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0. Introduction. This paper(J) deals with the zeros of solutions of the

second-order, linear differential equation

(0.1) w"iz) + piz)wiz) = 0,

where piz) is a function analytic in a region R oi the complex plane. E. Hille

[3; 4] was the first to make a systematic study of the distribution of the zeros

of solutions of (0.1). His approach consisted of selecting a particular zero

z = a of a particular solution w(z) of (0.1), and then constructing a zero-free

region about z = a, i.e., a region about a in which w(z) does not vanish again.

Further mention of this is made in §1; additional methods of constructing

such zero-free regions are also given in §§3, 7, and 9.

More recently, Z. Nehari [7; 9; 10 ] made use of a relationship between

the theory of univalent functions and the theory of equations of the above

type to obtain results of quite a different nature. This relationship is provided

by the Schwarzian derivative

{/(*),*} = [f"(z)/f'(z)]' - [f"iz)/f'iz)}2/2

of a function fiz) analytic in a region R. Indeed the univalence of fiz) in R

is equivalent to the fact that no solution of

w"iz) + {fiz),z}wiz)/2 = 0

has more than one zero in R. The above relationship provides a kind of

duality principle for many of the results of this paper. All of the results are

stated as theorems about differential equations, and the dual results concern-

ing univalence (or w-valence) are only mentioned occasionally.

Following the usage of Wintner [17] in the real case, and of Taam [14]

in the complex case, we say that equation (0.1) is disconjugate on a point set

5 of the complex plane if no solution of (0.1) vanishes more than once in 5.

The equation is said to be nonoscillatory in 5 if none of its solutions vanishes
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more than a finite number of times in S. (Thus disconjugacy corresponds to

univalence, and nonoscillation to finite valence.)

The main results concerning disconjugacy are in §§2, 4, and 6. These

results are of a similar character to those in [7; 9; 10], and are in the form of

sufficient conditions that (0.1) be disconjugate in a disk. In each case the

problem is reduced to an examination of a real differential equation (usually

involving a parameter). The results are closely related, not only to those of

Nehari, but also to some criteria of V. V. Pokornyi [ll ]. Indeed, using some

lemmas on real differential equations (some of which were announced by

Pokornyi) proved in §5, we show that Pokornyi's criteria are contained in a

general theorem of §4 which gives a lower bound for the distance between

zeros of any solution of (0.1). In §3 we investigate the distribution of zeros

of solutions of (0.1) in a neighborhood of a regular singular point of (0.1). By

means of the Green's function, introduced in §7, equation (0.1) is transformed

into an integral equation. This section provides the basis for the nonoscilla-

tion theorems of §8, and for the criteria of 3-valence and disconjugacy of §§9

and 10.
The author wishes to thank Professor Zeev Nehari for his generous help

and guidance in the preparation of this paper.

1. A comparison theorem. We begin this section with the following ele-

mentary lemma involving real functions.

Lemma 1.1. Letf(x) be continuous on the interval a<x<b, with

f(x) = 0[(x - a)~2] as x-+a+,       f(x) = 0[(b - x)~2] as x-+b-.

Moreover, suppose the Riccati equation

g' = fix) + g2

has a solution g(x) of class C1 on a<x<b, with

g(x) = 0[(x — a)-1] as x-+ a+, g(x) = 0[(b — *)-1] as x—» b —.

If y(x) is piecewise smooth on a^x^b, and if y(a)=y(b)=0, then

(1.1) f   (y'2 - fy*)dx = [ (y' + gy)2dx.
7 a 7 a

This is easily proved by expanding the right side of (1.1) and carrying out

an appropriate integration by parts. Our interest in (1.1) is due to the fact

that it asserts that the integral on the left side is non-negative. For special

cases of this lemma see [l, Theorems 257, 262], and [7].

We note that if the differential equation Y"+f(x)Y = 0 has a solution

F(x)^0 on a<x<b, then the above Riccati equation has the solution

g(x) =— Y'(x)/Y(x) satisfying the above conditions. Moreover, if Y(x)^0

on a^x^b, then, provided y(x)^0, the right side of (1.1) is strictly positive.
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Now, let piz) be an analytic function of the complex variable z in a simply-

connected region D. Consider the differential equation

(1.2) w" + piz)w ~ 0.

Let wiz) be a solution of this equation; then wiz) is also analytic in D.

Multiply both sides of (1.2) by

wiz)

and integrate along any path in D joining two points z=a, z = b, to obtain

/► b p b
w"wdz + I    p | w \2dz = 0.

a J a

Integrating by parts the first term we obtain

\b f* b /» 6

wiz)w'iz)     —  I     \ w' \2dz +|    p\ w \2dz = 0.
la J a J a

This expression is called the Green's transform oi equation (1.2) and is due to

Hille [3; 4].

We now specialize the Green's transform to the case that w(a) =w(6) =0,

and the path is taken to be the straight line z = a+reie joining a and b. We

obtain

/» R p R
| w''\2dr = e2i° I    p\w\2dr, R=\b-a\.

o Jo

Setting e2i6pia+reie)=qiir; 6)+iqiir; 6), the last equation is equivalent to

the pair of equations

/■ R p R
qi\ w\2dr =   j     | w'\2dr,

o Jo

/• R
911 w\2dr = 0.

o

We shall now recombine equations (1.4), (1.5) by multiplying the first equa-

tion by a parameter X, the second by a parameter p,, and adding, to obtain

/> R p R
i\qi + uqi)\ w\2dr = X j     j w'\2dr.

o Jo

We now use this modified Green's transform together with Lemma 1.1 to

prove a comparison theorem.

Theorem 1.1. Let piz) be analytic in a region D, and let the line z = a+reie,

O^r^R, lie in D. Set
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e™p(a + re") = ?1(r; 0) + iqz(r; B).

Let Q(r) be continuous on O^r^T?, and suppose the differential equation

(1.7) y" + Qir)y = 0

has a (real) solution y(r) which does not vanish on 0<r<R. If there exist real

numbers X^O, p, (\2+p2^0), such that

(1.8) \qx(r; 6) + pq2(r; 6) g \Q(r), 0 g r g R,

then any nontrivial solution w(z) of w"+p(z)w = 0 having w(a) =0 has no other

zeros on the open line segment (a, a+Re^) unless q2(r;6)=Q. Even if qz(r;8)=Q,

the conclusion holds provided X?^0. Moreover, if strict inequality holds in (1.8)

for a single point, then w(z) has no zeros on the half-closed segment (a, a+Rea].

Proof. Assume w(z) has a second zero at b = a+Rxeu, Rx<R. If Q(r)= 0,

X>0, then (1.8) and (1.6) are incompatible. If Q(r)=0, X=0, p^O, then (1.8)

and (1.5) are incompatible, unless 32 = 0.

