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1. Introduction. In 1932 W. Rogosinski [15] introduced and studied quite

thoroughly the class of functions typically-real in the unit circle, i.e., func-

tions of the form

00

(1.1) /W=J+EiX
n—2

which are regular in \z\ <l (hereafter denoted by E) and in addition satisfy

in E the condition

(1.2) 3/(2)32^o.

This concept has been extended in several directions in [4; 6; 10; 11; 13; 16].

In the present paper we initiate the study of functions which are meromorphic

in E but still satisfy the condition (1.2). To be precise we make the following

definitions.

A function f(z) which is meromorphic in E, and except at the poles satis-

fies the condition (1.2), is said to be meromorphic and typically-real in the

unit circle. The class of such functions with Taylor series of the form (1.1) in a

neighborhood of the origin will be denoted by TM, and the subclass of func-

tions regular in E will be denoted by TR. The class of functions meromorphic

and typically-real in E with a Laurent expansion about the origin of the form

00

(1-3) <f>(z)   =   -   1/3+   £/?n3"

will be denoted by TM*.

It is immediately obvious that the condition (1.2) implies that, for a func-

tion meromorphic and typically-real in E, all the poles lie on the interval

— 1 <z<l, are of first order, and have negative residues. Hence, by a trivial

transformation any such function can be reduced to either the form (1.1) or

(1.3), and in either case all of the coefficients are real. The set of functions

TM is convex, for if/i(z) and/2(z) belong to TM, so also does

(1-4) f(z) = mxfx(z) + nttft(z)

for every pair wi, m2>0, with mi+m2 = l. A similar remark can be made for
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the set TM*. We also note an elementary relation between the two sets,

namely if/(z)£TM, then <p(z) = — /(z)~'£TM* and conversely.

Among other results, we determine, for functions of these two classes,

the precise domain of variability of f(z) and <p(z), and sharp bounds for the

coefficients bn and 0n in terms of the modulus of the closest pole to the origin.

2. Bounds for functions belonging to TM. We first prove the following

theorem.

Theorem 1. Let fiz) ST M. Then for each nonreal a = Aeia in E

f'ia) I 1 - a2 I
(2.1) -^--   =-j--T = Miia)

3/(o)       „(1 -A2) | sin a \

and

f'ia)
(2.2) ^   ZMiia),

and these bounds are sharp. The equality sign occurs in (2.1) if and only if

(2.3) fiz) = Fsiz) =-, s real.
l-2sz + z2

The equality sign occurs in (2.2) if and only if for z = a, 9tF„(a) =0, that is for

the function (2.3) with

(2.4) 25 = („-! + „) cos a.

We remark that the form of the left side of (2.1) is a little unusual, and

that the extremal function is not unique, since equality occurs for every real

s. Clearly (2.2) is a trivial consequence of (2.1). We also note that because

fiz) is real on the real axis it is sufficient to consider only the upper half of P,

i.e., we may assume sin a>0, and this assumption is made throughout this

paper.

To prove this theorem let z = gi£) map | f | <1 conformally onto the semi-

circular region 33>0, |_| <1, with g(0)=a. The inverse function $" = G(z) is

a rational function and indeed has the form

(z — a)(l — az)
(2-5) Giz)=e*)-~-J-, 7 real.

(z — a)(l — az)

Ii now/(z)£TM, the function

(2.6) /i(r) = -i/(«(f)) = _:^.r»
n=0

is regular and 3t/i(f)>0, for |f| <1. By a fundamental theorem of Cara-

theodory [l; 2],
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(2.7) \An\  g 29M„, «= 1, 2,3, ••• ,

with equality if and only if/i(f) maps |f| <1 onto the right half-plane. An

easy computation gives

(2.8) | Ax |   =  | f'(a)g'(0) |   =  | f'(a) \ 2Jfr»(a) ^ 29M0 = 23/(a),

and hence (2.1). For equality in (2.1),/(z) must map the semicircular region

onto the upper half plane. Since /(z)£TM it must then map E onto the full

plane minus a set on the real axis. This set may be either a segment, an

infinite ray, or two infinite rays. But all such functions have the form (2.3).

