ON ASYMPTOTIC VALUES OF FUNCTIONS ANALYTIC IN A CIRCLE(1)

ву MAKOTO OHTSUKA

1. The class of functions f(z), which are analytic and bounded, |f(z)| < 1, in the unit circle U: |z| < 1 and which have radial limit values of modulus 1 for almost all points $e^{i\theta}$ of |z|=1 is well known; for literature and general properties of these functions we refer the reader to the papers of W. Seidel [16] and A. J. Lohwater [10]. Some of the results mentioned in these papers can be obtained from general theorems in the theory of cluster sets of functions analytic in U (cf. [4] and [13]). In recent papers Lohwater [9, 10, 11] has extended the concept of this class to functions which are meromorphic in U and whose moduli have radial limit 1 for almost all points of some arc A of |z| = 1. In particular, we cite the following result [10; 11]: If f(z) is meromorphic in |z| < 1 with at most a finite number of zeros and poles and if $\lim_{r\to 1} |f(re^{i\theta})| = 1$ for almost all $e^{i\theta}$ belonging to an arc A of |z| = 1, then, unless f(z) is analytic on A, there exists at least one curve (called an asymptotic path) terminating at a point of A along which f(z) tends either to 0 or ∞ . If, in addition, f(z) is of bounded characteristic in |z| < 1, there exists at least one radius having this property.

In the present paper, we are motivated by Lohwater's results to define new boundary cluster sets of functions analytic in U and taking values on an abstract Riemann surface \Re , and to establish relations between the cluster sets and the asymptotic values of the functions.

2. We begin with the definition of boundary points of an abstract Riemann surface \Re . Let \Re be a class of filters such that each filter has a base consisting of open sets of \Re which have no accumulation points on \Re . Furthermore we assume that of any two open sets of a base, one is contained in the other; that is, we have a nested base. We obtain a countable sub-base $\{G_n\}$ from the base if we take an exhaustion $\{\Re_n\}$, $\overline{\Re}_n \subset \Re_{n+1}$, with compact closures, and if we choose an element G_n of the base so that $G_n \cap \Re_n = \emptyset$ for each n. For, given any element G of the base, there is an \Re_n such that $\Re_n \cap G \neq \emptyset$ and this shows $G_n \subset G$. Each filter of \Re is defined to be a boundary point of \Re , and we denote the set of all such boundary points by \Re_n . Let P_F be a point of \Re_n with a base $\{G_n\}$, and let $\{P_r\}$ be a sequence of points of $\Re + \Re_n$. If for each n there exists an integer ν_0 such that every P_r , $\nu \geq \nu_0$, or some domain of its base, is contained in G_n , we say that P_r converges to P_F . We keep the original definition of the convergence of points of \Re . Thus we obtain a topol-

Received by the editors October 13, 1953.

⁽¹⁾ This work was done at Harvard University under Contract N50ri-07634, NR043-046, with the Office of Naval Research.

ogy for the space $\Re + \Im_{\Re}$. Boundary points obtained by the completion with respect to a metric in \Re can be reinterpreted in the way above. The ramified boundary points and geodesic boundary points in [2] are examples.

3. Let f(z) be an analytic function defined in U: |z| < 1 and taking values on an abstract Riemann surface \mathfrak{R} (with boundary $\mathfrak{F}_{\mathfrak{R}}$ if \mathfrak{R} is open). For any set $E \subset U$ and any point z_0 on C: |z| = 1 we define the *cluster set* $S_{z_0}^{(E)}$ at z_0 along E to be the set of all values of $\mathfrak{R} + \mathfrak{F}_{\mathfrak{R}}$, for each point P of which there exists a sequence of points $\{z_n\}$ of E tending to z_0 such that $f(z_n) \to P$ as $n \to \infty$ (2). We shall write S_{z_0} for $S_{z_0}^{(U)}$, and T_{z_0} for the cluster set along the radius Oz_0 .

Let $\{K_n\}$ be an open base of \mathfrak{R} , and z_0 a point of C. If, for a given integer n, there exists at least one open arc C_n containing z_0 such that the inner linear measure of the set $\{z \in C_n; z \neq z_0, T_z \cap K_n \neq \emptyset\} = C'_n$ (which may be empty) is zero(3), we define K_n^* by setting it equal to K_n ; otherwise we put $K_n^* = \emptyset$. Denote the set $C - \bigcup_{\nu} C'_{n_{\nu}} - z_0$ by C^* , where the summation \bigcup_{ν} is taken over all n_{ν} for which $K_{n_{\nu}}^* = K_{n_{\nu}}$. Next we take an open base $\{K_{\alpha}\}$ (this is not countable in general) of $\mathfrak{R} + \mathfrak{F}_{\mathfrak{R}}$ and define K_{α}^* in a similar way. We shall denote the set $\mathfrak{R} + \mathfrak{F}_{\mathfrak{R}} - \bigcup_{\alpha} K_{\alpha}^*$ by ST_{z_0} . This set is clearly a closed set in $\mathfrak{R} + \mathfrak{F}_{\mathfrak{R}}$ and may be considered as a sort of boundary cluster set(4).

