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Introduction

Let J be a constant d by d matrix, let y1, • ■ • , y* be the components of a

column vector y, and let y'=dy/dt, where t is a real variable. Consider the

system of linear differential equations

(1) y' = Jy

(with constant coefficients) and the perturbed system

(2) y'= H+Git))y,

where Git) is'a continuous d by d matrix onO^K". It has been shown by

Perron (cf. [9; 10 ]) that if

(3) Git) -> 0    as    t -» oo

and if Xi, ■ • • , \d are the eigenvalues of /, then (2) has d linearly independent

solutions y=yiit), ■ • ■ , yait) such that y=yjit) satisfies, as J—►<»,

(4) log | yit) |   — CM + oil))t,

where p = Re Xy; for a sharper result, cf. [5]. It is known that if (3) is altered

to the condition that each element of th~'lGit) is of class L(0, oo) for a suitable

number h, depending on J, then (4) can be improved to an asymptotic

formula for each component of yit); cf., e.g., [5]. It is natural to ask for

theorems with assertions stronger than (4), but not as strong as an asymptotic

formula for the components of yit); for example, with an assertion of the type

(5) log | v(0 |   = pt + il + oil)) log t,

where / is an integer, OgZ</?*, and h* is the maximum of the exponents h in

the elementary divisors (X—X*)* for which Re ~kk=p.

Part I will deal with such theorems for general linear systems (2), in which

there is no restriction on the constant matrix /. Part II is concerned with

0(l)-variants of results of this type for the case when / has only one ele-

mentary divisor (of multiplicity d). It will be clear that corresponding results

can be obtained for the case of an arbitrary /. A specialization (§6) of the

results to the case when (2) is equivalent to a scalar differential equation of

dth order,
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*w +/iW*(d-1) + ■ • • +fa-x(t)x' +fd(t)x = 0,

gives theorems related to results of A. Kneser (for the case d = 2,fi(t) =0 and

ft(t) is real-valued) and theorems related to a result of de la Vallee Poussin

(for the case d is arbitrary, fi, • • • ,fd are real-valued and t is restricted to a

bounded interval).

Part III deals with analogues of ti.e results of Parts I and II for the case

when the linear system (2) is replaced by a nonlinear system

(2 bis) y'= Jy + F(l, y),

in which F=(F1, ■ ■ ■ , Fd) is a continuous vector defined for large t and all y.

In the Appendix, there will be considered the conditions of Lonn [8] as-

suring that all solutions of the real, singular, differential equation

dy/dx = (- y + x + F2(x, y))/(- x + F\x, y)),

in a sufficiently small circle x2+y2^e2, are tangent to the y-axis or that all

solutions are spirals. Lonn's sufficient condition for spirals is considerably

improved (and both of Lonn's results are extended so as to apply noncon-

servative systems

x' = - x+ F*(t, x,y),        y = - y + x+ F2(t, x, y)

as well). The final results are deduced from criteria of Kneser assuring that

x"+f(i)x = 0 is oscillatory or is nonoscillatory.

In what follows, the independent variable t is real. The given functions

and the solutions of the differential equations involved, unless otherwise

specified, are complex-valued. It will be clear that analogues of the results

can be obtained when all functions are restricted to be real-valued.

Part I. The general linear case

1. o(l)-theorems. Theorem (ii) below dealing with solutions of (2) will

have the following corollary involving asymptotic relations of the form (5):

(i) Let J be a constant d by d matrix and let (X—X(l))'iC1), • • • , (X— X(g))*(a),

where h(l)+ ■ ■ • +h(g) =d, be the elementary divisors of J. Let G(t) be a con-

tinuous d by d matrix on 0 St < °° satisfying, as /—» « ,

(6) fG(t) -* 0,

where K = max (h(l), ■ ■ • , h(g)). Then (2) has d linearly independent solutions

y=yn(t), where 7 = 1, ■ • • , g and 1 = 0, 1, • • • , h(g) — l, such that y=yn(t)

satisfies (5) with p=p(j).
If (6) holds with a number k>/j*, where h* ̂ h(j) for those j for which

Re ~\(j)=p, then th*~lG(t) is of class 7(0, oo) and (**) in [5] provides an

asymptotic formula for the components of a solution y=y(t) of (2) satisfying

(4).
In order to obtain finer results, it will be supposed that / is in a Jordan
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normal form. This is no loss of generality since the elements of /, Git) and

the components of yit) are allowed to be complex-valued. Suppose that (1)

can be written as

(7,i) y»' = \y'\

Oik) y'k' = \y>k + yi k~\ h - 2, • • ■ , h(J),

where X=X(j) = const.; j = l, • • ■ , g; hil)+ • ■ ■ +hig)—d, ym=y>k if

m=hil)+ ■ • • +hij—l)+k for k = l, ■ • • , h(J). The equations (7/&), k>l,
are missing if hij) =1. Correspondingly, if the element gwy(0 of GQ) is written

aS gmy=gjk c,8 if

m = hil) + ■■■ + hij- l) + k,        y = A(l) + • • • + hia - 1) + 0

for k = l, • • • , hij) and 0 = 1, ■ ■ ■ , hia) and the summation convention is

used for indices a, 0, then (2) can be written as

(8,-i) y'1' = \y'1 + gn asy"*,

(8,*) yih' = Xv'* + yi "-1 + gjk aay"*, k = 2, • • • , hij).

It can be supposed that the g elementary divisors of / are numbered so

that

(9) pil) = g pig),   where   pij) = Re \(j).

Let the distinct numbers in the set (9) be denoted by p1 <p2 < ■ ■ • <p{. For

a given integer m, where 1 = m g/, an integer j on the range 1 ̂ jtkg will be

denoted by p, q or r according as pij) <pm, pij) =pm or pij) >pm:

(10) pij) <, = or > pm    according as   j = p, q or r.

Let fe* be the maximum length of the "blocks" of / for which p(j) =pm,

(11) h^ = max hiq).

With reference to a particular value go of q and an integer k=ko on the

range 1 —k =^hiq), define integers jo, b by

(12i) jo = Kq0) - ko (so that 0 ^ j0 g %o) - 1),

(12i) b = K ~ jo (so that 1 ^ k0 = b = K),

and let the integers biq) be defined by

(123) biq) = to or i    according as    q = q0 or q ^ q0.

