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We shall consider here the following problem. Let the region Rx of the z-

plane contain the points

0u,

(0.1) /9,i,   022,

0U,      0Z2,      033,

and let the function f(z) be analytic in these points. To study the convergence to

f(z) of the sequence of functions gn(z); here gn(z) is analytic throughout Rx, coin-

cides with f(z) in the points 0nl, 0n2, • • • , 0nn, and among all functions with

these two properties has the least norm in Rx. This problem has been previously

studied [6; 7] where norm is [lub |g„(z)|, z in A\], and is now to be studied

(§1) where norm is measured by a surface integral over Rlt or (§2) a para-

metric integral over the boundary of Rx, or (§3) a line integral over the

boundary of A\. If the norm is measured by the integral of the square of the

modulus, we obtain by this method an expansion of f(z) in a series of orthog-

onal functions, an expansion whose convergence properties we study (§4) in

some detail. The asymptotic behavior of these orthogonal functions them-

selves and of their zeros is investigated in §5.

1. Interpolation by functions of minimum norm, surface integrals. If

Ai is a given region, we define jQ'(Rx) (0 <q < ») as the class of functions F(z)

each analytic in Rx with ff^\ F(z) \ qdS< », and define J^(Ri) as the class of

functions F(z) each analytic and bounded in Rx; otherwise expressed, the

norm of F(z) in Rx in these respective cases is [//«,! F(z) \ qdS]llq and its limit

(g->°°) lub [| F(z)\, z in A\]. We define J&(Ri) as the subclass of Q(Ri)

consisting of those functions of Jif(Rx) which coincide with the given f(z) in

the points p\,i, 0n2, • • • , /8„„. The functions of class J^n(Ri) form a normal

family in Rx, and standard methods show that there exists at least one such

function Fn(z) of minimum norm. The function Fn(z) is unique if 1 <g< oo,

and also if q = oo and Rx is simply connected.

If 5 is any point set, we denote its closure by 5. With the generic notation

v.V) = [// l^)l8<tf] Q.
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where R, is to be defined, our main result can now be formulated:

Theorem 1.1. Let Ri be a finite region whose boundary G consists of a finite

number of mutually disjoint Jordan curves. Let Ro be a point set whose boundary

Co consists of a finite number of mutually disjoint Jordan curves, such that Ro

lies in Ri and separates no point of Ri — Ro from C\. Suppose the points (0.1)

not necessarily distinct lie in Ro, and that

(1.1) lim | (z - 8ni)(z - ft.,) • • • (z - ft,„) |w» = «fi(.)
n—*°o

uniformly on any closed bounded set in the complement of Ro. Let V2(z) be the

function harmonic in i?i, continuous in Ri, equal to Vi(z) on G. Suppose the

function V(z) = Vi(z) — V2(z) is continuous and equal to y( <0) on Co. With the

notation <j>(z)=l—V(z)/y, we denote generically by C, the locus <p(z)=<r,

O^a^l, in Ri — Ro, and by R, the point set consisting of Ro plus those points of

Ri — Rofor which 0<<p(z) <<r.

Let the given function f(z) be analytic throughout R„ but not throughout any

RP', 0<p<p'<l. Then for fixed q, 0<q^ °°, the sequence of extremal functions

F„(z) of class J^n(Ri) converges to f(z) throughout R„, uniformly on any closed

subset of Rp, and we have for 0 <t^ <=°

(1.2) limsup [Nl(f - Fn)]lln = »*~\ 0 g a < P;

we also have for 0<£^ oo if p ^ <r < 1 and for 0<t^qif a = l

(1.3) limsup [Nl(Fn)]Un = e1^.

For q= oo, Theorem 1.1 has already been established (loc. cit.) for t= «>,

and follows at once for 0<t< <x>. We henceforth denote the extremal func-

tions Fn(z) ior q= «o hyfn(z), and shall employ the latter as comparison func-

tions in our proof. We shall also use the following:

Lemma 1.1. Let Ro and Ri satisfy the conditions of Theorem 1.1, let F(z)

be an arbitrary function of class /^q(Ri), 0<q^= oo, and let T be any closed set

interior to Ra, 0 ^<r^ 1. Then we have

\F(z0)\   = K.Nl(F), zoinT

where the constant K, depends on q, a, and T, but not on zo or F(z).