Let us denote the intersection of any set X with the circle $|z-z_0| < \rho$ by X_ρ . The cluster set ST_{z_0} has a minimal property in the following sense: Taking any set $H \subset C$, $z_0 \in H$, of linear measure zero, forming the closure $M_\rho^{(C-H)}$ of $\bigcup_{z \in (C-H)_\rho} T_z$, and denoting $\bigcap_{\rho > 0} M_\rho^{(C-H)}$ by $ST_{z_0}^{(C-H)}$, we have the relation $ST_{z_0} \subset ST_{z_0}^{(C-H)}$. The set $M_\rho^{(C^*)}$ will be used in the following Theorem 2.

If $f(z) \to P \in \Re + \Im R$ along a curve in U terminating at z_0 , this curve is called an asymptotic path and the value P an asymptotic value. The set of points on \Re taken in any neighborhood in U of z_0 is called the range of values and denoted by R_{z_0} .

4. We first prove the following lemma.

LEMMA. Let T be a continuous transformation of U into a topological space X. Let Δ be a domain in U whose image under T is contained in a closed set F in X and, for almost all $e^{i\theta} \in \Delta^b \cap C$, where Δ^b is the boundary of Δ , let the image of some end-part of the radius $Oe^{i\theta}$ be contained in a closed set F', disjoint from F. If there exists a continuous real-valued function g(P) in X which assumes the value 0 on F and 1 on F', then $m(\Delta^b \cap C) = 0$.

Proof. We denote by G(z) the function obtained by composing the transformation T with g(P). By our assumption $\lim_{r\to 1} G(re^{i\theta}) = 1$ at almost all points $e^{i\theta}$ of $\Delta^b \cap C$. By Egoroff's theorem, for any integer p there exists a

⁽²⁾ If $\Re + \Re_{\Re}$ is compact, $S_{z_0}^{(E)}$ is never empty whenever z_0 belongs to the closure of E.

⁽³⁾ By means of the theory of functions of real variables, it can be proved that the set C'_n is linearly measurable. However, the set corresponding to K_{α} may be nonmeasurable in general.

⁽⁴⁾ We used an idea in [4] in the definition of ST_{ϵ_0} .

closed subset E_p of $\Delta^b \cap C$ such that $m(\Delta^b \cap C - E_p) < 1/p$ and $G(re^{i\theta})$ tends to 1 uniformly for $e^{i\theta} \in E_p$. Thus we can find $r_1 < 1$ such that G(z) > 1/2 on the set $Y = \{re^{i\theta}; r_1 < r < 1, e^{i\theta} \in E_p\}$. We decompose the complement of Y with respect to the annulus: $r_1 < r < 1$ into components $\{B_n\}$ $(n = 1, 2, \cdots)$. Let $\{B_{n_i}\}$ be the components which have points in common with Δ . Then its number is finite: $i=1, 2, \dots, k$. To prove this, suppose that there are an infinite number of $\{B_{n_i}\}$ having points in common with Δ . Since Δ is a domain, we can connect a point of $B_{n_i} \cap \Delta$ with a point of each $B_{n_i} \cap \Delta$ $(i \ge 2)$ by a curve inside Δ . This curve must cross the boundary arc of every B_{n_i} on the circle: $|z| = r_1$. Any point of accumulation of these points of intersection is a boundary point of Δ , and, at the same time, a point of Y. This is impossible because, by the continuity of G(z), G(z) = 0 on the closure of Δ and G(z) > 1/2 on Y. Therefore $\Delta^b \cap C$ is contained in $(\bigcup_{i=1}^b B_{n_i})^b \cap C$. The linear measure of that part of $\Delta^b \cap C$ lying in the open intervals of $(\bigcup_{i=1}^k B_{n_i})^b \cap C$ has the same value as $m(\Delta^b \cap C)$. But this part is the set $\Delta^b \cap C - E_p$ which has linear measure less than 1/p. Hence $m(\Delta^b \cap C) < 1/p$. Since p is an arbitrary integer we see that $m(\Delta^b \cap C) = 0$.

5. Our theorems are

THEOREM 1. Let f(z) be an analytic function defined in U and taking values on an abstract Riemann surface \Re (with boundary \Re if \Re is open). Then a point P_0 of $S_{z_0} - ST_{z_0} - R_{z_0}$ is an asymptotic value at z_0 or at points z_n of C tending to z_0 if there exists a path in $\Re \cap S_{z_0}$ converging to P_0 .