For w = 0, 1, • • • , jo, put

(13„) Dn= ilZ\yq Hq)+n \V\    where    £ =        E
V   <») ' <n) A(4)S6(3)+n
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(so that D\ is the sum of |y«o*o+»|2 ancj of terms |-y«*+n|s in which q^qo

and h(q)=b+n).
Using the notation (10)—(13), a refinement of (i) can be stated as follows:

(ii) Let G(t) be a continuous d by d matrix in 0^t< °° and, with reference

to a fixed p=pm and a fixed q = g0, let every element gjk ag of G(t) satisfy, when

UV>U->°o,

/. uv | g,k ag I t«<««-««*>+c«<«>-«Cfl)(A.-*c««»<8 -»0,
u

where e(jk) is k or 1 according as j = q or j^q and e(j) is 1 or 0 accordingas

j = qo or j^qo- Then the system (8) has Ep &(;>)+2<o) (h(q) — b(q) + l)

linearly independent solutions y=y(t) satisfying, as t—><», //je asymptotic rela-

tions

(150 **-y*(0 = »(A>(0) ^ j = P and j = r,

(152) *«»>-*y«*(/) = o(Do(t)) iik< b(q),

(15,) Z?.(0 ~ tnDo(t)/n\ if n = 1, • • • , /o,

(150 log Z>o(0 = ^ + "(log 0-

A condition sufficient for (14) is

(16i) th'G(t) -> 0    as    / -> oo

or, more generally,

/,ur th'-> | G(/) | dt -» 0    as    Z7F > 77 ̂  oo ,
£7

where | G(0 | is the norm of G(t) (that is, max |G(0y| for \y\ =1). The

asymptotic formulae (15) imply, as *—><»,

(17,) \y\ = (l+ o(i/0) | Z ly^l^1 ,

in fact,

(172) | E I y«Ma,~" I2}    = O(i/0 { Z I y« A(?)-n+112}    ,n=i,---,K- l,

where the sum on the left [right] is over the set of q for which h(q)—n

[h(q)=n-l],

(17,) y* = o^1-**) | 2  |y«*(«)|il if/*?,

(170 log | y |   = m* + O'o + o(l)) log I.
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This fact, theorem (*) in [5, pp. 51-52], and the superposition principle lead

to the following:

(i bis) If condition (16i) or (I62) is satisfied then any solution y= yit) of (8),

for which (4) holds, satisfies (17i)-(173) and the relation (174), for some integer

jo, 0 = jo = h*-l.

2. Proof of (ii). It can be supposed that

(18) Xiq) = 0.

for otherwise the change of dependent variables

g-\(q)tyqk —¥ yqk g—ptyjk -^ yjk (j ^   q\

transforms (8) into a system of the same type in which gjk aa is replaced by

ewgjkc,a, where B = Bjkaa is a real constant.

Consider the change of independent variables t—*s defined by

(19) 5 = log t ids = dt/t),

and the change of dependent variables

(20) y = Qz

given by

k

(21) y"k = <*-»<«' JJ z«n/(* ~ »)!»
n—1

(22) y'k = t1-bz'k if j ?*■ q,

where b, biq) are defined by (12). Then (8) is transformed into the system

(230                                   zqk = ibiq) - k)z«k + htk aaz°a,

and, iij?*q,

i* = iXt-1- b)z* + hn aaz"\
\23i)

z'k = iXt - 1 - b)z'k + tz> k~1 + hjk aaz"B,

where H= ihik aa) is given by

(24) His) = 1Q-HQ it = e>),

and z =dz/ds =tz''; cf. [5, pp. 64-66].

The assumption (14) implies that

/,u+v
\hjkaa\ds->0   when    U + V> U-> «>;

u

cf. [5, pp. 67-68]. Note that the coefficient of zqk in the principal term of

(23i) is 0 if and only if k=biq), and that the real part of the coefficient of
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z'k in (232) is essentially const. /, where const. ^0 according as j = r or j = p;

cf. (10) and (18).
Thus (III) in [5, p. 61 ], implies that the system (230 — (232) has a unique

solution z = z(s) satisfying, for a sufficiently large S, a set of (partial) initial

conditions

ik ik
z   (S) = zo ,       j = p    and   j = q,k = b(q),

where Zq are arbitrary constants subject to

Ev  i   p*ij    ,    v»    v*     i   «* i2   „    v»  i   e '■(a) i2
2-, I 2o   I   + 2^    2-,    I zo   |   < «2^ I Zo

V       k q      k>b(q) (0)

for a sufficiently small e>0, and satisfying, as s—> oo, the asympotic relations

(260 log D(s) = o(s),   where   7?=  { 2 | z<6<*> |2}     i
\   (0) /

(260 ^ - o(D(s)) if (jk)*(qb(q)).

By virtue of (21) and (26), it follows that, ast=e"—*oo,

(270 D0(t)~D(s),

(270 i<>M-kyqk = 0(D(s)) it k < b(q),

(273) ^>n(0 ~ t»D(s)/nl

and, by virtue of (22), that

(270 th~ly'k = o(D(s)) ii j = p and 7 = r.

In view of (19), (26), and (27), the assertion (ii) follows.

Part II. One elementary divisor

3. A lemma. The proof of (ii) above (or rather the proof of the theorem

(III) in [5] on which (ii) depends) suggests that (ii) has 0(l)-variants.

These variants will be examined in Part II in detail when J has only one ele-

mentary divisor (of multiplicity d) and so, without loss of generality, it can

be assumed that the eigenvalues are 0. In this case, (1) has the form

(28) y1' = 0, y2' - y\ ■ • • , y« = y"-\

The O(l)-analogue of (III) [5, p. 61], which will be needed below, will first

be deduced.

Let K = K(s) be the diagonal (not necessarily constant) matrix of coeffi-

cients of the system

(29) z1 = \Ks)z\ ■ ■ ■ , zd = \d(s)zd,

which will be written as
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(30) z = Kis)z, z - dz/ds

and let

(31) p\s) = •• • = pdis),   where   p> = Re X'.