Lemma 1.1 is a consequence of the principle of maximum modulus if

2= oo and otherwise is not difficult to prove [5, p. 96].

To proceed with the proof of the theorem for q< oo, let e (>0) be given.

By (1.3) for q = <x>, t = °o, we have for n sufficiently large

[lub | fn(z) |, z in Ri] S «l*<r-»>+.l«
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whence for the extremal function Fn(z)

(1.4) N\(Fi) ^ N\(fi) ^ eiy(>-1)+tlnNgx(l),

and by the Holder inequality

N[(Fn) g N\(Fi) Nx(l)/Nx(l) ^ elnp~1)+'UNl(l),       0 < I < q.

Thus the first member of (1.3) is not greater than the second member of (1.3)

f or a = 1.

To continue with the proof of Theorem 1.1 we introduce points

ctni, an2, ■ ■ ■ , ann, » = 1, 2, • • • , uniformly distributed on Ci with respect to

the conjugate function of V(z) as parameter. It is then known [5, pp. 167-

168; 7, pp. 47-48; 9, pp.271-272] that we have

lim  | (z - a„i)(z - an2) ■ ■ ■ (z - ann) I1'" = e™,
n->«

uniformly on any closed subset of Rx, from which there follows by (1.1)

lim  | rn(z) I1'" = e™,
n—♦ »

(1.5)
(Z   -   0ni)   •   ■  ■   (Z   ~   0ni)

rn(z) =->
(z — anx) ■ • • (z — ani)

uniformly on  any  closed  subset of  A\ — R0. A consequence  of   (1.5)   for

0<o-<o-i<l and for arbitrary e (>0) is for n sufficiently large

| rn(z) |   ^ etTr(w>+.]» z on C„,

| rn(z) |   ^ etTCWi)-]- z on C.v

By use of the triangle inequality, by (1.4) and Lemma 1.1 we have

I Fn(z) - fn(z) |   g JKrfhrCr-U+.l., z on Cri.

But the function [Fn(z) —fn(z) ]/rn(z) has only removable singularities in the

points 0nk, so by the principle of maximum modulus for the region RC1 and by

(1.6) we have

(1.7) | Fn(z) - fn(z) | g A'2etYCp-.+<ri-i)+3e]n| 2 in AV

Choose 0<p^o-<l. By (1.3) for the case q=t= oo already established we

have

|/n(z)|   g K3ely^'->+'i", z in R„

whence by (1.7)

| Fn(z) |   g A'4e[l'(',-'+'ri-1)+3«In, z in R„

so by the arbitrariness of o*i (<1) and e (>0) the first member of (1.3) is
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not greater than the second member of (1.3).

We turn now to the case 0<a<p. Ii e (>0) is arbitrary we have by (1.2)

as already established for q=t = oo

I /CO - /»C0 |   ^ K*™^™", z in R„

whence from (1.7)

(1.8) \f(z) -Fn(z)\   ^ JCelTtr-rfi-D+i.]-, z in jR„;

thus the first member of (1.2) is not greater than the second member. For the

case <r = 0 we obtain this same conclusion from the case cr > 0 by integrating

the tth power of both members of (1.8) over Ro, taking the superior limit of

the tnth root of the first member, and then allowing <r to approach zero.

That Fn(z) converges to f(z) throughout Rp, uniformly on any closed subset

of Rp, follows from (1.2) with t= oo.

The fact that the first member of (1.2) is not less than the second member

of (1.2) for a>0 and that the first member of (1.3) is not less than the second

member of (1.3) can now be proved by standard methods [7, p. 50], assuming

the contrary, using Lemma 1.1 to study the sequence of functions involved

on an auxiliary level locus C,x near C„ 0i<cr, and applying the two-constant

theorem in Rtl — Ro to show that/(z) is analytic throughout some Rp>, p'>p.

The case <r = 0 in (1.2) is exceptional here, but can be treated similarly by

using an auxiliary set of Jordan curves Co interior to Ro instead of the locus

Cr,; when Co' approaches Co, the analogc6'(z) of c5(z) approaches [4] the func-

tion <p(z) uniformly throughout Ri — Ro, and the reasoning already outlined

applies in essence.