THEOREM 2. Let f(z) be the same function as in Theorem 1. A point P_0 of the set $ST_{z_0} - R_{z_0}$ is an asymptotic value at z_0 or at points z_n tending to z_0 if

- (i) there exists a number $\rho > 0$ such that there is a path in $\Re \cap (S_{z_0} M_{\rho}^{(C^*)})$ converging to P_0 , and if
- (ii) the set of points on |z| = 1 where the radial cluster sets T_z do not contain P_0 is everywhere dense in a certain open arc $C' \subset C$ containing z_0 .

We shall prove Theorem 2 for $P \in \mathfrak{F}_{\mathfrak{R}}$. The proof for the case $P \in \mathfrak{R}$ and the proof of Theorem 1 are easily obtained by modifying the proof given below.

Let L be the path in $\Re \cap (S_{z_0} - M_{\rho}^{(C^*)})$, converging to P_0 . We form two paths on each side of L and close enough to L that the domain D between them is contained in $\Re - M_{\rho}^{(C^*)}$. Let $\{G_n\}$ be a nested countable base of the filter defining P_0 and let D_n be that component of the intersection of G_n with D which contains an end-part of L. Obviously, $D_1 \supset D_2 \supset \cdots \longrightarrow P_0$.

We take two points z_1 and z_2 on C near z_0 so that arg $z_1 < \arg z_0 < \arg z_2$, $|z_0-z_1| < \rho$ and $|z_0-z_2| < \rho$, and such that $T_{z_1} \cup T_{z_2}$ does not contain P_0 . Let r' < 1 be a number sufficiently near 1. Denote the sector $\{re^{i\theta}; r' < r < 1, \arg z_1 < \theta < \arg z_2\}$ by Q and its boundary inside U by Q. We may assume that the image of Q lies outside some neighborhood of Q0. The inverse image of Q1 in Q2 is not empty since Q3. For Q3 sufficiently large, some component,

say Δ_n , together with its closure, has no common point with q.

Suppose that, in Δ_n , f(z) does not assume values of D_{n+1} . Then the closure of the image $f(\Delta_n)$ of Δ_n is compact in \Re , and for almost all z of C_ρ the radial cluster sets T_z lie outside the closure of $f(\Delta_n)$. Then by our lemma, the measure $m(\Delta_n^b \cap C) = 0$, the continuous function g(P) of the lemma being defined by the aid of a metric in \Re . Therefore the harmonic measure of $\Delta_n^b \cap C$ with respect to Δ_n is zero. We take a small compact Jordan domain K_0 inside D_{n+1} and form a harmonic measure function of the boundary of K_0 in the domain $D_n - K_0$. If we regard this function as a function defined in Δ_n , it has boundary value 0 except for points of $\Delta_n^b \cap C$ which has harmonic measure zero. By the maximum principle this function must be the constant zero, which is a contradiction.

Thus we have shown that $f(\Delta_n) \cap D_{n+1} \neq \emptyset$. Consider the inverse image of D_{n+1} in Δ_n and let Δ_{n+1} be any component of the image. We can show as above that $f(\Delta_{n+1}) \cap D_{n+2} \neq \emptyset$. In this manner we obtain a sequence of domains $\Delta_n \supset \Delta_{n+1} \supset \cdots$ where $f(\Delta_k) \subset D_k$ $(k=n, n+1, \cdots)$. Taking a point z_k in Δ_k and connecting it with any point z_{k+1} of Δ_{k+1} by a curve in Δ_k , we get a path l in Q along which $f(z) \rightarrow P_0$. By assumption (ii) (we may suppose that the arc z_1z_2 is contained in C'), l terminates at a single point of |z| = 1. Since Q may be taken arbitrarily near z_0 the conclusion of Theorem 2 is obtained.

REMARK. If we allow a path to oscillate, we may infer the existence of such a path with asymptotic value P_0 in any neighborhood of z_0 , with the following condition replacing (ii):

- (ii') there exist points ζ on |z|=1 on both sides of z_0 and arbitrarily close to z_0 such that P_0 does not belong to T_1 . If we assume only (i), then we know that either there is a path (which may oscillate) in any neighborhood of z_0 , or there is a sequence of curves which accumulate on a closed arc containing z_0 , such that $f(z) \rightarrow P_0$ uniformly along these curves (5).
- 6. In the theory of cluster sets the difference between a cluster set such as S_{z_0} and a boundary cluster set such as ST_{z_0} is an open set. In the case of an abstract Riemann surface, it is not generally true that $S_{z_0} ST_{z_0}$ is an open set in $\Re + \Re$. On the one hand, suppose that there is a point $P_0 \in \Re \cap ((S_{z_0})^b ST_{z_0})$. Since ST_{z_0} is a closed set, there is a domain G on \Re , containing P_0 and with compact closure corresponding to a parametric circle $|\omega| \leq 1$, such that $\overline{G} \cap ST_{z_0} = \emptyset$. We denote the open set which is the inverse image in U of G by Δ , and its boundary by δ . It follows from the lemma that, if we take a part H of $\delta \cap C$ sufficiently near z_0 , its linear measure, and hence its relative harmonic measure with respect to Δ , is zero. The cluster set $S_{z_0}^{(\Delta)}$ of the composed function $\omega(f(z))$ contains the point $\omega = 0$ but does not coincide with the whole $|\omega| \leq 1$, and the boundary cluster set $S_{z_0}^{(\Delta-H)}$ (this is defined by setting