Now suppose Q(r)^0 on 0^r^T?i. Again we see that X = 0 leads to a

contradiction, so that we need only consider the case X>0. In this case, from

(1.8) and (1.6) we obtain

\w'\2dr ^  I     Q(r)\ w\2dr.
0 7 0

Now, let |w(a+re**)| =W(r). If z = a+rea, then by applying Cauchy's in-

equality we see that | W'(r) | g | w'(z) \, so that

W'2(r)dr ^   I     Q(r)W2(r)dr.
0 7 0

Let y(r) be a nontrivial solution of (1.7) for which y(0) =0. Then y(r) does not

vanish on the interval 0<r <T?. Consequently, if x(r) is a nontrivial solution

of (1.7) for which x(R')=0, Ri<R'<R, then x(r) does not vanish on the

interval 0^r^T?i, by the Sturm separation theorem. By the remark follow-

ing Lemma 1.1 it follows that

f   \'2(r)dr>  f  lQ(r)y2(r)dr
7 0 7 0

for every function y(r)^0, piecewise smooth on 0^rgT?i, and such that

y(0) =y(T?i) =0. W(r) is such a function; but then we have a contradiction of

(1.9), and the theorem is proved in the case Ri<R.

Finally, suppose (1.8) is a strict inequality for at least one point, hence

also for an interval, of O^rgT?, and assume b=a+Reu is a second zero of

w(z). The proof for the case Q(r) =0 is seen to hold for T?i =R as does that for

the case Q(r)f£0, X = 0. In the general case Q(r)^0, X>0 the inequality (1.9)
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becomes a strict inequality, and the result again follows using the remark

following Lemma 1.1. (Note that the right side of (1.1) may be zero in this

case.)

A theorem substantially equivalent to Theorem 1.1 has been proved,

along essentially different lines, by C. T. Taam [14, Theorem 9].

Special cases of this theorem which are of interest are obtained for

(i) Qir)=T2/R2;

(ii) X = l, ju=0, Q = qu this case was proved by Taam [13], and also

stated (incorrectly) by Pokornyi [ll];

(iii) X = 0, 22 7^0 on O^r^R, u= — sgn qi;

(iv) x-i.M-0>Ga,9t£O.
The last two cases were proved by Hille [3], and form the basis for the con-

struction of his "zero-free stars." The first case gives us a result which was first

proved by Nehari [7].

Corollary 1.1. Suppose that piz) is analytic in \z\ <R, and that \piz)\

^ir2/iR2, | z\ <R. Then no solution ofw"+piz)w = 0 has more than one zero in

\z\ <R.

For, 1. qiir; 0) ^ \e2U>pia+rei»)\ ^ir2/4R2, so that the result follows from

the special case (i), with X = l, p = 0.

Similarly, we may state the following corollary which will be of use in the

sequel.

Corollary 1.2. If the differential equation

y" + \pia + re") \ y = 0

has a solution y(r) which does not vanish on the interval 0<r<R, then a non-

trivial solution wiz) of w"+piz)w = 0 having w(a) =0 does not vanish again on

the segment (a, a+Rew).

2. Sufficient conditions for disconjugacy in a circle. The proof of the

following theorem is based on some of the ideas used in [9].

Theorem 2.1. Let piz) be analytic in \z\ <0O^1. Set

Mir) = max  | piz) |, 0 ^ r < p0; ilf(-r) = Mir).
\'\-T

Suppose that for each 0, 0^0 <0O, the differential equation

d2u     /  1 - P2 \2    r//32 + w2\1'n
(2.1) -+(-— )M   (^—-)      \u = 0

dw2     \1 + p2w2J      L\l + P2w2/    J

has a (real) solution which does not vanish on the interval

/pl-p^yi2 /pl-p*yi2
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Then the differential equation

(1.2) y" + p(z)y = 0

is disconjugate in \z\ <8o-

Proof. Assume that a solution y(z) of (1.2) has two zeros, z = a, z = b, in

|z| <pV There exists a unique circle which passes through these two points

and is orthogonal to the circle |z| =1. By a rotation £=az, \a\ =1, we may

bring the arc of this circle which is contained in \z\ SI into a position in the

upper half-plane so that it is symmetric with respect to the imaginary axis.

The differential equation (1.2) is transformed into the equation

y" + cr*pi{/a)y = 0

having the same modulus function M(r). Hence there is no loss of generality

in assuming the original orthogonal arc to be in this position. This arc cuts

the imaginary axis in a point z=iB, with 8<8o, and the linear transformation

w = (z—i8)/(l+i8z) of |z| <1 onto |w| <1 carries the orthogonal arc onto

the line segment — 1 <w<l. The points of intersection of the orthogonal arc

with the circle | z\ =80are mapped into the points w= +(B20-82)ll2(l-B0!B2)-lli

= +Wi, and the zeros z = a, z = b are mapped into points on the interval
— Wi<W<Wi.

At the same time, the linear transformation transforms the differential

equation into the equation

2ip (1 - P2)2      /w+ip\
Y"-— F' +--— #(--)y = 0,

1 — ipw (1 — ipwY    \l — ipw}

where Y(w)=y(z). Now, if we let u(w) = (1— i8w) Y(w), then u(w) also has

two zeros on the interval —Wi<w<Wi. The function u(w) satisfies the differ-

ential equation

d2u        (1 - P2)2      /w+ip\
(2.2) -+ --*-!— pi H )u = 0.

dw2      (1 - ipwY    \1 - ipw)

However, for real w, we have

. w+ip\      /w2 + P2\1!2
1 - ipw " = (1 + p2w2)2, -  =(-)

' ' l-ipw\      \l+p2w2J

hence by Corollary 1.2, equation (2.1) must have a solution which vanishes

twice on the interval — Wi<w<Wi. But this is impossible since then, by the

Sturm separation theorem, every solution of (2.1) would have at least one

zero on this interval, contrary to hypothesis. In case 80 — l, Wi must be re-

placed by 1.

This criterion is closely related to that of Z. Nehari mentioned at the be-
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ginning of this section. The relationship will be established by noting that

the conditions

/ 1 - P2 \2     r/P2+ w2\ll2~\

/ pl - p2 N1'2
oSS<ft,oS„<(r-^)   ,

and

(2.4) (1 — r2)2Mir) is nonincreasing on 0 ^ r < /30

are actually equivalent. To prove this, assume first that (2.4) holds. Let 0,

w be given subject to the conditions in (2.3). Set x2 = (/32+w2)/(l+j82w2);

then w2^x2<*02o, hence (1 -x2)2Mix) g (1 -w2)2Miw), which reduces to (2.3).

Conversely, suppose (2.3) holds. Let w, r be given such that O^w^r<0o.

If 02 is defined by the equation r2 = i02+w2)/H+02w2), then it is easily seen

that 0, w satisfy the conditions in (2.3). The inequality (2.3) now reduces to

il-r2)2Mir)^\l-w2)2Miw), establishing (2.4).

In view of this result, an application of the Sturm comparison theorem

gives us

Corollary 2.1. Equation (1.2) is disconjugate in \z\ <0O if (1—r2)2M(r)

is nonincreasing for O^r<0o, and if the differential equation

(2.5) y" + Mir)y = 0

has a solution which does not vanish on the interval—0o<r <0o-

For /30 = 1 this is equivalent to the criterion derived in [9]. As pointed out

there, this result includes at least three sharp cases (for $0=1), namely the

cases Mir) =tt2/4, M(r) =2/(1 -r2), and Mir) = 1/(1 -r2)2. The first and last

of these cases were originally proved in an earlier theorem of Nehari [7 ]; the

remaining case is contained in a theorem announced (without proof) by V. V.