Theorem 1.1, whose proof is now complete, can be generalized by inserting

positive continuous weight functions in the integrals of (1.2) and (1.3).

Several corollaries of Theorem 1.1 can be readily proved by the reader:

Corollary 1.1. For any sequence of functions {F*(z)} of the respective

classes J^(Ri) we have for q^tzji =o

lunsup [N,(F„)\      ^ e , p < a ^ 1.
n-*»

Corollary 1.2. Equality in (1.2) and (1.3) holds for every subsequence

{Ent(z)} with lim sup*,M (nk+i — «*) < °°.

Corollary 1.3. For any sequence of functions {F*k(z)} of the respective

classes jQ,k(Ri) with lim sup*_w (nk+i — nk) < °° we have for q^t^ <»

lun sup [N,(Fnk)]       = e , p < er g 1.

Corollary 1.4. Let the function f(z) (^0) of Theorem 1.1 be analytic

throughout Ri. Then the extremal functions Fn(z) converge to f(z) throughout Rit
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uniformly on any closed subset of Rx, and we have for all t (>0)

\xmsup[N:(f-Fi)]1,nZeya-°\ 0 g a < 1,
n—*«

and for 0<t^q

limsup[Ai(7\l)]1/n= 1.
n—»oo

2. Interpolation by functions of minimum norm, parametric integrals. We

now modify the problem considered in §1 by replacing the surface integrals

by integrals over the loci C„, Ogo-^1, taken with respect to \p(z) as param-

eter, where \p(z) is the conjugate of <p(z) in Rx — Ro.

We employ the geometric situation and notation of Theorem 1.1. Let q

be given, 0<gg oo. The function G(z) is said to belong to the class Mq if

G(z) is analytic in Ai and if the norms

(2.1) Nl(G) m T J   | G(z) |<#(z)T "' 0 g a < 1,

are bounded, where N™(G) is interpreted as [max | G(z) |, z on £,]. The func-

tions G(z) of class 9itq have two important properties [ll]:

A. For all points f of Cx, with the possible exception of a set of measure

zero (with respect to \f/), lim G(z) exists when z in Rx approaches J along a

level curve of \p(z). Moreover for these limit values /c,|G(f)| qdip exists in

the sense of Lebesgue, and (0 < q < oo)

lim Nl(G) = NQx(G),

where N\(G) is defined by the analog of (2.1). With q= oo analogous (Fatou)

properties are well known.

B. The function log Nl(G) is a convex function of a, 0^o-gl, in the sense

Nl(G)   <[Nqx(G)]°[Nqo(G)t°.

Let ffrf£ denote that subclass of ?iiq consisting of those functions which

coincide with the given function f(z) in the points j8„i, ■ • • , |8nn. We prove

later the existence of a function Gn(z) of class M^ of minimum norm.

Theorem 2.1. Under the hypothesis of Theorem 1.1 on Co, Cx,f(z), p, and

the points 0„k, for given q (0<q^ oo) the extremal functions Gn(z) converge to

f(z) throughout Rp, uniformly on any closed subset of Rp, and we have for all

t(>0) with the notation (2.1)

(2.2) lim sup [N[(f - Gi)]Vn = e"~'\ 0 g a- < p,
n—>=o

and for all t (>0) if p£<r<l and for 0<t^q if <r = l,
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(2.3) lim sup [Nl(Gn) ]*'" = e "~°.
n-»oo

We shall need the following analog of Lemma 1.1:

Lemma 2.1. Let Co and Ci satisfy the hypothesis of Theorem 1.1, let G(z) be

an arbitrary function of class "M", and let T be an arbitrary closed subset of i?„,

0<o-gl, where no critical point of 4>(z) lies on C, (0<<r<l). Then we have

(2.4) |G(z0)| ^ K.Nl(G), zoinT,

where the constant Kc depends on q, a, and T, but not on z0 or G(z),

If q = oo, the lemma follows from the maximum principle, so henceforth

in the proof we assume 0<q< oo; we assume also without loss of generality

a = 1. Under a smooth conformal map of i?i onto a region bounded by a finite

number of disjoint analytic Jordan curves the functions <p(z) and \p(z) are

invariant, and hence Nl is also invariant. Thus we may and do assume in the

proof of Lemma 2.1 that Ci consists of a finite number of mutually disjoint

analytic Jordan curves; it follows that <p(z) and \p(z) are harmonic on G,

and 0(z) has no critical points on G- Indeed, we suppose that <p(z) has no

critical points also on the set i?i — 2?i_„ where 77 (>0) is suitably chosen, and

suppose T interior to i?i-,.