Let ji, ji denote a pair of integers satisfying l^ji^ji = d. An integer

,7 = 1, • • • , d will be denoted by p, q or r according as j<ji, ji^j^ji or

jt<j-

(32) j = p, q or r   according as   j < ju /, =" ; = ji or /, < j;

so that the set of integers p and/or r can be empty, but the set of integers q

is not. Let

(33) p = min p"   and   v = max p",

so that p=p' H j=ji and p=p' if j=ji, and let there exist a constant c>0

such that

(34) p'^p — ciij = p   and   m1 = v + c if j = r for large s.

Finally, let

(35) M=E|zp|2-       £ = EM2.       Ar=EJ2r|2.

so that

(36) [ z |2 = M + L + N.

For a given number 6 on the range

(37) 0 < 6 < 1,

let 5 = 5(0) denote the number

(380    S = 1/2 - (1 - dy2/2; so that 0 < 5 < 1/2 and 25(1 - 8) = 6/2.

Let ijbea number on the range

(382) 0 < j? < 1/2 - 5

and let

(383) e = 2(5 + v),    so that    0 < « < 1.

Lemma 1. Let K = Kis) be a continuous idiagonal) dby d matrix on0£s<<x>

and let (30) reduce to (29). Let there exist integers ji, ji, where 1 ̂ ji ^ji^d, and

a constant c>0 such that (32)-(34) hold. Let H = His) be a continuous d by d

matrix on 0 =^s< oo with a norm | His) \ satisfying, for some 6 on the range (37),

(39) | His) |   ^ 6c/2 for large s
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or, more generally, for some i\ satisfying (382), let

/,u+v
I H(s) I ds < BcV/2 + v for large UandU + V> U.

u

Finally, let z0, where q=jx, • • • , jz, be a set of jz—jx + l numbers, not all 0.

Then, if S is sufficiently large, the system

(40) z = (K(s) + H(s))z

has a solution z = z(s) satisfying the (partial) set of initial conditions

(41) z'(S) = 0; (42) z"(S) = z*

and the asymptotic formulae, as s—>oo,

(43) lim sup (M(s) + N(s))/L(s) = e/(l - t),

where e is given by (38), and

(440 lim inf 5-1 log L«»(*) = p - 6c/2(l - e)1'2,

(440 lim sup s-1 log L1'2^) ^ v + dc/2(l - e)1'2.

The number e in (43) awd (44) can be replaced by e/2 ifjx — l or j2=d (that is,

if the set of integers p or r is vacuous).

It will be clear from the proof that (41) can be replaced by z"(S) =Zq,

where zv0 are arbitrary numbers such that Ep I zl\ V E? 12o |2 is sufficiently

small.

The lemma is a variant of a theorem of Perron ([9, pp. 141—142]; cf. [5]).

It is clear from Perron's result [9] (or from [5]) that Lemma 1 has an

analogue for the case when K(s) is not diagonal but is, for example, a tri-

angular matrix. Lemma 1 will be applied to obtain 0(l)-variants of (i) in

the case (28) of (1). It can be used to obtain 0(l)-variants of (1) in the

general case (7) of (1), by first using the change of variables (19) and (21)-

(22) in (2) and then employing a device of Perron which, in this case, is

another change of dependent variables z—>w, defined by zqk = wqh z'k=akw'k

if j^q and a>0 is a sufficiently small number. The avoidance of the use of

successive approximations in the proof of the lemma makes possible the

extension of the proof to nonlinear systems (cf. Part III below), without the

assumption of Lipschitz conditions as in [9].

It is clear from [ll] that Lemma 1 also has an analogue if the constant

c>0 in conditions (34) and (39) is replaced by a continuous function c = c(s)

>0 satisfying f"c(s)ds = 00. But this generalization can be deduced from

Lemma 1 by the change of independent variables 5—H defined by dt = c(s)ds.

Remark 1. The solution z = z(s) of (40) satisfying (43)-(44) can be chosen

to be independent of 6, in the sense that if (39 bis) holds for arbitrarily small
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0>O (so that e>0 be chosen arbitrarily small), then (43)-(44) hold with

0 = €=O;cf. (Ill), [5, p. 61].
Remark 2. It will follow from the proof that the assertion (43) remains

valid if (39 bis) is relaxed to

/,u+v
max gkis)ds < 6cV/2 + v for F > 0 and large U, k = 1, 2,

u

where gkis) =gkis, z) are defined by

(460      giis) = 2 Re |(i + N) £ £ hjkzkz' - M  £   £ h]kzkz\ ,

(462)      gtis) = 2 Re i.N   £    £ M**' - (£ + 10 £ £ ***»»li ,
^        J^P.a    A—1 ;=tr  A=«l /

and where the max in (45&) refers to the maximum with respect to z on the

respective sets in the z-space:

(470 1*1-1    and    1 - «/2 = L + A^ = 1 - 5,

(470 | z | = 1    and 8 = N ^ e/2.

(In particular, the inequalities (45*), where the max refers to \z\ =1, are

sufficient for the assertion (43).)

It may be remarked that if \z\ =1, then | gkis) | = | His) \ even if the Re

is omitted in (46*). For, by Schwarz's inequality, the absolute value of the

expression 2{ • • • } in (460 is majorized by

2(i + N)( IZ\ £ hikzk\y  M™ + 2m( £ I £ hjkzk\y \l + AO1'2.
\ j=p I fc=l I / \j=q,r I k=l ' /

Another application of Schwarz's inequality shows that this quantity is, in

turn, majorized by

t     d    I     d |2\    1/2

2(£ + Nyi2Ml<2\ ES *****   >     iM + L + AO1'2.
\  j_l I k-l I )

Since 2(L + Ar)1/2M1/2 = Af+L+A7'= |zl2, the last expression does not exceed

|*|*|.H'*|1'*|«|. Hence |g,(5)|  ^\His)\ ii \z\ =1.
Similarly, it can be shown that | giis) | = | His) \ if \z\ = 1.

Remark 3. It will also be clear from the proof that the assertion (43) and

the assumption

Jv 1 d \ 111
1 EE I hM    ds = 6c/2
(   i=q *_1 J

or
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/v r d -v  1/2
max Re < E E hqkzkz">    ds = 6c/2
1*1-1 I    q    k-X )

assure (44).