Conversely, an easy computation shows that for F,(z), the two sides of (2.1)

are identical for every a, independent of s.

Obviously other bounds can be obtained from (2.7) using w^2, but these

are more complicated than (2.1) and do not seem to be fruitful. On the other

hand, (2.1) leads quite naturally to the following result.

Theorem 2. With the conditions and notations of Theorem 1,

(2-9) \f(a)\   £-- f    .        = M2(a),
(1 — A2) | sin a |

and this bound is sharp. The equality sign occurs only for F,(z) given by (2.3)

and (2.4).

Proof. If /(z)GTM then —/(—z)£TM, so without loss of generality we

assume a is in the first quadrant, but not real. Let T be the portion of the

curve

(2.10) 2s = (r + l/r) cos d, z = re",

joining z = 0 with z = a, where s is defined by (2.4), and let ao=Aoeia be a

point on T between z = 0 and z = a. Integrating both sides of the inequality

(2.2) on r from ao to a yields

f(a) I     |p f'(z)     I       ra
(2.11) log£-(-   =    I      -TTT**   *   \   Mx(z)dc = I

f(ao) I I J oo     7W I J "0

where cr is the length of arc on T. A brief computation shows that with

z=reie, and with d regarded as a function of r on T,

(1 - 2r2cos20 + r4)1'2
(2.12) dc = --—it,

(1 + r2) sin 6

while

(1 - 2r2 cos 2d + r4)1'2
(2 • 13) Mx(z) =-—-

r(l — r2) sin 6
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Thus we can write for I,

rA (        1 - r2 4r    )
(2.14) I=\    <--+-\dr,

J a, lr(l + r2) sin2 B       1 - r*j

and using (2.10) to eliminate 0,

J. a / 1 _ r4 4r    s

a, lr[(l + r2)2 - 4s2r2]       1 - r*j

On the other hand, on the curve T,

r r(l + r2)
(2 .16) Miiz) =-;-5—

(l-r2)sin0      (1-r2){(l + r2)2-4rV}1'2

and d log Miiz)/dr is just the integrand of (2.15). Thus (2.11) yields

/(a) Miia)
(2.17) log^^   ^log-—

/(a0) M2(a0)

with equality only if fiz) is given by (2.3) and (2.4). An easy manipulation ot

(2.17) and passage to the limit as a0—>0 gives (2.9). The bounds obtained in

Theorems 1 and 2 give immediately the bound for/'(z).

Theorem 3. With the conditions and notations of Theorem 1

I 1 ~ a21
(2.18) /'(a)     ^-■-

1 '        (1 - ,42)2sin2a

and this bound is sharp. The equality sign occurs only for F,iz) given by (2.3)

and (2.4).

3. The domain of variability for/(z) in TM. Let z=a be a fixed point of E,

then the set D of all points /(a) where /(z)GTM is called the domain of

variability of/(z) at a. If w is a point of D and/(z) ETM is such that/(a) = w,

we then say that/(z) corresponds to the point w of D. From equation (1.4)

it is obvious that for each a, D is convex. We shall see that if a is not real, D

is a circle.

Theorem 4. Let a=Aeia be a point of E with sin a>0, and let Kia) be the

circular disk

.Miia)       Miia)
(3.1) w—i-   §-'

2 2

minus the point w = 0. Then Kia) is the domain of variability for /(z)GTM

at z=a. Further to each w^O on the boundary of Kia) there corresponds exactly

one function of TM, and this is of the form (2.3). To each interior point of Kia)

there correspond infinitely many functions.
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Proof. If c is a real constant, the parabolic transformation [3, p. 23]

w
(3.2) wi — - = w — cw2 + • • •

1 + cw

takes each circular disk K(a) into itself, the interior going into the interior

and the boundary going into the boundary. Further, (3.2) preserves the upper

half-plane and the lower half-plane so that if w=/(z)£TM, so also is

Wi=Wi(z). Assume now that for a fixed a, f(a) does not lie in K(a). Then by

an appropriate choice of c in (3.2), Wx(a) can be made purely imaginary. Since

Wx(a) is also not in K(a) it follows that |wi(a)| >M2(a), a contradiction to

Theorem 2. If f(a) is on the boundary of K(a), then with proper choice of c,

Wi(a)=iM2(a) and in this case the function wi(z) is uniquely determined.