⁽⁵⁾ This fact is expressed by the notation $P_0 \subset \Phi(f)$ in [6].

 $E=\delta-H$ in $S_{z_0}^{(B)}$ of §3) is contained in $|\omega|=1$. This fact contradicts the following theorem which is easily deduced from a theorem in M. Brelot [1]: Let Δ be an open set with boundary δ in the z-plane, z_0 a nonisolated boundary point of Δ , H a subset of δ , containing z_0 , of relative harmonic measure zero with respect to Δ , and f(z) analytic in Δ and on $\delta-H$. Then the difference between the cluster set $S_{z_0}^{(\Delta)}$ and the boundary cluster set $S_{z_0}^{(\delta-H)}$ is an open set.

We state our result in

THEOREM 3(6). Under the assumption of Theorem 1, $\Re \cap (S_{z_0} - ST_{z_0})$ is an open set.

On the other hand, however, we shall show that $S_{z_0} - ST_{z_0}$ is not necessarily open. Let \Re be the circle |w| < 1 and suppose that \Re consists of only one point w_0 on |w| = 1. Let f(z) be the identity function: w = z ($w_0 = z_0$). Then $S_{z_0} = \{w_0\}$ but $ST_{z_0} = \emptyset$, so that $S_{z_0} - ST_{z_0} = \{w_0\}$ is a closed set.

7. We shall discuss next some special cases of Theorems 1 and 2. Suppose first that f(z) possesses a radial limit almost everywhere on an open arc A of |z| = 1 containing z_0 . Then ST_{z_0} is the intersection of the closures of certain sets of such limit values. For instance, if the range of values R_{z_0} is compact relatively in \Re and does not cover a set of positive logarithmic capacity, f(z) has this property(7).

We have next the following corollary to Theorem 1:

COROLLARY 1(8). Let R_{z_0} be conformally equivalent neither to the Riemann sphere punctured at most two points nor to a torus. Then any value P_0 of \Re belonging to $S_{z_0} - ST_{z_0} - R_{z_0}$ is a radial limit either at z_0 or at points z_n tending to z_0 .

First we observe that there is a path in $\Re \cap S_{z_0}$ terminating at P_0 since a neighborhood of P_0 is contained in S_{z_0} by Theorem 3. By Theorem 1 we can then obtain a path terminating at a point z' of C near z_0 , with the asymptotic value P_0 . We can prove by the generalization of Lindelöf's theorem that f(z) has the same asymptotic value P_0 along the radius with the end point z'.

We consider the class of functions studied by Lohwater [11]: A function f(z), meromorphic in |z| < 1, is said to belong to class (U^*) if there exists an arc A of C such that $\lim_{r \to 1} |f(re^{i\theta})| = 1$ for almost all $e^{i\theta}$ of A.

COROLLARY 2 [10; 11]. Let w = f(z) be a function of class (U^*) . If f(z) is not analytic on the arc A and if it possesses at most a finite number of zeros and poles in a neighborhood of A, then there exists at least one curve, terminating at a point of A, along which $f(z) \rightarrow 0$ or ∞ .

From an extension of Schwarz's symmetry principle [4] it follows that, at any singular point z_0 of A, at least one of 0 and ∞ belongs to S_{z_0} . Since

⁽⁶⁾ This was proved in [4] and [13] in the case when \Re is the extended w-plane.

⁽⁷⁾ See Theorem 3.3 in |14|.

⁽⁸⁾ The case when R is the whole plane and S_{s_0} is not was discussed in [13].

 $ST_{z_0} \subset \{|w|=1\}$, and since $S_{z_0} - ST_{z_0}$ is an open set by Theorem 3, the assumptions of Theorem 1 are satisfied for $P_0 = 0$ or ∞ ; hence Corollary 2 is established.

In connection with Theorem 2, we remark that if R_{z_0} satisfies the conditions of Corollary 1, it cannot happen that f(z) tends to a value in \Re uniformly on a sequence of curves accumulating on an arc of C near z_0 . Therefore for such a function condition (ii) in Theorem 2 is not necessary if the point P_0 belongs to \Re . However, we do not know whether condition (ii) is necessary in general, even for the functions of class $(U^*)(9)$, although condition (i) is fulfilled for these functions.