Pokornyi [ll ]. As a matter of fact, the result contains the entire theorem of

Pokornyi. Stated as a criterion of disconjugacy, this theorem states that if

f23x-2x2(i-x)/(i - r2^ (0 < X < 1),
(2.6) Mir) <  \ «.--/.

l22-V(l - r2)x (1 ^ X g 2),

for 0^r<l, then w"+piz)w = 0 is disconjugate in \z\ <1.

In both cases we have (1 — r2)2Af(r) nonincreasing on 0^r<l, so that it

suffices to find a Sturm majorant for equation (2.5). In the case 0 gX gl, such

a majorant is found in the equation y"+fir)y = 0, where

7T2 2X (ir wr 2r    ) 2
fir) = — (1 - X) +-+ X(-l - X) !— tan-)■   .

4 1 - r2 12 2        1 - r2/
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This equation has the solution

y(r) = (1 - r2)x(cos vr/2)1-*

which is not zero on — l<r<l; the result relating to (2.6) now follows, for

O^X^l, from the fact that

23X-Vu-x)       T2 2X

(2.7) —-g— (1-X)+-, 0 < r < 1.
(1 - r2)* 4 1 - r2

In the case 1^X^2, the equation y"+g(r)y = 0, where

1 - (2 - X)r2

is a suitable Sturm majorant for (2.5). For, this equation has the solution

y(r) = (1 — r»)<»-M/»j moreover, the constant 22~x of (2.6) can be improved to 3 —X

in view of the easily established inequality

(2.8) j£±.igM, 0^r<l.

As another application of Corollary 2.1, this time for the case /8o<l, sup-

pose that

1 "(" + 1)
(2-9) M(r)S__+__i-m

where v is an even positive integer. Then if P,(r) denotes the Legendre poly-

nomial of degree v, and if y(r) = (1 — r2)ll2P,(r), we have

y"(r)+Q(r)y(r) =0.

Hence, by Corollary 2.1, if p0 is the least positive zero of P,(r), and M(r) satis-

fies (2.9), then the differential equation w"+p(z)w = 0 is disconjugate in

\z\ <Po- Moreover, the constant v(v + l) is obviously sharp for disconjugacy in

this circle.

3. Zeros in the neighborhood of a regular singular point. We first note

the following special case of Lemma 1.1. If

g(x) = X - 1/2*.

then

g'(x)-g2(x) =— + ~-\2=f(x),
4x2       x

andf(x), g(x) satisfy the hypotheses of Lemma 1.1 on any interval O^x^b.

It follows that
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whenever y{x)Q.Cl on O^x^b with y(0) =y(&) =0. Now the integral on the

right side of this equality vanishes only if y2 = cxe~2Xx, hence for all such yix)

as noted, other than yix)=0, we have

(3.1) f (-+-X2) y2dx <  f y'2dx.
J0   \ix2 X / Jo

Now, let D be any simply-connected convex region of the complex plane.

Suppose that piz) is analytic in D except possibly at z = 0 (if 0EF>), and that,

for a fixed X^O,

(3.2) \piz)\   <zJ— + -^-X2,
4] z I2       \z\

for all z(E.D. If z = 0 is in D, piz) can have a pole of at most the second order

at this point, and consequently has the expansion (2)

Piz) = az~2 + 6z-' + Qiz), | a | = 1/4,

where Qiz) is analytic at z = 0. The differential equation

(1.2) w" + piz)w = 0

will then have z = 0 as a regular singular point. Suppose that a nontrivial

solution wiz) of this equation has two zeros inF>, say wia) —wQ)) =0. By (1.3)

we have

/> R pR
| w'iz) \2dr = e2i» I    p(z) \ wiz) \2dr,

o Jo

where z = a+reie, b — a = Rew, and we are assuming that the line segment

joining a, b does not pass through z = 0. If we set | wiz) \ = | wia+re**) \ = W(r),

then (as in the proof of Theorem 1.1) | w'(z)| ^ | IF'(r)|, and hence

/• R p R
W'2ir)dr g   I     \pia + re") | W\r)dr.

o Jo

Since WifS) = WiR) =0, it follows from (3.1) that, whenever

(3.4) \pia + re")\  g — +-X2,
4r2       r

(*) cf. E. Hille, A note on regular singular points, Arkiv for Matematik Astronomi, och

Fysik vol. 19A (1925), especially |Theorems 2 and 3. This paper deals with the case that a is

real (including the case a>l/4); the technique makes use of an associated integral equation.

In addition, using the Green's transform, the author obtains zero-free regions, again in the case

that a is real.
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(3.3) is impossible. This provides the basis for the construction of rather exten-

sive zero-free regions. In fact, by (3.2), the inequality (3.4) will be satisfied

whenever

(3.5) | a + reie\   ^ r.

If a^O, then the equation |a+re^| =r is the equation of the perpendicular

bisector of the line segment joining z = 0 and z = a. The domain defined by

(3.5) is the half-plane bounded by this line which does not contain the point

z = 0. It follows that w(z) has no other zeros in this half-plane, including the

boundary. As a matter of fact, the zero-free region of w(z) may be extended to

include the interior and circumference of a circle with center at a of radius

|a|. For, if there were another zero z = b in this region, then on interchanging

the roles of a and b, we see that a would lie in the zero-free half-plane cor-

responding to z = b.

Using Theorem 1.1 we may enlarge this zero-free region still further. Sup-

pose that z = b is another zero of w(z), where again we assume that the line

segment (a, b) does not pass through z = 0. If 0 = arg (b — a) and <p = arga,

then the shortest distance from this line segment to the origin is |a| sin (ir

— (6—<b)) = \a\ sin (8—<b). Writing\p = 6— <p, we have for all z on this segment

1 X 1
| p(s) |    S -r—j-+ -7—i-X2 g -j—j-

4 | a |2 sin2 \p       \ a \  sin \p 2 \ a |2 sin2 -p

By Theorem 1.1 (with X = l, p = 0, Q(r)=ir2\b-a\-2), it follows that

1/2 | a\2sin2t ^ tt2| b - a\~2,

or writing \b — a\ =p, that

p ^'2X'V| a |   sin^.

Now, looking on p, \p as polar coordinates (with z = a as origin), the curve

(3.6) p = 21'V| a |   sin^

is a circle of radius (21/2/2)7r|a|. This circle has its centre on the line which

passes through the point z = a and which is perpendicular to the line joining

z = 0 and z = a. The circle passes through the point z = a. The solution w(z)

which vanishes at z = a has no other zeros in the interior of this circle. Of

course there is another such zero-free circle lying entirely on the other side

of the line arg z=<p.

The circle (3.6) intersects the circle of radius |a| drawn about the point

z = a in a point f, and intersects the boundary of the half-plane |a+rei9| ^r

in a point r\. It may be shown by elementary geometry that the points z = 0,

z = f, z = r\ all lie on a line. If the angle between this line and the line joining

z = 0 to z = a is denoted by 8, then we find 8 > 83°29'. Clearly, then, we have a

zero-free sector situated symmetrically about the line joining z = 0 and z = a,
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having z = 0 as vertex, and an included angle of at least 166°58'.