But the class of functions Fs(z) given by (2.3) is invariant under the group of

transformations (3.2) so/(z) must be a uniquely determined function of the

form (2.3).

To see that every interior point w0 of K(a) corresponds to infinitely

many functions, note first that any such point is an interior point of infinitely

many chords of the circle and hence can be expressed in infinitely many

ways in the form Wo = miWi + m2Wz where mi+m2 = l, mi>0, m2>0, and wx

and w2 are points on the boundary of K(a). If FSl(z) and FS2(z) correspond to

Wx and w2 at a, then (1.4) with these functions defines an/(z)£TM which

corresponds to w0. That these functions are different for two different chords

follows from the fact that the poles of Fs(z) are different for different values

of 5. The case sin a <0 is trivial from the symmetry of the mapping.

If <p(z)GTM*, then -</>(z)"'GTM. This gives immediately the following

result.

Corollary 1. Let a=Aeia be a point of E with sin a>0. The domain of

variability for 4>(z)GTM* at z = a is the half-plane ^w^(A~l — A) sin a. The

points on the boundary correspond to the unique function <p(z) = — z~x + 2s — z

with appropriate real s.

The proof of Theorem 1 can be carried over without alteration to func-

tions <b(z) of TM*. Only the extremal function is different. This gives im-

mediately the following result.

Theorem 5. Let </>(z)£TM*. Then for each nonreal a in E

<t>'(a)
(3.3) ——   ^ Mx(a)

3*(a)

with equality if and only if <j>(z) = —z~1 — z + 2s, s real.

It should be observed that Theorem 5 does not follow from Theorem 1 in

the same way that Corollary 1 follows from Theorem 4. Indeed, that process

would yield only \<p'(a)/<p(a)\ ^M:(a), which is weaker than (3.3).
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4. Bounds for the coefficients. It is clear that if the function F,iz) given

by (2.3) is expanded about the origin, the coefficients may be made arbi-

trarily large by letting 5—+oo, i.e., by letting one pole tend to the origin. If,

however, we bound the poles of/(z) away from the origin, then sharp upper

and lower bounds can be obtained for the coefficients. Let/(z)£TM, and

number its poles (if any) pj so that

(4.1) 0 <  | pi |   g  | p, |   g • • • g  | pk |   g  | Pk+i |   ^ • • • < 1.

If the function has only a finite number of poles, (4.1) contains only a finite

number of terms, but it is clear that the class TM contains functions with

infinitely many poles. The equality sign can occur in (4.1) if pk= —pk+i, but

for every k, \pK\ <\pK+t\. If \pu\ <\pk+i\, let Rk denote the region \pk\

<\z\ < | pk+i | • Then there is either an Rk with outer boundary | z\ = 1, or an

infinite sequence of Rk such that the outer boundary tends to \z\ — 1.

Theorem 6. Le//(z) £TM and let the residue at the pole pj be —mj, w,->0

(j = l, 2, • • •)• Then for each r, \pk\ <r<\pk+i\,

(4.2) S^-1)*"'

(4.3) Z>/(-J-l)_l.
j-i      \pj        /

and

*

(4.4) o<m.£-tL--, y-i, 2,....
1 - pj

Further, the inequalities (4.3) a/nd (4.4) are sharp. Given any sequence of positive

numbers {mj} and any sequence of poles {pj} on the interval —1 < z < 1 such

that (4.3) with the equality sign is satisfied, there is a function fiz) £TM with

the prescribed poles pj and residues —mj. Equality can occur on the right of

(4.4) only if fiz) has just one pole.