We shall prove

COROLLARY 3 (CALDERÓN-DOMÍNGUES-ZYGMUND [3], cf. also [8]). Let w = f(z) be a bounded analytic function defined in |z| < 1. Let f(z) have a radial limit of modulus one almost everywhere on an arc A of C. Then if f(z) is not analytic on A, every value of |w| = 1 is a radial limit at infinitely many points of A.

Let $z_0 \in A$ be a singular point. By Theorem 2 and Lindelöf's theorem any point w of |w| = 1 is the radial limit at z_0 or at z_n tending to z_0 . If such $\{z_n\}$ exists, the corollary is already proved. Also if there are singular points on C tending to z_0 , then our corollary follows. Hence suppose that f(z) were analytic on C near z_0 , except at z_0 , and $f(z) \neq w$ there. In this situation f(z) would have limit values w_1 and w_2 respectively as $z \in C$ moves toward z_0 from both sides. Since f(z) is bounded, $w_1 = w_2$ and f(z) would tend to this value uniformly as z approaches z_0 from the inside of U by Lindelöf's theorem. Then f(z) would be analytic at z_0 and this is a contradiction. Thus the corollary is proved.

8. In this section we shall consider mermorphic functions of bounded characteristic. Such a function has radial limit almost everywhere, and the set of points of C where the function has the same radial limit has linear measure zero by Riesz-Nevanlinna's theorem. Therefore condition (ii) of Theorem 2 is not necessary. However, we can show by an example that at a point where an asymptotic path terminates, the function does not always have a radial limit of the same value. We know that this is true for a meromorphic function with at least three exceptional values. Hence let us remark that the following theorem is not a special case of Corollary 1 if and only if f(z) omits only two values.

THEOREM 4. Let w=f(z) be a meromorphic function of bounded characteristic in U, and suppose that it does not take two values w_0 and w_1 near a point z_0 of |z|=1. If w_0 belongs to $S_{z_0}-ST_{z_0}$, then w_0 is a radial limit at z_0 or at points z_n tending to z_0 .

⁽⁹⁾ In a recent letter Professor Lohwater remarked to the author that his unpublished proof of the first part of [9] is not complete and that that aspect of the question is still open.

Proof(10). Without loss of generality we may suppose that $w_0 = 0$, $w_1 = \infty$. and ST_{z_0} lies outside $|w| \le 1$. Then f(z) has a representation (see [12])

$$f(z) = \frac{\Omega_1(z)}{\Omega_2(z)} \exp \left[\frac{1}{2\pi} \int_0^{2\pi} \frac{e^{i\phi} + z}{e^{i\phi} - z} d\mu(\phi) + i\lambda \right],$$

where $\Omega_1(z)$ and $\Omega_2(z)$ are finite Blaschke products, λ is a real constant, and $\mu(\theta)$ is a function of bounded variation in $[0, 2\pi]$ such that $\mu(\theta) = \{\mu(\theta+) + \mu(\theta-)\}/2$. In order to prove our theorem it is sufficient to prove that

$$u(z) = \frac{1}{2\pi} \int_0^{2\pi} \frac{1 - r^2}{1 + r^2 - 2r\cos(\phi - \theta)} d\mu(\phi) \qquad (z = re^{i\theta})$$

tends to $-\infty$ along a radius at z_0 or at a point arbitrarily near z_0 .

Let C_{ρ} be an arc such that the set $M_{\rho}^{(C^{\bullet})}$ defined in §3 lies outside $|w| \leq 1$, and let us decompose u(z) into the integral $u_1(z)$ on C_{ρ} and the integral $u_2(z)$ on its complement.

We denote the set function corresponding to $\mu(\theta)$ by $\mu^*(X)$. Then by de la Vallée Poussin's decomposition theorem (see [15, p. 127]) we have

$$\mu^*(X) = \mu^*(X \cap E_{+\infty}) + \mu^*(X \cap E_{-\infty}) + \int_X \mu'(\phi) d(\phi)$$