For 1— ?7<0-<l the function |G(z)|q is subharmonic in i?„ and we can

write

(2.5) |G(zo)|8^— f   |G(z)|« — ds, ZoinT,
2vJc dv

where g(z, z0) is Green's function for the region Rc with pole in z0, and v is

the inner normal for 2?„. The normal derivatives dg/dv are uniformly bounded

for Zo in T and for 1 —17<cr<l, as the reader may show. Moreover, the

directional derivatives d<j>/dv = —d^/ds are uniformly bounded from zero on

G, 1— 7]<<r<l. From (2.5) we can write

|G(z0)|   =KiNl(G),

where Ki is independent ofcr, 1 — jj <<r < 1. Approach of a to unity now yields

(2.4) for <r = l, so Lemma 2.1 is established.

We are now in a position to establish the existence of an extremal function

of class "Ml. It follows from Lemma 2.1 that a set of functions of class Mn

all of norm less than M (< 00) is normal in 2?i, and the equation Gk(z)^>Ga(z)

uniformly on any closed set interior to Ri implies

Nl(G°) g lim inf nI(g"), 0 g <r < 1,

where the Gk(z) are in M*. We choose the Gk(z) with
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Nl(Gk) -> inf [Nl(G), G in 2tf*] = Mn,

and with Gk(z)—>G°(z) uniformly on any closed set interior to A\. For arbitrary

e (>0) and for k sufficiently large we have N\(Gk) <Mn-\-e, whence by

Lemma 2.1 with cr = 1 and T=C0

Nl(Gk) ̂  K2(Mn + i).

Thus by property B

Nl(Gk) ^ (Mn + i)°[K2(Mn + i)]1"

so for o- sufficiently near unity we have

Nl(Gk) =S Mn + 2e.

The corresponding inequality holds for G°:

Nl(G°) ^Mn+ 2e.

Hence G° is of class 9tt*, and we have

Nl(G°) g Mn,

but the strong inequality is impossible.

The extremal function Gn(z) of class *M% is unique if 1 <q< °°, for if two

functions of class 5W° have the same norm, half their sum has a smaller norm.

The proof of Theorem 2.1 now follows directly the proof of Theorem 1.1

by using Lemma 2.1 (which applies for all a (>0) with at most a finite num-

ber of exceptions) instead of Lemma 1.1. The impossibility of inequality

instead of equality in (2.2) and (2.3) is proved using property B instead of

the two-constant theorem.

3. Interpolation by functions of minimum norm, line integrals. We now

modify the problem considered in §1 by replacing the surface integrals by line

integrals over the loci C„, 0^o-^l, with respect to arc length. With the

hypothesis of Theorem 1.1, let the components of & be rectifiable Jordan

curves. For given q, Kq< oo, the function 77(z) is said to belong to the class

£q if i7(z) is analytic in Rx and can be represented there by an integral

1    r     Hx(z)dz
(3.1) H(z0) =-;f-1 zoinici,

2iri J d     z — Zo

where 7Zi(z) is of class .£«, namely Hx(z) is measurable and |7Zi(z)|q is Lebesgue

integrable with respect to arc length on G. The function 77i(z) in (3.1) is not

uniquely determined. The class £" is similar to a class which was first intro-

duced by Garabedian [3].