4. Proof of Lemma 1. This will only be indicated. Since

( \z> |2)- = (z')-z' + z'(z')' = 2 Re z'z',

it follows from (31), (32), and (40) that

d

(490 L = 2pL + 2 Re E E hqkzkz\
q    k=l

d

(49,) L = 2vL + 2 Re E E ^*2*25
9     *-l

and

(500 M ^ 20* - c)M + 2 Re E E ^z*2".
p   t-i

d

(502) iV ̂  2(k + c)N + 2 Re E E *r»«*2r.
r     fc-1

Corresponding to a solution z = z(s)^0 of (40), the function

(51) v = v(s) = (L + N)/(M + L + N)

satisfies

(52) Og»|l,

is identically 1 when there are no integers p, and otherwise satisfies the Ric-

cati differential inequality

* = 2cv(l - v) - 2 Re { • • • }(M + L + N)~2,

where { • • • } is the expression in (46i). This last fact follows from

v = {(L + N)-M - (L + N)M)\/(M + L + N)2 and

(L + N)M/(M + L + N)2 = v(l - v).

The definition of gx(s) =gi(s, z) in (46) shows that the differential inequality

in the last formula line can be written as

(53) v = 2cv(l - v) - gi(s).

Similarly, the function

(54) w = w(s) = N/(M + L+N)

satisfies
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(55) 0 = w = 1,

is identically 0 when there are no integers r, and otherwise satisfies the Ric-

cati differential inequality

(56) w = 2cw(l - w) - giis).

In view of the remarks following (47), the assumption (39 bis) implies that

/,u+v
gkis, zis))ds < dcV/2 + v,

a

if U is sufficiently large, U+ V> U and, according as k = 1 or k = 2,

(580      (5 = )1 - e/2 = v = 1 - 5      or      (582)      5 = w = e/2(^ 1 - 5)

holds on U = s=U+V. Since (1-5)-(1-e/2) =77 and e/2-5=?j and since

(380 and (580, (582) imply that 2ra(l -v)=dc/2, 2cwil-w)=Bc/2, it follows
that if

(590 viso) = 1-5 or (592) u>(s0) = e/2

for some sufficiently large s=so, then

(600 vis) = 1 - e/2 or (602) wis) = 5

for s = s0; cf. the proof of the lemma [6, §3].

An adaptation of the proof of (*) in [5] (in which the assertions involving

(59)-(60) play the role of Lemma 2 bis [5, p. 54]) shows that (40) has a solu-

tion z = zis) satisfying (41)-(42), for a sufficiently large S, and that

(61) vis) = 1 - e/2,        wis) = e/2 (5 = s < oo).

In view of (51) and (54), this implies that iL+N) = (l-«/2)(Z+AT+M)
and N^ie/2)iL+N+M); so that Z- = (l -e)iL+N+M), that is,

(62) N + M = (L/il - e) (5 = s < oo).

This proves (43). Note that if Af = 0 or M=0, then e can be replaced by e/2

in (62), hence in (43).

By (490 and Schwarz's inequality,

L=2pL-2\H\ \z\ L1'2.

Since, by (62), \z\ =iL + N+M)1'2 ^L1/2/(l-e)1'2,

L = i2p - 2 | H |/(1 - e)1'2)!,,

the relation (440 follows from (39 bis). The relation (442) can be obtained

similarly.

5. The system (2), when (1) is (28). Before applying Lemma 1 to the

situation at hand, it can be noted that (ii) implies the following:
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(I) Let (I) be the system (28). Let G = G(t) be a continuous d by d matrix

on 0 — t < oo satisfying

(63) /<£(/) -> 0    as    < -» oo

or, more generally,

nUV

(63 bis)     (1 + log V)-1 I      t*-11 G(t) \ dt -> 0   when    UV > U -> oo.
J u

Then, for m = l, ■ ■ ■ , d, the system (2) has a solution y=y(t) the components of

which satisfy, as /—> =°,

(640 log | ym(t) | = o(log 0,

(642) y''0 = o(l'~m\ y(t) | )        if j < m,

(640 y'(t) ~ t>~my(t)/(j - m)\ if j > m.

In order to obtain an 0(l)-variant and refinement of this result, by the

use of Lemma 1, introduce the following notations: Let Q = Q(t) denote the

triangular matrix of the affine transformation

»'
(65) y = Qz,   where    y> = t'~l E zk/(j - k)\

and let

(66) 77 = tQr^GQ.

In terms of the matrix H=(hjk), an integer m (l^m^d), and a number

0(O<0<1), put

/ m—1 d       d d m—1    d \

(670    gi(t) = max 2 Re ^ E I 2" |2 E E ^kz' - E I 2" |2 E E hikzkz\ ,
v. n=l j=am A;=l n=m j=l  fc=l /

/    m d d

g2(t) = max 2 Re { E I 2" |2   E    E ^;*2*z'
I. n—1 j—m+1    it=l

(672)

"      E      |2"|2EE*,-t2l2'},
n=m+l j=l  fr=l J

where the max refers to a maximum with respect to z on the respective do-

mains

d

(680 I 2 | = 1    and    1 - «/2 g E I 2' |2 ̂  1 - 5,

d

(682) 1 2 I = 1 and 8 g   E   I 2' |2 ̂  e/2,
f-m+l
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and e, 5 are defined, in terms of 8, by (38).

(I*) Let (1) be given by (28). Let m be an integer on the range l=w = d.

Let 8>0 be such that the number 5 = 5(0) in (380 satisfies

(69) 0 < 25(6) < (1 + am)'\   where   a) = £ (1/m!)2.
n=l

Let G = Git) be a continuous d by d matrix with the property that the functions

gkit), defined by (66)-(68) for the given m and 0, satisfy

(70) g^t) = 0/2 for large / (£=1,2)

or, more generally, let there exist an r\ > 0 with the properties that (382) holds and

that (383) satisfies

(710 0 < e < (1 + al)~l

and

t-tgtiQdt < 6 log 7/2 + r, for large U and UV > U.
u

Then (1) has a solution y=yit) satisfying, as t—>qo,

(720 lim sup tw>~i | y>/ym \   = e* <x,+i> j < m,

(722)      lim sup | ij — m)\tmr~>y'/ym — l\   = e*(a,-+i(; — m)\ + am),       i > m,

where

(73) e* = e1'V((l - e)1'2 - e1'2^).

