 a nonisolated bound-

ary point of A, 77 a subset of 5, containing z0, of relative harmonic measure

zero with respect to A, and/(z) analytic in A and on 5 —77. Then the difference

between the cluster set Sj£* and the boundary cluster set Si*_H) is an open set.

We state our result in

Theorem 3(6). Under the assumption of Theorem 1, 9cO (SH — STH) is an

open set.

On the other hand, however, we shall show that Sz„ — STZa is not neces-

sarily open. Let 9? be the circle | w\ <l and suppose that %% consists of only

one point w0 on \w\ =1. Let f(z) be the identity function: w = z (w0 = z0).

Then SZo= {w0} but STZo = 0, so that Sz„ — STZ„= {w0} is a closed set.

7. We shall discuss next some special cases of Theorems 1 and 2. Suppose

first that/(z) possesses a radial limit almost everywhere on an open arc A of

| z| = 1 containing z0. Then STZo is the intersection of the closures of certain

sets of such limit values. For instance, if the range of values T?,0 is compact

relatively in 9c and does not cover a set of positive logarithmic capacity, f(z)

has this property(7).

We have next the following corollary to Theorem 1:

Corollary 1(8). Let RZt) be conformally equivalent neither to the Riemann

sphere punctured at most two points nor to a torus. Then any value P0 of 9c be-

longing to Sz0 — STZo — RZo is a radial limit either at z0 or at points zn tending to z0.

First we observe that there is a path in 9cnS*0 terminating at P0 since a

neighborhood of P0 is contained in SZ0 by Theorem 3. By Theorem 1 we can

then obtain a path terminating at a point z' of C near z0, with the asymptotic

value P0. We can prove by the generalization of Lindelof's theorem that f(z)

has the same asymptotic value P0 along the radius with the end point z'.

We consider the class of functions studied by Lohwater [ll]: A function

f(z), meromorphic in \z\ <1, is said to belong to class (U*) if there exists an

arc A of C such that limr<i|/(rei9)| =1 for almost all ew of A.

Corollary 2 [10; ll]. Let w=f(z) be a function of class (£/*). If f(z) is
not analytic on the arc A and if it possesses at most a finite number of zeros and

poles in a neighborhood of A, then there exists at least one curve, terminating at

a point of A, along which f(z)—*0 or =o.

From an extension of Schwarz's symmetry principle [4] it follows that,

at any singular point z0 oi A, at least one of 0 and oo belongs to Sz„. Since

(*) This was proved in [4] and [13] in the case when 5R is the extended w-plane.

(7) See Theorem 3.3 in [14].

(*) The case when R is the whole plane and S,0 is not was discussed in [13].
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ST!oE {\w\ = 1}, and since SH — STtfj is an open set by Theorem 3, the as-

sumptions of Theorem 1 are satisfied for P0 = 0 or oo ; hence Corollary 2 is

established.

In connection with Theorem 2, we remark that if A%0 satisfies the condi-

tions of Corollary 1, it cannot happen that f(z) tends to a value in 9t uni-

formly on a sequence of curves accumulating on an arc of C near z0. Therefore

for such a function condition (ii) in Theorem 2 is not necessary if the point

Po belongs to 9?. However, we do not know whether condition (ii) is necessary

in general, even for the functions of class (t/*)(9), although condition (i) is

fulfilled for these functions.

We shall prove

Corollary 3 (Calderon-DomIngues-Zygmund [3], cf. also [8]). Let

w=f(z) be a bounded analytic function defined in \z\ <1. Let f(z) have a radial

limit of modulus one almost everywhere on an arc A of C. Then if f(z) is not

analytic on A, every value of \w\ =1 is a radial limit at infinitely many points

of A.

Let ZaEA be a singular point. By Theorem 2 and Lindelof's theorem any

point w of \w\ =1 is the radial limit at z0 or at z„ tending to z0. If such {zn}

exists, the corollary is already proved. Also if there are singular points on C

tending to z0, then our corollary follows. Hence suppose that/(z) were analytic

on C near z0, except at z0, and f(z) 9*w there. In this situation/(z) would have

limit values Wx and w2 respectively as zEC moves toward z0 from both sides.