For each n let »£* denote the subclass of .£» consisting of all functions
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Hni(z) corresponding to functions Hn(z) in the representation (3.1) which

coincide with the given f(z) in the points Bni, B„2, • • • , Bnn. The class J^„

contains all polynomials which interpolate to f(z) in these points, hence is

nonempty. There exists a function H*x(z) of class .£*, essentially unique on

G, such that the norm

(3.2) N\(Hli) = [Jjtfn*i(z)n<fe|]1/a

is a minimum among all functions of class «££. This existence follows [3 ] by

the completeness and uniform convexity [Clarkson, 2] of the class JQ, and

by the closure and convexity of the subclass £„. The uniqueness of H*i(z)

follows easily; compare §2. We denote by H^(z) the function of class £8

which corresponds to H*i(z) by the analog of (3.1). Our main result, with

notation Nl analogous to (3.2), is

Theorem 3.1. Let Co, Ci,Bnk,f(z), and p satisfy the conditions of Theorem

1.1, and suppose in addition that Co and G are rectifiable. Then for fixed q,

Kq< co, the functions H*(z) of class £" converge to f(z) throughout Rp,

uniformly on any closed subset of Rp, and we have for all t (>0)

(3.3) lim sup [Nl(f - H*n)} ^ = e7 "^, 0 ;g <r < p,

(3.4) lim sup [Nl(H*n)]Un = e"~", p = <r < I,
n-»oo

and for 0<t^q

(3.5) limsup [N^nti)]1'" = e^1'.
n—>«

The lemmas of §§1 and 2 have an analog here:

Lemma 3.1. Under the conditions of Theorem 3.1 on Co and G, let H(z) be

an arbitrary function of class £" and H(z) a function of class £" corresponding

to H(z) in (3.1). // T is any closed set interior to R„ we have

\H(z0) I = K.Nl(H), z0 in T, 0 g a < 1,

\H(zo) I   ^ KiN\(Hi), zo inT,a= 1,

where the constant K„ depends on q, a, and T, but not on zo, H(z), or Hi(z).

Lemma 3.1 follows by the Holder inequality from Cauchy's integral

formula for 0^cr<l and from (3.1) for cr = l.

If the components of G in Theorem 3.1 are analytic Jordan curves, the

function /„(z) (notation of §1) is of class £", ior limit values of /„(z) bounded

in their totality exist almost everywhere on G, and fn(z) is represented in

i?i by the corresponding Cauchy integral. The functions fn(z) can then be
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used as comparison functions, and the proof of Theorem 1.1 essentially ap-

plies in the present situation.

To prove Theorem 3.1 in the case that the components of Ci are arbitrary

rectifiable Jordan curves, we replace the points ank of §1 by suitably chosen

new points <4ona set of analytic Jordan curves C{ exterior to Rx but geo-

metrically near Cx- The comparison functions fn(z) of §1 are replaced by ra-

tional functions A„(z) interpolating to f(z) in the 0„k and with poles in the

a£t. The curves C{ can be so chosen [7, pp. 48-49] that the asymptotic prop-

erties of the a!* and of the Rn(z) differ as little as we please from the asymp-

totic properties of the ank and of the/„(z) respectively. With these modifica-

tions, the method of proof of Theorem 1.1 is essentially valid to establish

Theorem 3.1.

4. Series of interpolation. In the respective situations of Theorems 1.1,

2.1, and 3.1, with q = 2 and 0nk independent of n, the general theory of

orthogonal functions can be used; each theorem mentioned leads to a unique

formal expansion of f(z) which can be defined by interpolation to f(z) in the

points 0k. For definiteness we restrict ourselves in our detailed discussion to

the situation and method of §1.

We assume for the present that each 0k lies in Rlt but do not assume (1.1).

Let <f>n(z) be the function of class 7^2(Ai) satisfying the conditions of inter-

polation

(4.1) <Pn(0x)   =  <bn(02)   =   •  •   •   =  <Pn(0n-x)   =  0, 4>n(3n)   =   1,

and which minimizes N\(<pi) over the class J^(Ri). If the pointsft, 02, • • • , j8„

are not all distinct, equations (4.1) and later statements require special inter-

pretation, as is customary in the theory of interpolation. Let <f>*(z) be defined

as <pn(z)/N\(<pi) ■ In the important case that all 0k are identical, these func-

tions were introduced by Bergman [l]; in the case that the sequence {0n}

approaches a limit, these functions were studied by Walsh and Davis [10 ];

existence and uniqueness of the <p*(z) follow from §1; the fact that the <p*(z)

are mutually orthogonal over A\ follows readily [l; 10; compare 12], as does

the fact that <p*(z) is orthogonal to any function of class £2(Ri) which van-

ishes in the points 0x, 02, • • • , 0n- Of course <p*(z) also is an extremal func-

tion, namely the function of class ^(Ri) of norm unity which vanishes in

0i, 02, • • • i p\-i whose value in 0n is positive and maximum.