If, in addition, it is assumed that, as V—* °°,

r11 Hit) | dt = e/2/ 0 = c = 1,

then

(75) lim sup | log | ymit) \ /log t \   = c/2(l      e)1'2.

Remark. The inequality (710 is equivalent to

(76) 0 < eal/(l - e) < 1.

If m = l, then ctm = 0 and (69) is equivalent to O<0<1. In the case m—d>l,

conditions (69), (710 can be replaced by

(69 bis)    0 < 5(0) < (1 + a2,) - 1,    (71i bis)      0 < e/2 < (1 + c$)-\

respectively. In both of these cases (w = l, m = d>l), e can be replaced by

e/2 in (73) and (75). This will be clear from the proof and the last part of

Lemma 1.
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In view of the remarks following (47), the functions gk(t) satisfy |g*(0|

^77(01. It is readily verified from (65) that

1 jfl

t 1/1! 1
(2(0= •_ ; ;      •

' td-l\ Yl/(d- l)\   l/(d - 2)\ ■■'■ I

where the first matrix on the right is diagonal and the second is e? (cf. [5,

pp. 65-66]); so that, if G=(gjk),

(77) hik = t2Z22 (-D'-mtn-mgmn/(j - m)\(n - k)\.
m=l n=k

Since n — m^d— 1, it follows that, as /—► oot

(78) | 77(0 |   =0(td\G(t)\).

This makes it clear that if (63 bis) is satisfied, then (7I2) holds for arbitrarily

small 0>O. Hence (I) is contained in (I*); cf. Remark 1 following the state-

ment of Lemma 1.

In order to prove (I*), make the variation of constants (65) in (2) and

the change of independent variables t—»s=log t. Then, since (1) is given by

(28), the system (2) becomes

(79) z = (K + H)z,   where    z = dz/ds   and   ds = dl/t,

77 is given by (66) (cf. (77)) and K is the diagonal matrix with the diagonal

elements X1=0, X2=— 1, • • • , \d = l—d. (Note that the inequalities cor-

responding to (31) are reversed, which explains an apparent discrepancy in

(67) and (46).)

In order to apply Lemma 1, choose jx =jt = m; so that p = v = l — m,

M=E|2*|2.       L=|zm|2,       W=E|2*|2.
k<m fc>m

and c can be chosen to be 1. Since ds = dt/t (and 5 = log 0» it follows from

Lemma 1 and the remarks concerning (46), that (71) implies for (79) the

existence of a solution z = z(s) with components satisfying

(80) E  I zf |2 S e I zm |2/(1 - «) for large t

(or large 5 = log 0 (cf. (43)) and that (80) and (74) imply that

(81) lim sup I log I z™(0 |/log t - (1 - m) \   = c/2(l - e)1'2.
t—»oo

By (65), the definition of ay in (69), and Schwarz's inequality, the solu-
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tion y=yit) of (1) corresponding to z=zis) satisfies

(I \l/2

£ \zk\2)    a]+i.

Hence, by (80),

(820 | f*-'y* |   = tinoij+i | zm | /(l - e)1'2 if 7 < m.

Similarly,

(822) |-*»—y»-f»|   = e1'2^ zm|/(l - e)1'2

and

(823) | /x->y - zm/0' - w)! [   ^ «1/2«*n | zm | /(l - e)1'2 if j> m.

The inequalities (76) and (822) imply that

(820 | zm |   = f1— | y» | e* (1 - e)1"/*1'*,

by virtue of (73). The relations (72) follow from (820, (823), and (824).

Finally, (75) follows from (81) and (822). This proves (I*).

6. An equation of dth order. Consider a linear differential equation of

dth order,

(83) *«> + Mt)x<*-» +■•■ + fd-ii^x' + fdit)x = 0, d>l,

for a scalar function x, wheref'/(<) is continuous for 0 = t < <» andj = 1, • • • , d.

On defining y = iy1, ■ ■ ■ , yd) by

(84) yd = x,        y*-1 = *',•••, y* = *<«-»>,

the equation (83) becomes a system (2) for y = (y1, • • •., yd) in which (1) is

(28) and Git) is the matrix in which the first row is

(— fit ~fi, • • • , —fd)

and in which the other elements are 0. Correspondingly, the first row of the

matrix Hit) in (66) is

(- IZU'/iJ - DI, - iZU'/ij - 2)I,---, - t*fd)
\        f-l j-2 /

and thej'th row is ( —1)'+1 times the first row; cf. (77). Hence (67) becomes

/ m—l d d m—1 \

(850 giit) = max 2 Re git; z) I £ | z» |2 £ (- 1)V - £ | z» \2 £ (- l)>z'| ,
\ n=l j=>m n=m j—1 /

(852) giit) = max2Re* (*;z) j £ | z« |2   £   (- l)ty - £   |z»|2 £ (-l)'zJ> ,
vn=l jUm+1 n==m+l j=l /

where
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(850 l(/,«) = St/^V(»-*)!

and the max in (850, (852) refers to the maximum with respect to z = (z1, • • • ,

zd) on the respective sets (680, (682).

Thus, (I) has the following corollary:

(II) In(83),letfi(t), ■ ■ ■ ,fd(t) be continuous functions on 0 = t<<x> satisfying

(86) I tfx I  + • • ■ + \tdfd I -> 0    as    t -> 00

or, wore generally,

(|/i| + I </»! + •••+ I^M^/^o

when    UV > U -» 00.

77fe«, /or m=0, 1, • • ■ , d — 1, the differential equation (83) has a solution

x=x(t) the derivatives of which satisfy

(870 log I *(""(0 I   = «(log 0,
(872) *(/)(0 = o(/m-'| *(m)(0 I ) if j = »+ 1,   • • • , d,

(870 *(,)(0 ~ <m-J'x<m)(0 if i = 0, 1, • • • , m — 1.

It is understood that (87) implies that x(-m)(t) and, therefore, x(m_1), • • • ,

x', x do not vanish for large t. A similar remark applies to (88) below.