Since/(z) is bounded, Wx = w2 and f(z) would tend to this value uniformly

as z approaches z0 from the inside of U by Lindelof's theorem. Then/(z) would

be analytic at z0 and this is a contradiction. Thus the corollary is proved.

8. In this section we shall consider mermorphic functions of bounded

characteristic. Such a function has radial limit almost everywhere, and the

set of points of C where the function has the same radial limit has linear

measure zero by Riesz-Nevanlinna's theorem. Therefore condition (ii) of

Theorem 2 is not necessary. However, we can show by an example that at a

point where an asymptotic path terminates, the function does not always

have a radial limit of the same value. We know that this is true for a mero-

morphic function with at least three exceptional values. Hence let us remark

that the following theorem is not a special case of Corollary 1 if and only if

f(z) omits only two values.

Theorem 4. Let w=f(z) be a meromorphic function of bounded character-

istic in U, and suppose that it does not take two values w0 and wx near a point

z0of \z\ =l.Ifw0 belongs to SH — STH, then w0 is a radial limit at za or at points

zn tending to z0.

(') In a recent letter Professor Lohwater remarked to the author that his unpublished proof

of the first part of [9] is not complete and that that aspect of the question is still open.
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Proof(10). Without loss of generality we may suppose that w0 = 0, Wi= oo.

and STZlt lies outside \w\ ^1. Then/(z) has a representation (see [12])

Oi(z) f 1    r2T e* + z 1
/(*) = —77 exp   —I      —-dp(<j>) + i\\,

02(z) L 2ir J o    e* - z J

where fii(z) and Q2(z) are finite Blaschke products, X is a real constant, and

p($) is a function of bounded variation in [0, 2t] such that p(6) = {p(d+)

+p(8 — ) }/2. In order to prove our theorem it is sufficient to prove that

1   r 2x l-r2
m(z) = — I      -dp(<p) (z = reie)

2-kJo     l+r2 - 2r cos (<f> - 6)

tends to — oo along a radius at z0 or at a point arbitrarily near z0.

Let Cp be an arc such that the set ■Mpc*) defined in §3 lies outside \w\ ^ 1,

and let us decompose u(z) into the integral Mi(z) on C„ and the integral u2(z)

on its complement.

We denote the set function corresponding to p(d) by p*(X). Then by de

la Vallee Poussin's decomposition theorem (see [15, p. 127]) we have

p*(X) = p*(Xn £+J + p*(X r\ £_) + f /(*)<*(*)
«/x

for any Borel set X consisting of points of continuity of p(0), where E+x and

£_M represent the sets of points at which p(6) has derivatives equal to +'oo

and — oo respectively. According to Fatou's theorem, u(reie)^p'(6) as f—*1

for almost all 6. By hypothesis, [_/*(re**) | =exp [M(re'9)] tends to exp [p'(9)]>l

as f—»1 for almost all eie of C„. Hence p'(6) >0 for almost all e" of Cp. Now it is

a result of Lohwater [10, Lemma] that if there is a negative jump of p(6)

on C, u(z) tends to — oo radially at this point. We now suppose that p(9)

has no negative jump on C„. Let 7 be any Borel subset of Cp which does

not contain points of discontinuity of p(6). If E-X(~\CP = 0, then the positive-

ness of p*( 7) follows from the above equality because p*( YC\E+^) is always

non-negative (see lemma in [15, p. 126]). Let X be any Borel subset of C„,

and {an} be the points of discontinuity of p(0) on X; {an} coincide with the

jumps of p(d). Then p*(X) =p*(X— {an})+ X)«M*(«n) and p*(an) is equal to

the saltus at a„. Since both terms of the right side are positive, ju*(X)>0.