So far, we have excluded the case a=0. We assert that in case w(z) is

analytic at z = 0, or more generally, if w'iz) remains bounded near z = 0, then

if w(0) =0, w(z) has no other zeros in D. This will follow from (3.5) provided

i3.3) holds in this case. However, since | W^l ^ | w'(z)|» W'(r) is bounded

near r = 0, and one sees that Lemma 1.1 holds for such functions y(r) = W(r),

so that (3.3) remains valid.

We collect our results as

Theorem 3.1. Let D be any convex domain of the complex plane included in

a sector of angle 83°29' with vertex at z = 0. Suppose piz) is analytic throughout

D except possibly at z = 0 (if 0£F>), and that

(3.2) \piz)\   £ -r-r + -rT - X2, X^O,
4| z|2       \z\

for all z(£D. Then, except for a possible zero at z = 0, no solution of

(1.2) w" + piz)w = 0

has more than one zero in D. Moreover, if a solution wiz) of (1.2) has to(0) =0,

then wiz) has no other zeros in D provided w'iz) remains bounded near z = 0.

Corollary 3.2. If piz) is analytic in any convex region D containing the

point z = 0, except possibly at z = 0, and satisfies there the condition (3.2), then

no branch of any solution of equation (1.2) can have more than 5 zeros in D other

than z = 0. Moreover, any solution wiz) of (1.2) which has w'iz) bounded near

z = 0 and which vanishes at 0 = 0 has no other zeros in D.

In general, we are not able to reduce the number 5 to 4, since a branch

wiz) may have two zeros lying on opposite sides of a branch cut joining

z = 0 to Z — oo. If, however, |w(z)| is the same for all branches of a solution,

then no branch can have more than 4 zeros other than z = 0. The same remark

clearly holds for solutions of the form zav(z), where viz) is analytic at z = 0.

Since z = 0 is a regular singular point, equation (1.2) always possesses one

such solution.

If X = 0, D may be the entire complex plane. In this case, our result is

that no solution of w"+piz)w = 0 has more than 5 zeros in the slit plane. In

particular, the equation is nonoscillatory both for large \z\ and small \z\ .

This is a generalization of the corresponding result for real differential equa-

tions, where the equation y"+ax~2y = 0 plays a critical role. (See Hille [5].)

An example of a class of equations to which the preceding theorem applies

is given by Whittaker's equation [16, p. 337],

(1/4-m2      A        1)
W+{—_ + _-_} ht.o,
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satisfied by the Whittaker functions Wk,m(z). If 0<ra2<l/2, then

4| z|2       \z\

for all z in a sufficiently small neighborhood of z = 0. Hence, for 0<m2<l/2,

we may assert that Wk.m(z) is nonoscillatory in a neighborhood of z = 0.

4. A lower bound for the distance between zeros. If p(z) is analytic in a

simply-connected region D, then every solution w(z) of the equation

(1.2) w" + p(z)w = 0

is analytic in D and hence, in particular, no (interior) point of D can be a limit

point of zeros of w(z). Normally if p(z) has singularities on the boundary of

D the lower bound for the distance between any pair of zeros of any solution

of (1.2) is zero. B. Schwarz [12] considered this problem and found criteria

insuring a positive lower bound. The following theorem is of the same nature.

Theorem 4.1. Let p(z) be analytic in the circle \z\ <R, and set

M(r) = max  | p(z) | , 0 ^ r < R.
1*1 —r

Suppose there exists xa, 0^x0<R, such that for eachx, x0Sx<R, the differential

equation

d*y
(4.1) —+ 77[(/2+ x2y2]y = 0

dt2

has a solution yx(t) which does not vanish on the interval —(R2 — x2)ll2<t

<(R2 — x2)112. Then a lower bound for the distance between any pair of zeros (in

\z\ <R) of any solution of

(1.2) w" + p(z)w = 0

is given by d = 2(R2 — x20)112.

Proof. Assume a solution w(z) of (1.2) has zeros at z = a, z = b, where

\b\ ^\a\ <R, and 0< | b — a\ <d. Let b' be the point on the circle |z| = |a|

lying on the same side of the line through z = 0 and z = a as b, and such that

\b' — a\ =\b — a|. By a rotation £=az, \a\ =1, the points a, b' can be brought

into a position in the upper half-plane symmetric with respect to the imagi-

nary axis. As in the proof of Theorem 2.1, we may assume that a, b' are already

in this position.

From the Green's transform we have

Xb f* b
| w'(z) \2dz =   I    p(z) I w(z) \2dz.
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Let s = Ha+b)/2)+tea, \b-a\ =2r?, |w(*)| =yit). Then

/'                   C'        \    /a + b \ I
y'2it)dt g  I    y\t)  p I- + lei0\ dt.

Since

I    /a + b \\ /\a + b \\ (\ a + V \\
\p[-h te«)\ ^ Ml-+ tea\ )^ Ml \l +-   )
l\    2 )\-     VI     2 1/ VI 2     1/

^ M[(i2+ | al2-*?2)1'2],

the last inequality reduces to

(4.2) f \'2it)dt ^    f y2it)M[it2 + | a |2 - t?2)1'2]^.
J ->, J -n

Suppose first that |a|2 — i)2>xl. Then the equation (4.1), with x2=|a|2

— n2, has a solution which does not vanish on the interval

-iR2 -   \ a\2 + v2)1'2 < t < iR2 -   | a\2 + r)2)ll2,

hence not on the closed interval —n^t^r). By the remark following Lemma

1.1, we then have

fy'2it)dt>  fy2it)M[it2+ \ a\2 - V2)ll2]dt;
J -i, J -,,

but this contradicts (4.2), proving the theorem in this case.

Finally, if |a|2 — n2^x\, then (4.2) may be replaced by the inequality

(4.3) f \'\t)dt g  f Vyit)M[it2 + xl)1/2]dt,
J -<i J -v

and the proof follows as before, on noting that tj<(Fv2 —x2)1'2.

We note that if the hypotheses are satisfied for x0 = 0, then the thorem

asserts that w"+£(z)o; = 0 is disconjugate in |z| <A^. The theorem includes

several sharp cases, as noted in examples (i), (ii) below.

(i) | piz) |   ^ 2/(#2 -   | z |2), 0 ^   | z |   < R.

In this case the differential equation

d2y 2
— H-y = 0
dt2       iR2 - x2) - t2

has the solution yxit) = iR2 — x2) — t2 satisfying the hypotheses of the theorem

with x0 = 0. The constant 2 is sharp for disconjugacy. As noted following

Corollary 2.1, this result was first announced by Pokornyi [ll], and is also

included in a theorem of Nehari [9].
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(ii) | p(z) |   ^ Tr2/4T?2, 0 g   \ z\   < R.

The differential equation

d2y/dl2 + (ir2/4R2)y = 0

has the solution y(/)=cos (irt/2R) satisfying the hypotheses of the theorem

with x0 = 0. This is just Corollary 1.1; it is also sharp for disconjugacy.

In general, equation (4.1) cannot be solved explicitly for each value of the

parameter x. In such cases the following corollary will often be useful.