(I*) implies the following 0(l)-variant of (II):

(II*) Letfx(t), • ■ • , fd(t) be continuous for 0g/<oo. Let m be an integer

satisfying O^m^d — l and let 0 be a number satisfying (69) when m is replaced

by d — m. Let the functions (85), in which m is replaced by d — m, satisfy (71).

Then (83) has a solution x=x(t) the derivatives of which satisfy, as t—>oo,

(881) lim sup /'-m I x^/xlmi I   = e* an-j-u d> j > m

(882) lim sup I (m - j)!/'_m*0'V*(OT) - 1 |   •= e*(ad_,-_i(w - j)\ + ad-m),

0 = j < m,

where e* is defined by (73) in which m is replaced by d — m. In addition, if, as

7-* oo,

/V  l    d    I     d |2\    1/2

\ E   E/n<n_1/(« - /)!   \    dt = c/2,   0 = c=l,
\  ,~1 I n=j 1 /

then, as t —><x>,

(90) lim sup I log I x<m> | /log t \   ^ c/2(l - e)1'2.

Cf. the remark following the statement of (I*) which becomes applicable

to the cases w = 0, d-l>0 of (II*).
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When d = 2, then g!(<)=0 or giit) =0 in (85) according as m = l or m = 2.

If (83) is of the form

(91) x"+fit)x = 0

(so that/i(0—0 and fiit) =fit)), then, according as m — 1 or m = 2, the func-

tion giit) or giit) is a maximum of the function 2 Re t2/(0(z1+z2)2z1z*, over a

suitable domain in the (z1, z2)-space. Note that | (z1 +-a2)2z1a2[ =i (| z112

+ |z2|2)2. When m — 1 (and so, d — w = l), the condition (69) is merely to the

effect that O<0<1; when m=Q (so that d — m = 2), the condition (69 bis)

is also equivalent to O<0<1. Thus the conditions of (II*) for the case (91)

of (83), with d = 2 and m = 0 or m = l, are satisfied if 4/2|/(0| = d<l. This

makes it clear that (II*) can be considered as a generalization of a theorem

of A. Kneser which asserts that if fit) is real-valued and satisfies 4/2/(2) = 1

for large t, then (91) is nonoscillatory; cf. the Appendix.

Assertion (II*) implies more than the mere fact that (91) is nonoscillatory

when 4/2|/(/)| ^0<1 for large t. Under this condition, (91) has a pair of

linearly independent solutions which vanish for large t and satisfy, as t—* °o,

lim sup | tx'/x — l\   = 7(0)    and   lim sup | tx'/x \   = 7(0),

respectively, where 7(0) is a constant (which satisfies 7(0)—*0 as 0—K)); cf.

(88). When/(0 is real-valued and 4*2|/(/)| =0<1, it can be shown that 7(0)

can be chosen to be the number 5(0)(<1) in (380; cf. [l, p. 570] and [3,

p. 722].
For arbitrary d, the conditions (69)-(70) of (II*) are satisfied for every

m = l, 2, • ■ ■ , dii (380 satisfies (69) for m = d (that is, if

(92) {1 - (1 - 0)1'2} {l + ( £ (l/«02)}  < 1

holds) and if

(93) id £  £ fnit)t"/in - j)! \\      = 6/2 for large t.

In fact, the expression on the left of the last inequality is

lid I   \   1/2

{££ hM   ,
\ i-l k-l I   /

which is a majorant for the norm | Hit) \ of the corresponding matrix (66);

cf. the remarks following (84). In particular, (92) and (93) assure that no solu-

tion x=xit) ^0 of (83) has infinitely many zeros on 0 = t< 00.

It can be remarked that there seems to be some connection between the

criterion (93) and a theorem of de la Vallee Poussin dealing with an equation

(83) on a finite interval; [12], cf. [7].
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Part III. The nonlinear case

7. o(l)-theorems. The consideration of this part will deal with the transfer

of the results of Parts I and II from the linear system (2) to the nonlinear

system

(94) y' = Jy+ F(t, y),

in which F(t, y) is a continuous o!-dimensional vector function of (/, y)

= (l, y1, ' • • i yd) for large t and small \y\. An analogue of the theorems (i)

and (ii) on linear systems is the following theorem (in which the notation of

(7), (9)-(13) is employed).
(*) Let the principal part y' = Jy of (94) be the system (7). Let p=pm (in

(10)-(13)) be negative. Let F(t, y) be a continuous vector defined for large t and

small \y\. For some fixed 0>O, let there exist a function f(t)=ft(t) satisfying,

for large t,

(95) \F(t,y)\  ^f(t)\y\

on the y-set

(96) e"'r" ^ | y|   = e»nh*-l+l>

and, as t—>oo,

(97) tk>J(t) -► 0

or, more generally,

tk*~lf(t)dt -> 0   when    UV > U -► <».
u

Then, if T is sufficiently large there exists an { Ep h(p)+ E(0) Ql(Q))~~b(q)
+ 1)}-dimensional set fl = Qr in the y-space such that if y0 is a point of fl, then

(94) has at least one solution y=y(t) on T = t< oo satisfying the initial condition

y(T) =y0 and the asymptotic relations (15i)-(150 as t—*oo.

A partial converse of (*) is given by:

(*bis) Let J, p, F(t, y) satisfy the conditions of (*), with the strengthened re-

quirement that the inequality (95) holds on the (t, y)-set

(96 bis) e<»-e)t =  \ y\   = e<"+S)'

(which contains (96)). Let y —y(t) be a solution of (94) satisfying (96 bis) for large

t (for example, satisfying (4) as t—»oo). Then (17i)-(173) and the relation (170,

for some integer j0 (O^jo^A* —1), hold.

As to the existence of solutions y=y(t) of (94) satisfying (4), see Part I in

[6].
Note that in the conservative case, where F(t, y) = F(y), the conditions

(95)-(96 bis), (97) are satisfied if
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(98) (-log | y|)*»|F(y)|/| y|  -»0    as    y-+0

(since —log \y\ ^ Const, t as /—><», when (96 bis) holds).