Therefore Mi(z)>0 and hence u(z)>m> — oo near z0. Hence \f(z)\ >mi>0

near z0. This contradicts the assumption that 0GSz„. Thus there is at least

one point eu of £_M on Cp. At this point m(z) has a radial limit — ». On ac-

count of the arbitrariness of Cp, the theorem is concluded.

As mentioned in §1, a special case of this theorem was proved in [10].

Whether the existence of WiGRz„ in our theorem is necessary or not is not yet

determined. Also notice that we have no such result corresponding to Theo-

(10) The writer owes the idea of the proof to [10].
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rem 2.

9. In order to determine more completely the asymptotic values of an

analytic function, we shall define a smaller boundary cluster set. Up to now

we have used the radial cluster set Tzo to define the boundary cluster set STH.

In many cases the set TZo is too large; we shall find it more suitable to use,

instead, the set TH of all asymptotic values at z0, in some cases.

Let/(z), {A„}, {A„} and z0 be the same as in §3. We shall use the same

notation as in §3, whenever it causes no confusion. If, for a given integer n,

there is an open arc C„ containing z0 such that the inner linear measure of the

set {zEC„; Z9^z0, Tzr\Kn9^0} =C'n is zero, we define A* by Kn; otherwise

we set A* = 0. We denote the set C— \iyC'nt — Za by C*, where the summation

U„ is taken over all «„ for which K*r = Kn„. We define A* in a similar fashion

for {Ka} and set STZI> = 9? + gst - UaA*. This set STl0 is the smallest set in the

following sense: Let HEC, z0EH, be a set of linear measure zero, and denote

the closure of U,<= iC-B),T, by Nf-H) and the intersection fVoA7<pc"ff) by ST®-^.
Then 5r,0C5Tif-fl).

The following theorems correspond respectively to Theorems 1 and 2:

Theorem 5. Let f(z) be an analytic function defined in \z\ <1 and taking

values of an abstract Riemann surface 9t (with boundary JJfR if 9t is open). Then

a point Pa of Szo — Srzo — RZo is an asymptotic value either at z0 or at points z„

tending to za if (i) there exists a path in dir\Sz<> converging to Pa, and if (ii) there

exists a set E of points on \z\ =1, dense in some neighborhood of z0, such that,

for each fGA, there is a path If on \z\ <1 terminating at f with the property

that the cluster set of f(z) along \ does not contain P0.

Theorem 6. Letf(z) be the same as in Theorem 5. A point P0 of Srzo—RH

is an asymptotic value either at z0 or at points zn tending to z0 if (i) there exists a

path in $tr\(SZo — A7*0*') converging to P0, where p is a certain positive number,

and if condition (ii) of Theorem 5 is satisfied.

Notice that condition (ii) is required even in Theorem 5. If we lift this

requirement in Theorems 5 and 6, then the same remark as in §5 is given.

The proofs for these theorems are similar to but simpler than those for

Theorems 1 and 2 and are omitted here. We shall explain Theorem 5 in a spe-

cial case.

Let w=f(z) be a meromorphic function defined in \z\ <1 and suppose that

f(z) omits at least three values in a certain neighborhood of a point z0 on \z\

= 1. Then the points of \z\ =1 which have radial limits are everywhere dense

in an open arc containing z0 (see [5] and [13]). Therefore condition (ii) of

Theorem 5 is not necessary. If SZo is the whole w-plane, condition (i) in Theo-

rem 5 is clearly fulfilled, while, if Szo is not the whole w-plane, Theorem 5 is

contained in Theorem 1. Therefore, for our function f(z), Theorem 5 may be

stated without conditions (i) and (ii) (this theorem was stated in [13]). The
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modular function shows that Theorem 5 is not contained in Theorem 1.

We remark that 9cH(SH — STH) is an open set. This is trivial if 9cC^0,

and if 9c(T_S*0 then dir\STzll = dir\STH(11) and our assertion follows from

Theorem 3.