An arbitrary function F(z) of class j£?(Rx) possesses two formal expan-

sions in terms of the <t>*(z); the one is

(4.2) F(z) ~ a*p*(z) + fl^*(z) + "■.«• ~  ff F(^l(z)dS,

where the coefficients o„ are found by the usual orthogonal function (Fourier)

method; the other is a series of interpolation
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(4.3) F(z) ~ bi<b*i(z) + b*f2(z) + ■■■ ,

where bi is determined by setting formally z=(8i in (4.3), then b2 is deter-

mined by setting formally z=j32 in (4.3), etc. These two formal expansions are

identical, independently of the completeness of the set of functions <p*(z);

for the proof compare the corresponding discussion for harmonic functions

[12]. If the functions c6*(z) form a complete set, for which it is sufficient

that the points Bk have at least one limit point interior to Ru the formal ex-

pansion (4.2) converges to F(z) throughout Ru uniformly on any closed sub-

set of Ri; if the functions c6*(z) do not form a complete set, the formal expan-

sion (4.2) converges throughout Ri, uniformly on any closed subset of J?i,

to the function of minimum norm which coincides with F(z) in all the points

Bk. If values F(Bk) are given without the hypothesis of existence of a function

F(z) of class J^(Ri) which takes those values in the respective points Bk, the

formal expansion (4.3) still exists, and a necessary and sufficient condition for

the existence of such a function F(z) is the convergence of the series Y | &« 12»

where the b„ are defined as in (4.3); if this condition is satisfied, the series (4.3)

converges in the mean (of order two) in Ri, thus converges throughout Ri,

uniformly on any closed subset of i?i, and to the function of class £2(Ri) of

least norm which takes on the prescribed values in the points Bk. In particular

the sum of the first n terms of the series in (4.3) is the function of J^2(Ri) oi

least norm which takes on the prescribed values in the points p\, ft>, • • • , Bn.

We now return to the hypothesis (1.1), and shall prove the validity of an

interpolation series expansion under suitable conditions for functions not

necessarily of class J^2(Ri) ■

Theorem 4.1. Let Ro, R\, Co, G, and the points Bk (independent of n) satisfy

the conditions of Theorem 1.1. If f(z) is analytic throughout R„, then the expan-

sion

(4.4) f(z) = Yan<?n(z),
71—1

where the a„ are determined formally by interpolation in the points Bk, is valid in

Ra, uniformly on any closed subset of R„.

If'/CO is analytic throughout Rp, 0 <p < 1, but not throughout any Rp>, p' >p,

then we have

(4.5) limsup I tt„|1/n = e^O"-1',
n—»«

and if f(z) is analytic throughout Rx, the first member of (4.5) is not greater than

unity. Conversely, if the second member of (4.4) is given with (4.5) valid,

0<p<l, the series converges throughout Rp, uniformly on any closed subset of

Rp, to a function f(z) analytic throughout R? but not analytic throughout any

Rp>, p'>p; this function f(z) has (4.4) as its formal expansion found by inter-
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polation in the points 0n. Likewise if the an are given with the first member of

(4.5) not greater than unity, the series in (4.4) converges throughout Rx, uniformly

on any closed subset of Rx, to a function f(z) analytic throughout Rx; this function

f(z) has (4.4) as its formal expansion found by interpolation in the points 0n.

If functional values f(0i) are given without assuming the existence of f(z)

other than in the points 0n, a formal development (4.4) exists; equation (4.5),

with 0 <p < 1, is a necessary and sufficient condition for the existence of a func-

tion f(z) taking on the prescribed values in the points 0n, analytic interior to

R„ but not analytic interior to any A,-, p'>p; likewise that the first member of

(4.5) be not greater than unity is a necessary and sufficient condition for the exist-

ence of a function f(z) taking on the prescribed values in the points 0n, analytic

throughout Rx.