Corollary 4.1. The hypotheses of Theorem 2.1 will be satisfied if the differ-
ential equation

(4.4) d2y/dr2 + M(r)y = 0

has a solution y(r) which does not vanish on the interval —R<r<R, and pro-

vided that for each x, x0^x<R, we have

(4.5) M[(t2 + x2)1'2] ^--Ml-)
R2 - x2     \(R2 - x2)1'2/

for \t\ <(R2-x2yi2.

In order to prove this we note that the substitutions r=Rt(R2 — x2)~112,

y(r) = Y(t) transform equation (4.4) into the equation

d2Y R2 /        Rt        \
-h- Ml-)F = 0.
dt2      R2 - x2      \(R2 - x2)112/

For each x, 0^x<R, this equation has a solution Y(t) which does not vanish

on the interval — (R2 — x2)112<t<(R2-x2)112. The result now follows from

(4.5) and the Sturm comparison theorem.

In the case x0 = 0, Pokornyi [ll], using a somewhat different notation,

announced (without proof) that (4.5) was sufficient for disconjugacy. That

(4.5) alone is not sufficient is easily seen by considering the case where

p(z) = C, C>Tr2/4R2.

It may also be of interest to note that in the case of disconjugacy, i.e.,

x0 = 0, the condition (4.5) is equivalent to the much simpler condition that

the function (R2 — r2)M(r) be nonincreasing for 0^r<R, so that in this case

the result is contained in Corollary 2.1. To see this, we first note that (4.5)

is equivalent to the condition

Rz — x2      / I \
(4.6) - M[— [R2x2 + (R2 - x*)r*]li*) g M(r),    - R < r < R.

R2 \R /

This is just (4.5) with t = R~h(R2 — x2)112. The result now follows precisely as

in the case of (2.3) and (2.4).

As an example for Corollary 4.1, suppose that
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(4.7) Mir) £ Qir) = v(v + 1)/(1 - r2),

where v is an odd, positive integer. The differential equation y" + Q(r)y = Q

has the solution y = (l— r2)Pl (r), where P, is the Legendre polynomial of

degree v. If 0a is the least positive zero of Pi (r), then one easily verifies that

the corollary holds with R=0O, xo = 0. We thus obtain a sharp radius of dis-

conjugacy \z\ =0o, i.e., w"+piz)w = 0 is disconjugate in \z\ <0o, if M(r)

satisfies (4.7), and the constant v(v + l) cannot be increased.

At the beginning of this section we mentioned the fact that B. Schwarz

obtained the first criteria insuring the existence of a positive lower bound for

the distance between any pair of zeros of any solution of (1.2). One of these

criteria may be stated as follows: If piz) is analytic in \z\ < 1, and if

i i 1
(4.8) max    piz)     = Mir) ^-> x0 ^ r < 1,

Ul=r 1 - r2

where 0^x0<l, then a lower bound for the distance between any pair of zeros

(in \z\ <1) of any solution of (1.2) is given by 2(1 —xl)112.

Using Theorem 4.1, we may improve the constant 1 in (4.8) to 2. In fact, if

Mir) ^ 2/(1 - r2), x0 ^ r < 1,

then

2
(4.9) M[it2+x2yi2] g-, |t|   < (1 - x2)1'2,

1 — x2 — t2

for each x, x0^x<l. Since, as noted in example (i), the differential equation

d2y 2
— H-y = 0
dt2       1 - x2 - t2

has a solution yx(<) which does not vanish on the interval — (1 — x2)1/2<<

<(1—x2)1'2, the result now follows from Theorem 4.1, using the inequality

(4.9) and the Sturm comparison theorem. The constant 2 cannot be improved

since the theorem is sharp in the case of disconjugacy (xo = 0).

5. Some results on real differential equations. The lemmas of this section

are used in the sequel, but are not without interest for their own sake.

Lemma 5.1. Let the functions qix), qi(x) be continuous, non-negative, and

symmetric on the interval —a<x<a. Suppose the differential equation

(5.1) y" + qix)y = 0

has a solution y(x) which is symmetric with respect to x = 0, and is positive on

the interval —a<x<a. If

qiit)yit)dt g  |    qit)yit)dt, 0 < x < a,
o Jo
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then the differential equation

(5.3) y{' + qx(x)yx = 0

has a solution which does not vanish on the interval —a<x<a.

Proof. Let yx(x) be a symmetric solution of (5.3). (Such a solution obvi-

ously exists.) Assume yx(8) —yx(— 8) =0, where 0<8<a. We may assume

that yi(0)>0. Then we have yi(x)>0, -8<x<8, and y{ (x) ^0, -8^x^0.

Similarly, y(x)>0, — a<x<a, and y'(x) ^0, — a^x^O.

Now, multiplying (5.1) by yx(x), (5.3) by y(x), subtracting and integrating

between the limits x = —j3 to x = 0, we have

0 p o

y.(*)y'(«) - y(*)yi'(*)     =       [?iW - ?(0]y(0yi(0<ft.
-0        7_,3

Since y'(0) = y{ (0) =yi(-/3)=0, this reduces to

y(-P)yK-P) = f [?i(0 - q(t)]y(t)yx(t)dt
J-B

= yi(0) f  [?iW - ?(<)]y(0*.      o < x < p,
7 _ „

where we have used the second integral mean value theorem. Now y(—8)yl

( — 8)>0, while the right side of the last equation is clearly not positive by

(5.2). Hence we have a contradiction, and it follows that the symmetric solu-

tion of (5.3) has no zeros on — «<x<«.

We now apply Lemma 5.1 to prove an interesting result which was

announced (without proof) by V. V. Pokornyi [ll].

Lemma 5.2. Let q(x) be continuous and non-negative on the interval — a^x

Sa. Moreover, suppose that.q(x) is symmetric with respect to x = 0, and non-

increasing for O^x^a. Suppose that the differential equation (5.1) has a solu-

tion which does not vanish on the interval —a<x<a. Set

(q(a — x), 0 ^ x ^ a,

V' \qx(-x), -«£ x^O.

Then the equation (5.3) has a solution with the same property.

Proof. Let y(x) be the symmetric solution of equation (5.1) with y(0) >0.

Theny(x)>0, —a<x<a. If we set

7* =   f    [qx(t) ~ q(t)]y(l)dt, 0 < x ^ a
7o

then Ix^Ia clearly. Now
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I«=   f    [qia- t) - qit)]yit)dt
Jo

=   f      [qia -t)- qit)][yit) - y(« - t)]dt.
J o

For 0^t^a/2, we have g(a —J)=20) by hypothesis. Moreover, since

y'it) <0 for 0<t^a, we also have yit)>y(a — t). Hence Ia^0, and the result

follows from Lemma 5.1.

Lemma 5.3. Let qix) be continuous and non-negative on the interval —a^x

;£«, and symmetric with respect to x = 0, so that g(—x)=g(x). Suppose the

differential equation

(5.4) y" + qix)y = 0

has a solution which does not vanish on the interval —a<x<a. Suppose

Q<0<a, and set

(qix + P), 0 g x g a - p,
qiix) = <,

\qii-x), p-a^x^O.