for any Borel set X consisting of points of continuity of $\mu(\theta)$, where $E_{+\infty}$ and $E_{-\infty}$ represent the sets of points at which $\mu(\theta)$ has derivatives equal to $+\infty$ and $-\infty$ respectively. According to Fatou's theorem, $u(re^{i\theta}) \rightarrow \mu'(\theta)$ as $r \rightarrow 1$ for almost all θ . By hypothesis, $|f(re^{i\theta})| = \exp[u(re^{i\theta})]$ tends to $\exp[\mu'(\theta)] > 1$ as $r \to 1$ for almost all $e^{i\theta}$ of C_{ρ} . Hence $\mu'(\theta) > 0$ for almost all $e^{i\theta}$ of C_{ρ} . Now it is a result of Lohwater [10, Lemma] that if there is a negative jump of $\mu(\theta)$ on C, u(z) tends to $-\infty$ radially at this point. We now suppose that $\mu(\theta)$ has no negative jump on C_{ρ} . Let Y be any Borel subset of C_{ρ} which does not contain points of discontinuity of $\mu(\theta)$. If $E_{-\infty} \cap C_{\rho} = \emptyset$, then the positiveness of $\mu^*(Y)$ follows from the above equality because $\mu^*(Y \cap E_{+\infty})$ is always non-negative (see lemma in [15, p. 126]). Let X be any Borel subset of C_{ρ} , and $\{a_n\}$ be the points of discontinuity of $\mu(\theta)$ on X; $\{a_n\}$ coincide with the jumps of $\mu(\theta)$. Then $\mu^*(X) = \mu^*(X - \{a_n\}) + \sum_n \mu^*(a_n)$ and $\mu^*(a_n)$ is equal to the saltus at a_n . Since both terms of the right side are positive, $\mu^*(X) > 0$. Therefore $u_1(z) > 0$ and hence $u(z) > m > -\infty$ near z_0 . Hence $|f(z)| > m_1 > 0$ near z_0 . This contradicts the assumption that $0 \in S_{z_0}$. Thus there is at least one point $e^{i\theta}$ of $E_{-\infty}$ on C_{θ} . At this point u(z) has a radial limit $-\infty$. On account of the arbitrariness of C_{ρ} , the theorem is concluded.

As mentioned in §1, a special case of this theorem was proved in [10]. Whether the existence of $w_1 \in R_{z_0}$ in our theorem is necessary or not is not yet determined. Also notice that we have no such result corresponding to Theo-

⁽¹⁰⁾ The writer owes the idea of the proof to [10].

rem 2.

9. In order to determine more completely the asymptotic values of an analytic function, we shall define a smaller boundary cluster set. Up to now we have used the radial cluster set T_{z_0} to define the boundary cluster set ST_{z_0} . In many cases the set T_{z_0} is too large; we shall find it more suitable to use, instead, the set Γ_{z_0} of all asymptotic values at z_0 , in some cases.

Let f(z), $\{K_n\}$, $\{K_\alpha\}$ and z_0 be the same as in §3. We shall use the same notation as in §3, whenever it causes no confusion. If, for a given integer n, there is an open arc C_n containing z_0 such that the inner linear measure of the set $\{z \in C_n; z \neq z_0, \Gamma_z \cap K_n \neq \varnothing\} = C'_n$ is zero, we define K_n^* by K_n ; otherwise we set $K_n^* = \varnothing$. We denote the set $C - \bigcup_{\nu} C'_{n_{\nu}} - z_0$ by C^* , where the summation \bigcup_{ν} is taken over all n_{ν} for which $K_{n_{\nu}}^* = K_{n_{\nu}}$. We define K_{α}^* in a similar fashion for $\{K_{\alpha}\}$ and set $S\Gamma_{z_0} = \Re + \Im_{\Re} - \bigcup_{\alpha} K_{\alpha}^*$. This set $S\Gamma_{z_0}$ is the smallest set in the following sense: Let $H \subset C$, $z_0 \subset H$, be a set of linear measure zero, and denote the closure of $\bigcup_{z \in (C-H)_{\rho}} \Gamma_z$ by $N_{\rho}^{(C-H)}$ and the intersection $\bigcap_{\rho > 0} N_{\rho}^{(C-H)}$ by $S\Gamma_{z_1}^{(C-H)}$. Then $S\Gamma_{z_0} \subset S\Gamma_{z_1}^{(C-H)}$.

The following theorems correspond respectively to Theorems 1 and 2:

THEOREM 5. Let f(z) be an analytic function defined in |z| < 1 and taking values of an abstract Riemann surface \Re (with boundary \Re if \Re is open). Then a point P_0 of $S_{z_0} - S\Gamma_{z_0} - R_{z_0}$ is an asymptotic value either at z_0 or at points z_n tending to z_0 if (i) there exists a path in $\Re \cap S_{z_0}$ converging to P_0 , and if (ii) there exists a set E of points on |z| = 1, dense in some neighborhood of z_0 , such that, for each $\zeta \in E$, there is a path l_{ζ} on |z| < 1 terminating at ζ with the property that the cluster set of f(z) along l_{ζ} does not contain P_0 .

THEOREM 6. Let f(z) be the same as in Theorem 5. A point P_0 of $S\Gamma_{z_0} - R_{z_0}$ is an asymptotic value either at z_0 or at points z_n tending to z_0 if (i) there exists a path in $\Re \cap (S_{z_0} - N_\rho^{(C^*)})$ converging to P_0 , where ρ is a certain positive number, and if condition (ii) of Theorem 5 is satisfied.