We have already remarked that (notation of §1)

n

Fn(z) sa Z &k<pk(z),
k-x

so the validity of (4.4) follows from Theorem 1.1.

To study the numbers an, we write

an  = ff   Fn(z)$t(z)dS,   |  0.|     g   AlVn),

by Schwarz's inequality. It follows from (1.3) and Corollary 1.4 that the first

member of (4.5) is not greater than the second member, even if p = l.

To prove equality in (4.5) we need to consider the asymptotic behavior of

the (p*(z). By Lemma 1.1 the functions |<£*(z)| are uniformly bounded by

some Ai on any closed subset T of Rx. If r„(z) has the meaning of §1, for given

€ (>0) and for 0 <a<Gx< 1, we have for n sufficiently large

| r„_i(z) |  ^ eMwo-.JU-u, z on C.v

| r„_i(z) |   g e[TCW)+.](»-i)) z on C„.

The function 0*(z)/r„_i(z) is analytic in Rx when suitably defined in the

points 0k, so by the maximum principle

\<bl(z)\   g fie[rM)«l(»-i), zinAV

Thus we may write (e—>0, ov->1)

(4.6) lim sup [max | <p*n(z) | , z on^]"" ^ e^l-'\ 0 < a < 1.

Since/(z) is analytic throughout no R„>, p'>p, the series in (4.4) can con-

verge uniformly throughout no 2?p», so we deduce from (4.6) and from the

part of (4.5) already proved the validity of (4.5).

The remainder of Theorem 4.1 follows without difficulty by continued
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use of (4.6). Theorem 4.1 was previously established [10] by a somewhat

different method for the case that Bk approaches a point of Rx.

Theorem 4.1 considers series of interpolation which are series of orthog-

onal functions according to the orthogonality of §1; the corresponding dis-

cussions for orthogonality as measured in §§2 and 3 presents no difficulty;

proofs of the precise analogs of Theorem 4.1 are left to the reader.

5. Asymptotic behavior of orthonormal functions and of their zeros. Meth-

ods previously used by the present authors [13] in the study of zeros of

extremal polynomials apply also in the study of the extremal functions <p*(z)

and their analogs.

If the function U(z) is harmonic in a region R, and if each of the functions

h„(z) is locally single-valued and analytic in R except perhaps for branch

points, with | hn(z) | single-valued in R, we say that U(z) is a harmonic major-

ant of the sequence {h„(z)} in R if for every continuum Q (not a single

point) in R we have

(5.1) lim sup [max | hn(z) \, z on Q] ^ [max eu<-'\ zon^];
n—*«

and U(z) is an exact harmonic majorant of the sequence {hn(z)} in J? if (5.1)

is replaced by equality of the two members, for every continuum Q (not a

single point) in R.

Again we devote our attention to the situation of §1, but the methods

and results appy equally to the situations of §§2 and 3.

Theorem 5.1. Under the conditions of Theorem 4.1 the function U(z)

=y[l—<f>(z)] is an exact harmonic majorant of the sequence [<p*(z)]1/n and of

every subsequence in Ri — R0.

Equality holds in (4.6) for every a, 0<<r<l; for suppose the strong

inequality to hold for some a, say

(5.2) | <b*n(z) |   ^ Kiey«-'i\ z on C„, 0 < <n < <r;

then we choose p, ai<p<<r, and set an = e1",(l'~1). The series Y ffn<P*CO con-

verges to a function analytic throughout R„ in contradiction to Theorem

4.1. It now follows [8, Corollary 2 to Theorem 4] that U(z) is an exact

harmonic majorant of the sequence [<p*(z)]1/n in Ri — R0.

Ii U(z) is not an exact harmonic majorant for every subsequence of the

sequence hn(z), the strong inequality must hold [8, Corollary to Theorem l]

in (5.1) for some subsequence of the hn(z), ior every Q in R. If y[l—<p(z)]

is not an exact harmonic majorant in Ri — Ro ior every subsequence of the

WCO]1'", inequality (5.2) holds for some subsequence c6*t(z), and we reach

a contradiction as before by setting a„t =ei"1*0,-1), an=0 iin^nk. Theorem 5.1

is established.