Then the differential equation

(5.5) y" + ffi(*)y = 0

has a solution which does not vanish on the interval 0—a<x<a—0.

Proof. Since the functions qix), </i(x) are symmetric about x = 0, there

exist solutions y(x), yi(x) of equations (5.4), (5.5) respectively which are

symmetric about x = 0. Hence y'(0) =y{ (0) =0. Without loss of generality we

may assume that y(0) =yi(0)>0. Moreover, by hypothesis we must then

have yi— a) =y(a)^0, y(x)>0, —ct<x<a.

Now suppose the conclusion does not hold. Then there exists y<a—0

such that yii— y)=yiif)=0, yi(x)>0, — 7<x<y. On the interval 0— agx

^0, the function yiix)=yi~x+0) is a solution of (5.5). Hence, by Abel's

identity, we have y2y{ —yiyi =constant, i.e.,

yi-x + p)y( ix) + yiix)y'i-x + p) = k, p - a ^ x ^ 0.

Evaluating this expression for x= —y, and x = 0, we obtain yiy+0)y{ ( — 7)

= A and yi(0)y'(/3) =A. But this is impossible since y(y+0)yi (—t)>0, while

yi(0)y'(/3)£0.

Lemma 5.4. Let q(x) be continuous for —a<x<a, with g(—x) =<?(x) ̂ 0,

and suppose that qix) is nondecreasing for 0^x<a. Consider the differential

equation

(5.6) y" + qix)y = 0.



228 P. R. BEESACK [January

(A) If equation (5.6) has a solution y(x) with y(0)=0 and y'(x)>0,

0^x<a, then (5.6) is disconjugate on —a<x<a.

(B) If (5.6) is disconjugate on 0<x<a, and y(x) is a solution of (5.6) with

y(0)=0, y'(0)>0, then y'(x)>0, Ogx<a/2.

Proof. For arbitrary ctx<a define a function

_,  s (?(«i ~ *)f 0 g X g ax,
Q(x) - i

(q(ax + x), —ai^x^O.

Let yi(x) be a solution of (5.6) with y[ (ax) =0, yi(«i)>0. If we define F(x)

=yx(otx+x), — ai^x^O, Y(x)= Y( — x), then Y(x) is a solution of the differ-

ential equation Y" + Q(x)Y = 0. Moreover, F(x)>0 for — ai^x^ai; this

follows from Abel's identity

y(x)y{(x) - yx(x)y'(x) = k, 0 g * i ai.

For, at x=ai,we find k<0. If we assume that Y(a) =0, O^a^ai, then F( — a)

=yi(«i — o)=0, and we obtain &=y(a1 — a)y/ («i — a)>0.

Assertion (A) now follows easily from Lemma 5.2. To see this, let

r(?(«i - *). 0 g x g ai,
Ox(x) =   <

\Qx(-x), -«il*|0.

Then the differential equation y" + (Mx)y = 0 has a solution which does not

vanish on the interval —ax <x<«i. Since Qx(x)=q(x), and «i <a is arbitrary,

assertion (A) is proved.

To prove assertion (B), assume that y'(xi) =0, 0<xi<«/2. Set

lq(x), 0 g x ^ xi,
Q(x) =   <

l.<7(2xi — x), Xi ^ x ^ 2xi.

Then the function

ly(x), 0 ^ x g Xi,
F(x) =  ■(

(y(2xi — x), xi ^ x ^ 2xi,

is a solution of the differential equation Y" + Q(x)Y = 0 which vanishes at

x = 0, x = 2xi<a. But this is impossible by the Sturm comparison theorem

since Q(x)^q(x), 0^xg2xx.

6. On some results of V. V. Pokornyi. Suppose that p(z) is analytic in a

circular region |z| <T?. In a paper published in 1951, Pokornyi [ll], an-

nounced (without proof) two criteria which assure the disconjugacy of the

equation w"+p(z)w = 0 in smaller circular regions. Both of these results are

contained in the following theorem, which is itself a corollary of Theorem 4.1.

Theorem 6.1. Let p(z) be analytic in \z\ <R. Set
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Mir) = max I piz) I , 0 g r < R.

//, /or each x, 0^x<R, the differential equation

(6.1) d2y/dt2 + M[it2 + x2y'2]y = 0

has a solution yx(t) such that yx(0) =0 and yx (/)>0, 0^<(P2 — x2)1/2, then the

differential equation

(1.2) w" + piz)w = 0

is disconjugate in \z\ <R.

Proof. By Lemma 5.4 (A), it follows that for each x, 0^x<R, equation

(6.1) is disconjugate on the interval — iR2 — x2)ll2<t<iR2 — x2)1/2. The re-

sult now follows from Theorem 4.1, with x0 = 0.

Corollary 6.1 (Pokornyi). If the differential equation

(6.2) y" + Mit)y = 0

has a solution yit) with y(0) =0, and if y'iRo) =0, where R0 is the least positive

zero ofy'it), then equation (1.2) is disconjugate in \z\ <R0/2112.

To prove this result we define, for each x, 0^x<R0/2112, the function

M,it) = Mit+x), 0^t^[iRl/2)-x2yi2. We note that M,it) is well-defined

since t+x<Ro. Let yx(i) be a solution of the differential equation

(6.3) yl' + Mxit)yx = 0

such that y,(0)=0, y,'(0)>0. Then y*'(/)>0, O^t^ [(P?/2)-x2]1'2, as may

be seen from Abel's identity applied to the solutions y(x+/), yx(t) of (6.3).

Now, if Yxit) is a solution of equation (6.1) such that F^(0) =0, Yx (0) >0,

then Yx'it)>0,0^t^ [(A^^-x2]1'2. This follows from the fact that F„(0>0

on this interval (as is readily seen by applying the Sturm comparison theorem

to equations (6.1) and (6.3)), together with the identity

y,it)Yiit)-Y,it)ylit)= f y*iu)Yxiu)[Mxiu)-M[iu2 + x2y>2]]du.
J 0

The result now follows from Theorem 6.1, with R replaced by R0/2112.

Corollary 6.2 (Pokornyi). Let piz) be analytic in the circle \ z\ <2R, and

let

max  | piz) |   = Mir), 0 g r < 2R.

// the differential equation

(6.2) y" + Mir)y = 0
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has a solution which does not vanish on the interval 0<r<2R, then equation

(1.2) is disconjugate in \z\ <2T?/51/2.

The proof is similar to that of Corollary 6.1. For each x, 0^x<2T?/51/2,

one sees that the differential equation y" + 7l7(f+x)y = 0 has a solution which

does not vanish on the interval 0StS2[(4R2/5)-x2]1'2. Since (<2+x2)1'2

St+x, equation (6.1) has a solution with the same property. The corollary

now follows from Lemma 5.4 (B), and Theorem 6.1.

It may be of interest to note that there is a "two-sided" criterion cor-

responding to Corollary 6.1. This criterion is again a corollary of Theorem 4.1,

and it contains Corollary 6.1. We may state it as

Lemma 6.1(3). Let p(z) be analytic in \z\ <R, and let M(r) be defined as

before. If the differential equation (6.2) has a solution which does not vanish on

the interval —R<r<R, then equation (1.2) is disconjugate in \z\ <R/2U2.