Proof. Let the Laurent series for/(z) in the ring Rk be

(4-5) fiz) =   £  bTzn, k = 1, 2, 3, • • • ,
n—— oo

and in the neighborhood of the origin let/(z) be given by (1.1). We will ob-

tain useful relationships among the coefficients. If | pk-i\ < \ pk\ <\ pk+i\ then

the function giz)=fiz)+mk/iz—pk) is regular in \pk-i\ <\z\ <|^i+i|. If we

set

(4.6) giz) =   £ b*nzn
n=—oo
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in this region, we find immediately that in T?*

+00 00 1

(4.7) /(*)= £ bX -ZfupT1-.
n——oo n—1 2

while in Rk-i

(4.8) f(z)=   £ by + ±J^Lzn.
n-0    P*1

From (4.5), (4.7), and (4.8) it follows that

J.W        A* I**-"        t*   i      m" t ^ n
On    = On' b„       = bn H-— for M ^ 0,

(4.9) ^*
J.(t)        t.*         Wk a'*-1'        a* f ^ r.
On       =   0„-— ) 0„ =   On, for W   <  0.

Ptl

These lead to

(4.10) C = blk~l)-^, n = 0,±l,±2,....
P?

In the special case that |pk-x\ =\pk\, a trivial modification shows that

,.  „„. w        (.k-2)       rnk       wi_i
(4.11) o„    =o„-—-—,      n = 0 + 1, +2, • •• ,

p\+1   pt:

and iteration of (4.10) and (4.11) yields

(4.12) bl1 = o„ -23—L, » = 0, ±1, ±2,-..,

where on = 0 for « ^ 0.

Now with the usual z = re*9, u(r, 0)=3/(z) we have for \pk\ <r<\pk+i\,

andfor/(z)GTM,

(4.13) ° =  f   p(f' ^ sin ^ = ^i*>r ~ 6-i)r_1)-

This, together with (4.12) and the normalization 6i = l, yields (4.2). Taking

r on a suitable sequence tending to 1 yields (4.3). Using just one term from

the right side of (4.3) yields (4.4).
To show that the inequality (4.3) is sharp in all the variables, suppose a

sequence {pj} of poles and a sequence { —m,} of negative residues are given,

such that (4.3) with the equality sign holds. Then define Fzj by (2.3) with
2sj = pj+pJl (; = 1, 2, • • •), and let
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2

(4.14) Fiz) = Z mi-^-F,iiz) = z + • • • .
>-i Pj

Clearly F(z) (ETM, and an easy computation shows that the poles and resi-

dues are as prescribed, and (4.3) holds with the equality sign.

Theorem 7. Let TM(J>) denote the subclass of TM of functions for which the

poles pj satisfy \pj\ ^p>0, j = l, 2, 3, • • • . Let

(4.15) Bin, p) = (1 + p2 + p* + • • • +p2»-2)/pn-1

and let

sin nd
(4.16) pin) =   min  -< 0, » - 2, 3, • • • .

os«S2» sin 6

If fiz) ST Mip) has the form (1.1) near the origin then

(4.17) -Bin, p) ^bn^ Bin, p), n even,

(4.18) pin) ^ bn ^ Bin, p), n odd,

and all these inequalities are sharp.

It is interesting that the lower bound in (4.18) is identical with that found

by Rogosinski [15] in the case/(z) regular, while the other three bounds are

different. If p = l, then TMip) is the class TR, while on the other hand,

Bin, l)=w. Thus Theorem 7 contains the result of Rogosinski as a special

case.

Proof. Following Nehari and Schwarz [ll] we note that if /(z)£TM and

\pk\ <\z\ =r<\pk+i\, then for « = 1, 2, 3, • • • ,

/. *r vir, 6) sin 0 (1 - cos nd)dd
o

or

0 g 26i  r — 2b-i r    — bn+i r      + bn-ir      + b-n-ir        — b-n+ir

Using (4.12) and a little manipulation gives

2       bn-i 1     k       (r2        \/rn p\

(4.20) 4.H-1-- + — + — Z«,-   --Of--2+-)-fn f2 rn+*    .=l \p* J\p* fn)