Notice that condition (ii) is required even in Theorem 5. If we lift this requirement in Theorems 5 and 6, then the same remark as in §5 is given.

The proofs for these theorems are similar to but simpler than those for Theorems 1 and 2 and are omitted here. We shall explain Theorem 5 in a special case.

Let w=f(z) be a meromorphic function defined in |z|<1 and suppose that f(z) omits at least three values in a certain neighborhood of a point z_0 on |z|=1. Then the points of |z|=1 which have radial limits are everywhere dense in an open arc containing z_0 (see [5] and [13]). Therefore condition (ii) of Theorem 5 is not necessary. If S_{z_0} is the whole w-plane, condition (i) in Theorem 5 is clearly fulfilled, while, if S_{z_0} is not the whole w-plane, Theorem 5 is contained in Theorem 1. Therefore, for our function f(z), Theorem 5 may be stated without conditions (i) and (ii) (this theorem was stated in [13]). The

modular function shows that Theorem 5 is not contained in Theorem 1.

We remark that $\Re \cap (S_{z_0} - S\Gamma_{z_0})$ is an open set. This is trivial if $\Re \subset S_{z_0}$, and if $\Re \subset S_{z_0}$ then $\Re \cap S\Gamma_{z_0} = \Re \cap ST_{z_0}$ and our assertion follows from Theorem 3.

10. Finally we shall examine the assumptions of Theorems 1 and 2. Let \Re be a simply-connected domain in the w-plane which spirals down on |w|=1 from the outside and suppose that \Re consists of only one point w_0 of |w|=1 with the ordinary topology. We map \Re onto |z|<1 and denote by z_0 the point on |z|=1 which corresponds to w_0 . Then $S_{z_0}=\{w_0\}$ and $ST_{z_0}=\varnothing$. Clearly w_0 is never an asymptotic value; here, the condition in Theorem 1 is not satisfied. However, if we take $P_0 \in S_{z_0} - ST_{z_0}$ in \Re , then the required curve is obtained by Theorem 3.

The following examples show that condition (i) is necessary in Theorem 2 even if we take the point P_0 in \Re .

EXAMPLE 1. Take the circles U_w : |w| < 1 and V_n : $|w-1| \le 1/n$ $(n=1, 2, \cdots)$. Set $U_w - V_n = G_n$ and connect G_n and G_{n+1} by a small strip domain S_n near the point w = -1 so that $S_n \to -1$ as $n \to \infty$ (12) and $G_1 \cup S_1 \cup G_2 \cup S_2 \cup \cdots$ is a simply-connected Riemann surface \Re_1 . Map \Re_1 onto U: |z| < 1 conformally. Then by Koebe's theorem the image of S_n and hence the image of G_n tends to a point, say z_0 , of C: |z| = 1, and z_0 is the only point which is not an image of any boundary point of $\{G_n\}$ and $\{S_n\}$. For the function w = f(z) mapping U into the w-plane through \Re_1 , the cluster sets are $S_{z_0} = \{|w| \le 1\}$ and $ST_{z_0} = S\Gamma_{z_0} = \{|w| = 1\}$. The point w = 1 is neither taken by f(z) nor is an asymptotic value; the path which is required in (i) of Theorem 2 actually does not exist.

EXAMPLE $2^{(13)}$. We shall construct a similar example in which w=1 is the only one exceptional value (i.e. $R_{z_0} = \{w \neq 1\}$). Let $\{V_n\}$ be the same as in the first example. Let us set $A_n = \{|w| < 1 + 1/n\} - V_n$ and $B_n = \{|w| > 1 - 1/n\} - V_n$, and let us connect A_n with B_n by a strip S_n and B_n with A_{n+1} by a strip S_n' so that these strips S_n and S_n' tend to w = -1 as $n \to \infty$ and $A_1 \cup S_1 \cup B_1 \cup S_1' \cup A_2 \cup S_2 \cup B_2 \cdots$ is a simply-connected Riemann surface \mathfrak{R}_1 . We map \mathfrak{R}_1 onto U conformally and denote the function corresponding to the mappings $U \to \mathfrak{R}_1 \to \mathbb{R}_1$ the w-plane by f(z). We shall construct $\{S_n\}$ so that the z-images of A_n , B_n , S_n , and S_n' tend to a point of C as $n \to \infty$.

Suppose that each S_n contains a part S_n^* which is mapped conformally onto a rectangle: $0 < u < a_n$, $0 < v < b_n$ such that the sides with length a_n correspond to a part of the boundary of \Re_1 . Consider, on S_n^* , the function which maps \Re_1 onto U, we transform it into the function defined on the rectangle and denote it by z = g(u + iv). This is a schlicht function, and we have, by Schwarz's inequality,

⁽¹¹⁾ We can prove this as for Theorem 3.3 of [14].