We now state two immediate results [8, Theorem 16 and Remark 1;

compare also 13].
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Theorem 5.2. Under the conditions of Theorem 4.1 let R be any subregion

of Rx — Ro, and let Nn indicate the number of zeros of <p*(z) in R. Then we have

lim Njn = 0.
n—»»

Theorem 5.3. Under the conditions of Theorem 4.1 let R be a subregion of

Rx — Ro containing no limit points of the totality of zeros of the $*(z). Then in

R we have

lim | <b*n(z) I1'" = eiV-t>w,
n-»»

uniformly on any closed subregion of R.

Theorems 5.1 and 5.3 are of significance in the study of the divergence of

the series of Theorem 4.1.

Theorem 5.4. With the hypothesis of Theorem 4.1, the series in (4.4), where

(4.5) is valid with 0<p<l, diverges at an arbitrary point of Rx — RP which is

not a limit point of the totality of zeros of the <t>Z(z), and this series converges uni-

formly on no continuum (not a single point) in Rx — R„.

The first part of Theorem 5.4 follows at once from (4.5) and Theorem 5.3;

the latter part follows by methods used in detail elsewhere [13, remark

subsequent to equation (15)].

The function <£*(z) vanishes by definition in the points jSi, |82, • • • , /3„_i,

but in the case of multiply connected regions Rx there may presumably exist

other, nontrivial, zeros of $*(z) in Rx. Theorem 5.2 contains some information

on the numbers of these nontrivial zeros. We proceed to indicate a further

result, which applies to the norms not of §1 but to those of §§2 and 3; equa-

tion (1.1) is not assumed.

Theorem 5.5. With the hypothesis of Theorem 1.1 on Rlt each 0nk independ-

ent of n, and Nf(G) defined by (2.1), let x»(z) be the function of class 9*t2 with

Xn(0x)=Xn(0i)= • • ■ =Xn(0n-x)=O, Xn(0i) = l, whose norm Ai(x) is least. A

circle whose interior lies in Rx and contains 0n can contain no nontrivial zero of

Xn(z). Consequently any circle whose interior lies in Rx and contains all the 0n

contains no nontrivial zero of any x*(z)- U we have 0n-+0o, 0o in A\, any circle

whose interior lies in Rx and contains 0o can contain no nontrivial zero of Xn(z)

for n sufficiently large.

Let a be a nontrivial zero of Xn(z) in Rx. The function (z — 0i)Xn(z)/(z — a)

is analytic throughout Rx when suitably defined for z = a, vanishes in all the

points j8i, 02, • ■ ■ , 0n, and is of class 5W2. Consequently (compare §4) this

function is orthogonal to Xn(z) on &:

I   X»W-dip = 0.
J d z — a
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We make the substitution z' = l/(z — Bn), a' = l/(a—Bn), whence for the

image C{ of G («V0)

f, |x»(0|s-ri^ = 0.
J d a' — z'

Thus a' is a position of equilibrium in the field of force due to a spread of non-

negative matter over C{ which repels according to the law of inverse distance,

so [9, §7.1, Theorem 1 and §7.2, Theorem l] a' lies in the convex hull of C{.

Consequently if the exterior of any circle contains no point of C{, that ex-

terior contains no point a'. Interpretation of this conclusion in the original

z-plane yields the theorem.

This theorem is not invariant under arbitrary one-to-one conformal map

of Ri. That is to say, an arbitrary such map of i?i which carries G into a set

of mutually disjoint Jordan curves does not necessarily transform a circle in

Ri into a circle. The conclusion of the theorem applies not merely to a circle,

but to any Jordan curve which is the image of a circle under a one-to-one

conformal map of i?i which transforms G into a set of mutually disjoint Jor-

dan curves.

Theorem 5.5 extends at once to the situation of §3, as does the supple-

mentary remark regarding the image of a circle, now with the condition that

the transformation of Ri shall transform G into a set of mutually disjoint

rectifiable Jordan curves. Theorem 5.5 is of obvious significance in connection

with the analogs of Theorems 5.3 and 5.4.

Theorem 5.5 does not extend without fundamental modification of proof

or conclusion to the situation of §1. The writers plan to return to this ques-

tion.
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