Consider the change (19) of independent variables and change of depend-

ent variables y—+z given by

k

(990 yqk = «*<«>'<*-*<«> £ z»»/(* - »)•'.
n=l

(992) y'k = e'"*1-4*'* if j ^ q.

Note that (99) is the variation of constants used in the proof of (ii); it com-

bines the change of variables which accomplishes the reduction (18) and the

change (20)-(22). Let (99) be denoted by y = Qz. Then (94) becomes

(100) z = Kis)z + tQ-Wit, Qz), I = e;

where the principal part, Kis)z, is the same as in the system (23).

After this change of variables, assertion (*) above can be deduced from

(*bis) and the Remark in §10, [6], as (ii) above was deduced from (III),

[5, p. 61 ]. This deduction involves a detour, however, along the lines followed

at the beginning of §19, [6]. Note that if z = z(s) is a solution of (100) satisfy-

ing

(1010 s~' ;g \D\  £ s',

(1012) | «'* |  S d)   if   0'*) H (?*(«))

on some s-interval, where D=D(s) is defined in (260, then the corresponding

solution y=y(t) satisfies inequalities of the type (96) if e = e(0)>O.

Write (94) as a linear system ("2), in which the matrix G(t)=G(t, y) de-

pends on y and is defined by

(102) G = (g*) = iF'it, y)ykl | y |2), y * 0,

where F1, • • • , F* are the components of F. Thus, if z=zis) is a solution

of (100) on some ^-interval satisfying (101) and y=y(t) is the corresponding

solution of (94), then (95)-(96) imply \gjk(t, y(t))\ kf(t)- The change of
variables (19) and y = Qz, given by (99), transforms (94) into (100) which can

be written as a linear system, say (40), in which the matrix H = H(s, z) is

given by (24) and (102). Correspondingly, it follows that | H(s, z)\ = Const.

tKf(t) when t = e' and z satisfies (101).

A comparison of (40) and (100) shows that | Hz\ =t\ Qr^Q, Qz) \. Hence,

the perturbation in (100) satisfies

(103) 11 Or^t, Qz) |   = Const. th*f(t) | z |    when    (101) holds.

It follows from the deduction of (*), just sketched, that solutions z = z(s)

of (100) leading to solutions y=y(t) of (94) satisfying (15) can result by an
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assignment of the initial values zpk(S), 1 — k — h(p), and z'*(5), b(q) ^k^h(q),

for sufficiently large S, where the (EpMP)+E(o) (Hq)—b(q) + l)) numbers

zpk(S), zgk(S) are subject to certain inequalities, but are otherwise arbitrary.

(*bis) above is a consequence of assertion (i bis) in §1, since (94) can be

written as a linear system (2) in which G(t) =G(t, y) is given by (102).

8. 0(l)-variants. It is possible to obtain an analogue of (I*) for the non-

linear system (94) when the principal part (1) of (94) reduces to (28). To

this end, the analogue of Lemma 1 will be indicated for the case where (40)

is replaced by a nonlinear system

(104) z = K(s)z + B(s, z).

Lemma 2. Let K = K(s) be a continuous (diagonal) dby d matrix on0^s< oo

satisfying the conditions of Lemma 1. Let p and v, defined in (33), be constants.

Let B(s, z) be a continuous vector function of (s, z) for large s and z satisfying

exp 0* ~ Bc/2(l - *yi2)s =  \z\   = exp (v + 6c/2(l - e)1'2)*,

(M + N) = e77(l - e),

and let

(106) | B(s, z)\   = Be| z| /2

hold. Let Zo, where j = p or j = q, be numbers satisfying

(io7o EhoT^E^r,
p q

exp(2p-ec/(l-t)m)S<22 |zoT
{iv/2) q

< (1 - t) exp (2v + 6c/(l - e)l>2)S.

Then, if S>0 is sufficiently large and £>0 is sufficiently small, there exists at

least one solution z=z(s) of (104) on S = s<«> satisfying the (partial) set of

initial conditions (41)—(42) and the asymptotic formulae (43), (44) as s—>oo.

The proof of Lemma 2 will be omitted. It involves a careful rewriting of

the proof of (*), [6, §2-8]. This procedure shows that condition (106) can be

replaced by the inequalities

(108*) gk(s) = Oc/2, k = 1, 2, 3,

where

(1090     gi(s) = max 2 Re <(L + N) E B"z" - M E &zK/\z\\
\ p i=q,r )

(1090     gi(s) = max 2 Re <N E BW - (L + M) E-Br27 / I 2 K
V.      j—p.« r /



1956] PERTURBATIONS OF LINEAR SYSTEMS 21

(1090 «»(*) = max 2 Re | E B"z"\ / \ z |2,

where B'=B'(s, z) is the jth component of B=B(s, z), the max in (1093)

refers to the maximum with respect to z on the set (105) and, in (1090,

(1092), to the common part of the set (105) and the respective sets

C110,) 1 - e/2 £ (L + N)/(M + L + N) = I - 8,

(1100 8 = N/(M + L + N) S e/2.

If the principal part (1) of (94) reduces to (28), the change of variables

t—«=log t and (65) transform (94) into (104), where

(HI) B(s,z)=tQ-Kt)F(t,Qz), t = e>,

and K = K(s) is the constant diagonal matrix with diagonal elements X1=0,

Xl= —1, • • • , Xd = l— d. Hence, K satisfies the conditions of Lemma 1 if

ji=j2 = m, p = v = l—m and c = l. Thus, if (111) satisfies the corresponding

conditions of Lemma 2, an analogue of (I*) results.

Appendix. On a theorem of Lonn

Consider the real, binary case of (94) and suppose that J has a double

elementary divisor, say, that (94) is of the type

(112) x> - - * + F\t, x,y),        y = - y+ x + F2(t, x, y),

where x, y are real scalars and F= (F1, F2) is a continuous binary vector satis-

fying

(113) \F\/(x2 + y2yi2-+0   as    (/, *, y) -> (oo, 0, 0).

Let (x, y) = (x(t), y(t)) ^Obea solution of (112) which is defined for large t

and satisfies (x(t), y(t))-+(Q, 0) as t-+<x>. Then, as pointed out in [4, p. 501 ],

(x(t), y(t)) has the properties that, as t—► <»,

(114) 2-1 log (*2 + y2) ~ - I

and that either

(115) x(t)/y(t) -> 0    or    arc tan x(t)/y(t) -* — oo.