Proof. As in Corollary 6.1, for each x, 0^x<T?/21/2, we define the func-

tion Mx(t) =M(t+x), O^t^ [(R2/2)-x2]1i2, and by symmetry for *<0. By

Lemma 5.3 (with B = x, a = x+ [(7?2/2)-x2]1/2<7?) it follows that the differ-

ential equation y" + Mx(t)y = 0 has a solution which does not vanish on the

interval - [(7?2/2)-x2]1/2<*< [(7?2/2)-*2]1/2. Since (t2+x2)112 g>t+x, the

differential equation

d2y
—- + M[(t2 + x2yi2]y = 0
dt2

has a solution with the same property. The lemma now follows from Theorem

4.1 (with R replaced by Tc/21'2, and x0 = 0).
Lemma 5.4 (A) shows that this two-sided criterion is stronger than the

corresponding one-sided criterion of Corollary 6.1.

7. The Green's function. Let p(z) be analytic in a simply-connected re-

gion D, and suppose that-w(z) is a solution of the equation

(1.2) w" + p(z)w = 0.

If w(a)=w(b)=0, where aGD, bGD, then as pointed out in [8], the well-

known identity

(7.1) w(f) =  f g(z, $)p(z)w(z)dz
7 a

is still valid if the functions involved are analytic, and the integration path

is any path in D joining a and b, rather than a linear segment. Here, g(z, f)

is the Green's function of the differential system w" =0, w(a) =w(b) =0. That

is, if f denotes an arbitrary (interior) point of the path C joining a and b, and

(3) This theorem was proved independently by Binyamin Schwarz, but was not published.
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if Ci, C2 denote the sub-arcs of C which join a and f, and f and b, respectively,

then

\iz-a)ib-t)
-> z £ Ci,

it - a)ib - z)
-> z E C2.

b — a

With Nehari, we choose f to be the point (or one of the points) of C at

which |w(f)| assumes its maximum value on C. From (7.1) we then obtain

(7.3) lg  f   \giz,t)\ -\piz)\ -\dz\.
J a

We now take C to be the straight line path joining a and b. If we set z — a+re^,

t = a+peie, b = a+Re*, then

(riR - p)/R, 0|r|p,

lS{Z'n\  '    \PiR-r)/R, p^r^R.

Notice that, in all cases,

\giz, t)\   ^riR-r)/R.

Hence, by (7.3),

p R

(7.4) R^\    riR- r)\pia + rei6)\dr.
Jo

For later use we are interested in the direct estimate (7.3), which may be

rewritten in the form

/> p p R
riR - p) I pia + re'*) \ dr +  I    piR - r) \ pia + reie) \ dr.

0 J p

Denoting the right side of this inequality by/(p), one finds that/(p) has an

absolute maximum which occurs when

(7.5) fr\pia + rei»)\dr= f   iR - r) \ pia + re") \ dr,

and that

R^R f r I pia + reie) \dr = R f   iR-r)\pia + reie) i dr.
Jo J,

Thus we have
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(   f'   l l
I    r | p(a + re,s) \ dr,

7 o

(7-6) X"    r*
J    (T? - r) | p(a + rei9) | dr,

where p satisfies equation (7.5).

We illustrate the use of (7.4), (7.6) by finding circular zero-free regions of

the solution w(z) of the equation

w" + z"w= 0,

where w(0) =0. From (7.4) we obtain

1 g Rn+2/(n + 2)(n + 3),

while (7.6) gives

1 g Rn+2/{(n + 2)<2"+3>/(»+!>}.

In this case, (7.6) gives the better estimate for T?, and we conclude that w(z)

has no other zeros in the circle | z| <T?, where

R = (n + 2)<2»+3>/<n+1>("+2>.

The inequality (7.4), in the real case, is contained in a more general criterion

due to Hartman and Wintner [2].

8. Nonoscillation in strips and sectors. The developments of this section

are closely related to some of the work in [8].

Theorem 8.1. Let p(z) be analytic in, and on the boundary lines of, an

infinite region D of the half-plane x >, Xo, which includes the real axis for x ^ x0,

and is included between the lines y = + M, (z = x+iy). Suppose that

/OO

x| p(x) I dx < oo,

(8.2) | p(x + iy) |   g «(x), x ^ x0, x + iy G D,

where e(x)—>0 as x—> oo. Then the differential equation

(1.2) w" + />(z)w = 0

is nonoscillatory in D. Moreover, if p(z) is real and does not change sign for

large real z, and if a solution w(z) has only a finite number of real zeros, then

w(z) has only a finite number of zeros throughout D even if (8.1) is replaced by

the weaker condition

(8.3) f    \p(x)\ dx < oo.
J *0
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In particular, if the (real) differential equation

w"ix) + pix)wix) = 0

is nonoscillatory (in the real sense), then (1.2) is nonoscillatory in D whenever

(8.2) and (8,3) are satisfied.

Proof. Assume there exists a solution w(z) of (1.2) which has an infinity

of zeros {an} in D. We may assume that all Im {a„}^0, that Re {an}

>max iM, Xo), and that (if necessary, by choosing subsequences)

a^ — ffn-i > 1,        «(a„') < «~2 (<z„ = a^ + ia„').

Now, let a = a'+ia" and b — b'+ib" be a consecutive pair of these zeros. Let

C be the path joining a and b consisting of the three straight-line segments

Li, Li, Lz, where Li is the vertical line joining z = a to z = a', Z2 is the segment

of the real axis from x = a' to x = b', and L% is the vertical line joining z = b'

to z = b. According to (7.3) we have

(8.4) lg  f   \giz,t)\ -\piz)\ -\dz\.
J a

We now majorize |g|, according to the position of t on C, using (7.2).

Case I. f £Z.i. We consider the three sub-cases

(i) z £ Li,       (ii) z £ L2,        (iii) z £ L3.

(i) z£Li.

(MiM2 + (6' - a')2)1'2
—-— < Mil + M2)1'2 = Mi,

, b' — a!
I «(j f)     <
' '   ~    MiM2 + ib' - a')2)1'2

-—— < Mi.
b' - a'

(ii) z£Z-2.

MiM2 + ib' - a')2)112

\giz,t)\   g—-   "     , <Mi.
b  — a

(iii) z£L3.

| giz, t) |   g M2/(b' - a') < M2 < Mi.

Case II. f £L2.
(i) zGLi.

.       MiM2 + [b' - a')2)1'2
\giz,t)\   g—-T,        , <Mi.

b — a
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(ii) zGL2.

f, , (M2 + (b' - a')2)1'2
I z - a |-< x(l + M2)1'2 = xM2,

■ | V — a!

' I |    |»-i|    | r — «|        , | (M2 + (V - a')2)*'2
| z — a |   -j-r- -j-j- < I z — a I-,

\b — a\    \z — a\ b' — a

1 <xAf2,

since \z-a\2^M2+(x-a')2<x2 for Jl7<a'<x.

(iii) zGLz.