Now y — 2+y_1^0 for y>l and is increasing with y. Thus for fixed p>0 the

last factor in (4.20) is a maximum if pj=p (J = L 2, • • • , k). Whence

2        bn-i 1    /rn pn\   *        (r2 \
(4.21) bn+i _-+—- + —-(- -2 + y-\ 2>,-(- - 1 ).
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Using the inequality (4.2) and letting r—>1 on a suitable sequence yields

(4.22)   bn+x ̂  2 + bn-x +(-2 + p»\ = bn-x + Pn + — >   n = 1, 2, • • • .
\pn ) pn

Since Oo = 0 and bx = l an easy induction with (4.22) gives the right side of

(4.17) and (4.18). Moreover, iif(z)GTM(p), so also is -f(-z). Clearly, this
gives the left side of (4.17), and if F(z) is an extremal function for the right

side of (4.17) then —F( — z) is an extremal function for the left side. These

bounds are sharp, for if 2s=p+p~x in (2.3) then for F,(z), bn=B(n, p), for

« = 2, 3, • • • .
To obtain the lower bound in (4.18) consider along with the non-negative

integral (4.13) the obvious inequality

/' 2t                   sin nO r2r
v(r, 0) sin 0-dd ^ p(n)  I     v(r, 0) sin 0<f0

o                        sin 0 Jo

where \pk\ <r<\pk+x\. This yields l£r»-b%rm±it<Ln)(b?r-ti*lr-1), for

« = 2, 3, • • • , and using (4.12) this becomes

(4.24)  hi4£(,._£^c;_.))+!£=£_A.
rn+1\        ,_i      \p)        ))      r» ,=i pi\pni      r"/

Clearly, when n is odd the last sum in (4.24) is positive and may be dropped.

Further, p(n) <0, so the first sum may also be dropped, giving bn'^p(n)r1~n.

Letting r—>1 on a suitable sequence yields the desired lower bound. Clearly

the equality sign can hold only if the function has no poles in E. Thus the

extremal function here coincides with that found in [15], namely F,(z), with

5 = cos 0o, where 0 = 0O yields the minimum value p(n) in (4.16). Of course 0o

and Ft(z) depend on the index n.

Theorem 7*. Let TM*(p) be the subclass of TM* of functions for which the

nonzero poles p}- satisfy \p3\ ^p>0, j = l, 2, • • • . If <p(z)GTM*(p) has the

form (1.3) in a neighborhood of z = 0, then fti^ — 1 and for « = 2, 3, • • •

(4.17*) ~(l+px)B(n, p) Spn^ (l+0i)J3(i», p), neven,

and

(4.18*) (1 + $x)p(n) :g ft, g (1 + Px)B(n, p), n odd,

and all these bounds are sharp.

The proof closely parallels that of Theorem 7 so we merely outline it,

indicating the altered equations by affixing * to the original number. As be-

fore, the poles pj are numbered in order of increasing absolute value, but

omitting the pole at z = 0. Then
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ik) JL    mj
(4.12*) pi > -£,_£, „_0f ±1, ±2, •.-,

j-i Pj

where j3_i = l and 0n = O for n < — 1. The integral (4.13) yields

(4.2*) llmjC—- l)^ l + r2(ii
,_i      V>2        /

and hence as r—>1 on a suitable sequence

(4.3*) _>,(-- l)_l+/Si

and hence p\ ^ — 1.

The integral (4.19) now leads to

2    ,              s       j8_i       |3-„+,
iSn+i ̂  —- (frr2 + 1   + —-—

yn+2 j.1 y*n

(4.21*)

T r„+2 V#» r«/ ti      V>2        /

Using (4.2*) and letting r—>1 gives

(4.22*) /?n+1 ̂  /3„_! - /3_„+i + (1 + pi) (p» + —\ n = 1, 2, • • • ,

and induction on n yields the upper bound in (4.17*) and (4.18*). The lower

bound in (4.17*) is trivial. The integral (4.23) gives

uCn) T k        /r2 \1       1    k   mj /rn       p\
(4.24*)   i8.^-li/51r»+l-2:«y(-T-l)+-E -(---)'

r"+1 L U      \p2j        /J      r" )=i pj V5       r»/

for « = 2, 3, •■•. As in the proof of Theorem 7, this gives the lower bound in

(4.18*).
We show that these bounds are sharp by exhibiting the extremal func-

tions. With p fixed, 0<p<l, and 0i> — 1, set 2s=p+p~x. Then the function

*.(*) = ~— + 0o-z+il+0i) -- '
z 1 — 2sz + zL

1 °°
=-+ ft, + 0iz + £ (1 + 0dBin, p)z»