In (115), it is understood that arc tan x(t)/y(t) is chosen as a continuous

function. In the general case (or even in the conservative cases) of (112), the

alternative in (115) can depend on the particular solution (x(t), y(t)) [2,

p. 123], but is independent of the choice of the solution in the linear cases of

(112) [4, p. 499]. It is clear that if

(116) y(t) ?* 0 for large t,

then the first alternative in (115) must hold for the given solution.
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In view of Kneser's theorem mentioned after (91), it is natural to ask

whether, when x, y, Fl, F2 are real, there is a unilateral inequality (involving

F1, F2) which assures that (116) (hence, the first alternative in (115)) holds

for every solution of (112) satisfying (114). In this direction, the following

will be proved:

(t) Let F1, F2 be real-valued continuous functions defined for large t and real

small x and y. In addition to (113), assume that

(117) 4/2(*F2 - yF1)/(x2 + y2) = 6 < 1

holds for large t on a (t, x, y)-set

(118) |z|   <||y[,       e-^+f" <   |y|   <e-(1-f"       (£ = const. > 0).

Then every nontrivial (^0) solution (x, y) = (x(t), y(t)) of (112), defined for

large t and tending to (0, 0), as t—*<x>, satisfies (114) and the first alternative in

(115).
In the conservative case, (117)—(118) can be replaced by the requirement

that

(119) (xF2 - yFO log2 (x2 + y2)/(x2 + y2) = 6 < 1

on an (x, y)-set

(120) | x |   < £ | y |,        x2 + y2 < £2 (£ = const. > 0),

since (118) implies that the ratio 422/log2 (x2+y2) is between (1— £)~2+o(l)

and (l+£)~2 as <—»<».

If (112) is conservative and (117)-(118) is replaced by (119)-(120), then

(f) reduces to a theorem of Lonn [8, p. 234]. Lonn also showed (loc. cit.,

p. 235) that if (119) is replaced by

(xF1 - yF2) log2 (x2 + y2)/(x2 + y2) = C > 4,

then every solution tending to the origin satisfies the second alternative in

(115). This statement of Lonn will be improved by relaxing the condition

C>4 to C>1 (and will be made applicable to non-conservative cases).

(ft) Let the assumptions of (t) hold except that (117)—(118) is replaced by

the requirement that

(121) 4t2ixF2 - yFl)/ix2 + y2) = C > 1

holds in (118). Then every solution (x, y) =(x(t), yit)) of (112) defined for large

t and tending to the origin as 2—>oo satisfies (114) and the second alternative in

(115).
The proof of (t) which is similar to the procedure of Lonn will be given

only for the sake of completeness. Actually, (t) and (ft) depend essentially

on the criteria, U2fit) g 1 or 4J2/(Z) = C> 1, of Kneser for (91) to be non-oscil-

latory or oscillatory, respectively.
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Proof of (f). For large t, let (x, y) = (x(t), y(t))-*0 be a solution of (112)

satisfying (x, y)—KO, 0) as t—>oo. Then (113) implies (114) and (115). If

y(0 7*0 on some /-interval, then (112) shows that, on this /-interval, the func-

tion

(122) r = x/y

satisfies the Riccati equation

(123) r' + r2+/(0=0,

where

(124) f(t) = (xF2 - yFl)/y2 (x = x(t), y = y(t)).

Clearly, l^(x2+y2)/y2 = l+£2 on the set (118). In what follows, it will be

supposed that £ is a fixed positive number satisfying

(125) 0 < (1 + Z2)6 < 1.

Hence, if (/, x, y) = (t, x(t), y(t)) is on the set (118), then (117) and (125) show

that

(126) 4/2/(/) ^ (1 + ?)B < 1.

The Riccati equation

(127) r' + r2 + (1 + £2)0/4/2 = 0

has solutions of the form r=a/t, where a satisfies the quadratic equation

— a+a2 +(l+£2)0/4 = O. In view of (125), the latter has (real) positive roots.

If (116) does not hold, then the second alternative in (115) holds. Hence

(114) implies that, for some arbitrarily large /-values, (/, x, y) =(/, x(t), y(t))

satisfies (118). In fact, there exist arbitrarily large values, / = /0 for which x(to)

= %y(to)/2>0 holds and (/, x, y) =(/o, x(t0), y(to)) satisfies (118). Then, if /0 is

sufficiently large, the function (122) satisfies r(/0) = £/2 >a/t0. In view of (123)

and (126), r(t)^a/t>0 on any interval (Z0, /i) on which (118), hence (126),

holds. Since the second alternative in (115) holds there is a value (hence, a

least value) of /=/i>/0, where (/, x(t), y(t)) is on the boundary of the set (118).

If to is sufficiently large, (114) and r(t)'=a/t>0 imply that x(tx) =£y(/i) >0.

Hence

(128) r(h) = £    and    0 < r(t) < £    if    /„ = t < h.

Thus (123) becomes r'(/i)+£2+/(/i) =0 at /=/i. In view of (114) and x(h)

= £y(ti), the assumption (113) implies that |/(/i)| <£2 if t0 (hence Zx) is suffi-

ciently large. Consequently, r'(/i)<0. Since this contradicts (128), the as-

sumption that (116) does not hold is untenable. This proves (t).

Proof of (ft). Let (x, y) = (x(/), y(t)) be a solution of (112) for large / tend-

ing to the origin as /—>oo. Then (114) and (115) hold. Suppose, if possible,
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that the first alternative of (115) holds; in particular, that (116) holds. In

view of (114) and the first part of (115), the point it, x, y) = it, xit), yit)) is

on the set (118) for any fixed £>0 and sufficiently large /.

Since (116) holds, (122) defines a continuously differentiable function for

large t satisfying (123)-(124). The inequality (121) shows that 4/2/(/) = dx2

+y2)/y2=C>l, and so 4*2/(0^C>l for large t. This implies that (91) is

oscillatory (Kneser). Hence the Riccati equation (123), belonging to (91),

cannot possess a solution r=rit) defined for large t. Thus, the assumption

(116) leads to a contradiction, and so (ft) follows.
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