10. Finally we shall examine the assumptions of Theorems 1 and 2. Let

9c be a simply-connected domain in the w-plane which spirals down on w = 1

from the outside and suppose that \$w consists of only one point w0 of w =1

with the ordinary topology. We map 9c onto \z\ <1 and denote by Zo the

point on \z\ =1 which corresponds to w0. Then Sz„= {w0} and STz„ = 0.

Clearly w0 is never an asymptotic value; here, the condition in Theorem 1 is

not satisfied. However, if we take PoGSzo — STZ0 in 9c, then the required

curve is obtained by Theorem 3.

The following examples show that condition (i) is necessary in Theorem

2 even if we take the point P0 in 9c.

Example 1. Take the circles Uw: |w|<l and 7„: \w—l\^l/n

(n=l, 2, ■ ■ • ). Set Uw— Vn = Gn and connect G„ and Gn+i by a small strip

domain Sn near the point w= — 1 so that Sn—>— 1 as n—><*>(12) and Gi\JSi

\JG2\JS2*U ■ ■ • is a simply-connected Riemann surface 9ti. Map 9ti onto

U: \z\ <1 conformally. Then by Koebe's theorem the image of Sn and hence

the image of G„ tends to a point, say za, of C: \z\ =1, and z0 is the only point

which is not an image of any boundary point of {Gn} and {Sn}. For the func-

tion w=f(z) mapping U into the w-plane through 9ci, the cluster sets are

SZo = {| w | g 1} and STZ0 = STZ0 = {\ w \ = 1}. The point w = 1 is neither taken

by/(z) nor is an asymptotic value; the path which is required in (i) of Theo-

rem 2 actually does not exist.

Example 2(13). We shall construct a similar example in which w=l is

the only one exceptional value (i.e. 7?20= {wy±\ }). Let { Vn} be the same as

in the first example. Let us set An= {\w\ <l+l/w} — 7„ and 75„= { |w\ >1

— 1/m} — Vn, and let us connect An with Bn by a strip Sn and T3„ with An+i

by a strip S„ so that these strips Sn and S„ tend to w= — 1 as n—><» and

A-XJS-XJBiyJS'^KJA^JS^Bi ■ ■ ■ is a simply-connected Riemann surface

9?!. We map 9ci onto U conformally and denote the function corresponding

to the mappings U—»9ci—>the w-plane by f(z). We shall construct {Sn} so

that the z-images of An, Bn, Sn, and S„ tend to a point of C as n—»oo.

Suppose that each Sn contains a part S* which is mapped conformally

onto a rectangle: 0<M<an, 0<v<bn such that the sides with length o„ cor-

respond to a part of the boundary of 9ci. Consider, on S*, the function which

maps 9ci onto U, we transform it into the function defined on the rectangle

and denote it by z = g(u+iv). This is a schlicht function, and we have, by

Schwarz's inequality,

(u) We can prove this as for Theorem 3.3 of [14].

(u) For instance, take the part of l/» + l<|io-r-l| <l/n outside U„ as S„.

(13) The writer owes some technique in the construction of this example to [7].
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U"n    f bn \   2
J      | g'(u + iv) I dudv\

- { f " f ' f'(M + "^ NMrf4 { f " f "dudv\ ■

If the images of An, Sn, Bn, and Sn do not tend to a point, they must tend to

some arc, say Ziz2. Then, denoting the area of the image of Sn by sn, we get

from the above inequality

(| zx - z2\ -an)2 g sn-anbn

whence

0 <  | zx - zt \2 g snbn/an.

Since s„—>4) as n—>■ oo, there arises a contradiction if we assume bn/an <M<<x>.

Therefore under the assumption that S„ contains such a part 5* (this means

that 5* is "narrow") it is proved that A„, Sn, Bn, and SI, tend to a point,

say Za, of C. In this example w=l is the only one exceptional value and

STz„ = STZll coincides with \w\ =1. The point w=l is not an asymptotic

value; actually condition (i) in Theorem 2 is not fulfilled(u).

Whether condition (ii) in Theorem 2 is really necessary or not is not yet

known, as already stated in §7.
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