Z „_2

belongs to TM*ip) and the upper bound in (4.17*) and (4.18*) is attained

for each n>l. The lower bound in (4.17*) is attained for the function

—<p,i~z). Finally consider the function
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<biz) =-+ Po ~ z + (1 + Pi)-      '
z 1 — 2z cos 0O + z2

1 " sin «0O
=-+ 0o + 0iz + £ (1 + 0i)-z".

z „=2 sin 0O

Here again </>(z)£TM *ip), and if 0o is chosen properly (different for each

index n) then for this function the lower bound in (4.18*) is attained.

As a corollary we have that if $(z)£TM* and if /3i= — 1, then <£(z) = — z

+0o —sr1. Theorem 7* contains as a special case a theorem due to Gel'fer

[4], who considered typically-real functions with only a single pole located

at the origin.

Theorem 8. Letfiz)STMip) have the form (1.1), then

(4.25) -1 ^ 63 - bl g p* + 1 + p-2 - 5(3, i>)

ared <Ae.?e bounds are sharp.

Proof. Since the coefficients are real, 63 —62 —&*_-B(3, p) by Theorem 7.

If 2s=p+p~l then (P,(z)-P.(-z))/2GTM(/>) and shows that the upper

bound in (4.25) cannot be decreased. For the lower bound recall that if

/(z)GTM, then so also is

(4.26) /(z)/(l - cfiz)) =z+ih + c)z2 + ib3 + 2b2c + c2)z3 + ■■■

for any real c. From Theorem 7, &3+2&2c+c2^/u(3) — —1. Taking c= —b2 in

(4.26) then gives the left side of (4.25). Since

(4.27) Fsiz) =- = z + 2sz2 + (4j2 - l)z8 + • • •
1 - 2sz + z2

and since b3 — bl = 4s2 — 1 — .(2s)2= —1, the lower bound cannot be increased.

The coefficients for functions in TM(J>) are unbounded as p—>0, yet the lower

bound in (4.25) is independent of p, just as in one part of Theorem 7. This

lower bound could also be proved by considering <£(z) = — /(z)_1 and applying

the condition 0i^ — 1 of Theorem 7*.

5. A representation theorem. We now show that any function in TM

(or TM*) can be represented by a slight modification of a suitable <(z) in TR

(regular in P). The proof follows closely one used in a similar situation due to

Schiffer and Bargemann, as presented by Wigner [16]. The precise results are

as follows.

Theorem 9. Let fiz) ST M. Then in E

(5.1) fiz) = nKz) + £ mjipT* - 1)-'    n    ,    2 >
1  _  (p. _|_ pjl)z + z*
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wherep^O, t(z)GTR, the sum extends over all poles pj off(z) in E, and —mj<0

is the residue of f(z) at pj. Further

(5.2) M+I>;(*r2-l) = 1.

Theorem 10. Let <p(z)GTM*. Then in E

(5.3) *(s) = - z-1 + ft, - z + pt(z) + £mteJ* - 1)- '
1 _ (^. + ^,ri)z + 22

(w'/ft /fo same notations as in Theorem 9). Further

(5.4) /x + £ w,-(/>r2 - 1) = 1 + 01.