⁽¹²⁾ For instance, take the part of 1/n+1 < |w+1| < 1/n outside U_w as S_n .

⁽¹³⁾ The writer owes some technique in the construction of this example to [7].

$$\left\{ \int_{0}^{a_{n}} \int_{0}^{b_{n}} |g'(u+iv)| du dv \right\}^{2} \\
\leq \left\{ \int_{0}^{a_{n}} \int_{0}^{b_{n}} |g'(u+iv)|^{2} du dv \right\} \left\{ \int_{0}^{a_{n}} \int_{0}^{b_{n}} du dv \right\}.$$

If the images of A_n , S_n , B_n , and S'_n do not tend to a point, they must tend to some arc, say z_1z_2 . Then, denoting the area of the image of S_n by s_n , we get from the above inequality

$$(\mid z_1 - z_2 \mid \cdot a_n)^2 \leq s_n \cdot a_n b_n$$

whence

$$0<|z_1-z_2|^2\leq s_nb_n/a_n.$$

Since $s_n \to 0$ as $n \to \infty$, there arises a contradiction if we assume $b_n/a_n < M < \infty$. Therefore under the assumption that S_n contains such a part S_n^* (this means that S_n^* is "narrow") it is proved that A_n , S_n , B_n , and S_n' tend to a point, say z_0 , of C. In this example w=1 is the only one exceptional value and $ST_{z_0} = S\Gamma_{z_0}$ coincides with |w| = 1. The point w=1 is not an asymptotic value; actually condition (i) in Theorem 2 is not fulfilled (14).

Whether condition (ii) in Theorem 2 is really necessary or not is not yet known, as already stated in §7.

BIBLIOGRAPHY

- 1. M. Brelot, Sur l'allure à la frontière des fonctions harmoniques, sousharmoniques ou holomorphes, Bulletin de la Société Royale des Sciences de Liège (1939) pp. 468-477.
- 2. M. Brelot and G. Choquet, Espaces et lignes de Green, Ann. L'Inst. Fourier vol. 3 (1952) pp. 199-263.
- 3. A. P. Calderón, A. Gonzáles-Domíngues, and A. Zygmund, Note on the limit values of analytic functions, Revista de la Unión Matemática Argentina vol. 14 (1949) pp. 16-19 (Spanish).
- 4. C. Carathéodory, Zum Schwarzschen Spiegelungsprinzip, Comment. Math. Helv. vol. 19 (1946-47) pp. 263-278.
- 5. M. L. Cartwright, On the behaviour of an analytic function in the neighbourhood of its essential singularities, Math. Ann. vol. 112 (1936) pp. 161-187.
- 6. E. F. Collingwood and M. L. Cartwright, Boundary theorems for a function meromorphic in the unit circle, Acta Math. vol. 87 (1952) pp. 83-146.
- 7. W. Gross, Über die Singularitäten analytischer Funktionen, Monatshefte für Mathematik Physik vol. 29 (1918) pp. 3-47.
- 8. M. Heins, Studies in the conformal mapping of Riemann surfaces, I, Proc. Nat. Acad. Sci. U.S.A. vol. 39 (1953) pp. 322-324.
- 9. A. J. Lohwater, On the Schwarz reflexion principle, Bull. Amer. Math. Soc. vol. 57 (195i) p. 470.
- 10. ——, The boundary values of a class of meromorphic functions, Duke Math. J. vol. 19 (1952) pp. 243-252.

⁽¹⁴⁾ This example, in which the unique exceptional value w=1 is not an asymptotic value, gives a negative answer to the question raised in p. 120 of [6].

- 11. ——, Les valeurs asymptotiques de quelques fonctions méromorphes dans le cercle-unité, C.R. Acad. Sci. Paris vol. 237 (1953) pp. 16-18.
 - 12. R. Nevanlinna, Eindeutige analytische Funktionen, Berlin, 1936.
- 13. M. Ohtsuka, On the cluster sets of analytic functions in a Jordan domain, J. Math. Soc. Japan vol. 2 (1950) pp. 1-15.
- 14. ———, Dirichlet problems on Riemann surfaces and conformal mappings, Nagoya Math. J. vol. 3 (1951) pp. 91-137.
 - 15. S. Saks, Theory of the integral, Warsaw, 1937.
- 16. W. Seidel, On the distribution of values of bounded analytic functions, Trans. Amer. Math. Soc. vol. 36 (1934) pp. 201-226.

HARVARD UNIVERSITY, CAMBRIDGE, MASS. NAGOYA UNIVERSITY, NAGOYA, JAPAN.