Proof. Let us suppose (dropping subscripts) that f(z) has a pole p?*0

with residue — m<0. Then with 2s=/r~1+£, a(z)=m(p~2 — l)F,(z) has the

same pole p with the same residue — m, so that g(z) =f(z)—a(z) has in £ the

same poles as/(z), except that at z = p, g(z) is regular. Further, except for the

poles, g(z) is real on the real axis. We shall show that g(z) satisfies the condi-

tion 3g(z)3z^0 at the regular points in E, so that either g(z) =0, or g(z)/g'(0)

£TM. Now a(z) is regular in the entire plane, except for the poles at z = p <1

and z = l/p, and hence is uniformly continuous in any sufficiently narrow ring

domain containing \z\ =1. Further on \z\ =1, a(z) is real. Thus for any

e>0, there is an r<l such that for r^|z| <1, |3to(z)| <e/2. Suppose now

that for a certain z0 in E, 3g(z0) = —e<0, where 3z0>0. Consider g(z) on the

simple closed curve T consisting of a semicircle C: \z\ —r in the upper half-

plane, a set of disjoint semicircles Cj with centers at the poles pj^p of f(z),

passing above the poles, and appropriate segments of the real axis joining the

end points of Cj and C to form a simple closed curve (see Wigner [16, p. 41 ].)

On the real axis 3g(z) =0, except at the poles. In a neighborhood of z = pj^p,

a(z) is regular so that the radius of Cj can be taken so small that | 3fa(z) | < e/2

and hence 3>g(z) > — e/2 on Cj. Similarly on C. Hence a simple closed path V

can be found containing z0 on the interior, on which 3g(z)> —e/2. Since g(z)

is regular inside and on T this contradicts the assumption that 3te(zo) = — e-

Nowg(0) =0. If further g'(0) =0 then g(z)=0. Otherwise g'(0) =1 -m(p~2-l)

>0 and hence g(z)/g'(0)GTM. It is now clear, by iteration, that for any

finite set of poles the function

(5.5) gk(z) = f(z) - i>x#rs - W*)

satisfies the condition (1.2) in E, and hence is either identically zero or

(5.6) gi(0) = 1 - Hrrti(pj2- 1) > 0.

If f(z) has only a finite number of poles the proof of Theorem 9 is complete.
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If fiz) has infinitely many poles, then as a consequence of the inequality

(5.6) (or (4.3)), the sequence gkiz) converges uniformly on any closed domain

of E, not containing a pole of fiz). The limit function giz) satisfies the condi-

tion (1.2) and has no poles in p. It is either identically zero or g'(0) =ju>0,

and giz) =ntiz) where f(z)GTR, and n satisfies equation (5.2).

Theorem 10 is now an easy consequence of Theorem 9, for if <£(z)GTM*,

then by an argument similar to the one just given /*(z) =4>iz) —0o+z+z~1

satisfies the condition (1.2) and hence is either identically zero, or

/*(z)/(l + pi) = fiz) E TM.

Herglotz [7] gave a representation as a Stieltjes integral for functions

with positive real part in P. On the basis of this representation, Robertson

[12] pointed out that if /(z)£TR then there is a nondecreasing function

aid) such that

1    r T zdaOS)
(5'7) /M--I     .     9       .,   ,

t J o    1 — 2z cos 0 + z2

and he applied this formula in [14]. It was rediscovered by Goluzin [5] and

generalized by Li [10] to functions typically-real and regular in circular

rings.

On the basis of (5.1) and (5.7) it is easy to formulate a Stieltjes integral

representation for the functions in the class TM. We refrain from pursuing

the details, but from such a representation a large variety of results would

flow. To mention just a few, this would give new proofs of our Theorems 2, 3,

4, and 7, and in addition would give immediately the precise domain of

variability for the derivatives/(*'(z), for/(z) in TM.

6. A remark on univalent functions. Let Uip) denote the class of func-

tions of the form (1.1) univalent in P, with pole at z = p. Since the extremal

functions in Theorem 7 are also univalent, this theorem solves simultaneously

the problem of determining the sharp bound for bn for functions in Uip) in the

special case that all the coefficients are real. It is natural to conjecture that

for any /(z)£t/(£), \bn\ =P(w, p), a conjecture which contains the one

\bn\ ^n for regular univalent functions as a special case. In this direction

Komatu and Ladegast have proved independently that if fiz) _ Uip) then

\h\ Zp-i+p, [8, p. 272] and [9, p. 134].
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