(M2 + (b'- a')2)1'2
| g(z, f) | fg ̂ --J-j^— M < Mx.

b  — a

Case III. f GL3. The situation is symmetric with that in Case I, and we

obtain |g(z, f)| <Afi.
Now, if we set 7C = max (Tl7i, M2), then we have, by (8.4),

| #(a'» + iy) | 7y + TC j x | p(x) \ dx
0 J a'n

+ K f    "  | ̂ .(a'n+i + iy) | 7y.
7 o

Adding the above inequalities from n = 1 to n = m, we obtain

m+X    n a"n /• o'm+1

(8.5) w< 27C 2 I        I PW + h) I dy + K I x | />(x) I <**.
n=l 7 o 7,,'j

whence

m+X p oo

m < 27C zZ <*»"«(«»') + K I    x | p(x) \ dx,
n=l ■*  xq

00 rt 00

w < 2KM zZ n-2 + K J    x | />(*) | dx.
n—l 7 l0

Since the right side of this inequality is independent of m, we have a contra-

diction, and the main part of the theorem is proved.

To prove the last part of the theorem, suppose that w(z) is a solution of

(1.2) and that w(x) 5^0 for xg^Xx. On the real axis we have

w"(x) = u"(x) + iv"(x) = - p(x){u(x) + iv(x)} = - p(x)w(x),

so that

«"(x) = - p(x)u(x),       v"(x) = - p(x)v(x).
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Multiplying the first of these equations by w(x), the second by i»(x), adding

and integrating, we obtain

m(x)m'(x) + vix)v\x) = m(xi)m'(xi) + vixi)v'ixi)

- f  pit){u\t) + v2il)}dt.
J *1

Since pit) does not change sign for t^xi, it follows that the left side is always

of the same sign for sufficiently large x > Xi; the same property then holds for

— | w(x) |   = {«(*)«'(*) + vix)v'ix)} • | w(x) |-»,
dx

so that | a»(x) | is monotone for large x. By the choice of f in the analysis pre-

ceding (7.3), we see that f£Fi or f£L3. The proof then proceeds as before

except that x|/>(x)| is replaced by \pix)\.

If the real differential equation w"(x)+pix)w(x) =0 is nonoscillatory (in

the real sense), then no real solution u(x) has more than a finite number of

real zeros. Hence the same must be true of any complex solution w(z), with

w(x) =u(x)+iv(x). Thus, if the differential equation is nonoscillatory on the

real axis, it is nonoscillatory throughout D whenever (8.2) and (8.3) are

satisfied, provided p(x) is real and does not change sign for large x. In this

connection we note that if p(x)>0, then Wintner [18] has proved that

fx0Pix)dx= oo is a sufficient condition for (real) oscillation of the (real) equa-

tion w"+p(x)w = Q.

We note that the theorem would be false if (8.1) were relaxed to

(8.6) I    x1-' | pix) | dx < oo, 0 < e < 1.
J x„

For, the Euler equation w"+z~2w = 0 has solutions with an infinite number

of real zeros z>l, while conditions (8.2), (8.6) are satisfied.

On the other hand, if eg 1/4, then the (real) differential equation

w"+ax~2w = 0 is known to be nonoscillatory for x^l. Since conditions (8.2)

and (8.3) are satisfied, the (complex) differential equation w"+az~2w = 0 is

nonoscillatory in D, whenever agl/4.

Theorem 8.2. Let Dr be the closed domain bounded by the lines x=Xo>0,

y = + x~T, (xo g x < oo). Suppose that

(8.7) f   x| pix)\ dx < oo,
J *0

and

(8.8)!      | pix + iy) |  g x*e(x), x ^ xQ, x + iy £ Dt, for r ^ 0,
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(8.8)2      I p(x +iy)\  S x2re(x),        x ^ x0, x + iy G Dr, -1 < r < 0,

where e(x)—>0 as x—>00. Then the differential equation

(1.2) w" + p(z)w = 0

is nonoscillatory in Dr. Moreover, in the case ri£0, if p(z) is real and does not

change sign for large real z, and a solution w(z) of (1.2) has only a finite number

of real zeros, then w(z) has only a finite number of zeros throughout Dr, even if

(8.7) is replaced by the weaker condition

(8.9) f    \p(x)\dx< 00.

Proof. In the case r^O, the proof of Theorem 8.1 holds (with M = Xqt) as

far as equation (8.5). In this case, however, we now have a'n' 2s(an')-r; using

(8.8)1 we obtain the same contradiction as before.

For the case —1 <r<0, the idea of the proof is exactly the same but we

require a new estimate of [g(z, f)| ■ In this case we assume that a solution

w(z) of (1.2) has an infinite number of zeros {an} in Dr with Im {a„} ^0,

Re {an} >l, and a„' — a£_1>(a„')~r, e(a„') <w-2. Leaving out the computa-

tion, we find that for all positions of f,

■2i'V)-', z G Lx,

I g(z, f) I   S ■ 21/2x, z G Lz, z = x,

.21'2(6')-, zG L,.

The proof now proceeds as before, and we obtain

00 y» OO

m <2-21'2zZn-2 + 2i'2 I    x\p(x)\dx.
n-l 7 l0

Again we have a contradiction and the theorem is proved.

The example w"+z~2w = 0 applies also to Theorem 8.2, showing that the

condition (8.7) cannot be relaxed to the condition (8.6).

Theorem 8.3(4). Let p(z) be analytic in, and on the boundary lines of, a

sector Sa bounded by the lines y = +ax, 0 <a< 00. Suppose that

(8.10) I p(x +iy)\   S P(x), x+iyG S„,

/1 00

xP(x)dx < 00.
0

Then the differential equation

(4) Cf. E. Hille [5, Theorem 13]. Cf. also C. T. Taam, Schlicht functions and linear differen-

tial equations of second order, Journal of Rational Mechanics and Analysis vol. 4 (1955), espe-

cially Theorem 12.
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(1.2) w" + p(z)w = 0

is nonoscillatory in Sa.

Proof. Assume a solution wiz) of (1.2) has an infinite number of zeros

{an} in Sa. We assume that Im {an} ^0, and that Re {an} =an' >n. Since

Sa is convex, the line joining a„, am lies in Sa. Writing arg (am — a„) =dn,m and

setting z = an+reiea'm, we have, by (7.6),

1 g   f r | />(a„ + r«»»-) | dr, 0 < p <  | am - an |   = R,
J o ■

hence

pR

1 <  I    r | £(an + re*"'™) | dr.
«/ o

If a„+re*9"'",=x+iy, then r = (x — o„') sec0„,OT. Making this substitution, we

have

/> o'm (x — a„') I pix + iy) \ dx,

hence

(x — a„',lP(x)(ix.

If now we hold n fixed and let »w—»oo, we obtain

cos2 7 g cos2 I lim sup 0„,m) = lim inf cos20n,m g  I    (x — a„)Pix)dx
\   m—.» / fn—.«> •/ a'„

/I 00 ^» 00

xP(x)<fx <  I    xF(x)rfx,
a'„ «/ n

where a — tan 7. Hence finally

cos2 y g lim   j     xPix)dx = 0.
n—»«  •/ n

This is impossible for 0<7<ir/2, hence the theorem is proved.

As an example, we consider the differential equation

w" + e"'w = 0.

We may take P(x) —e~x. Since foxe~xdx< <x>, it follows that this differential

equation is nonoscillatory in any sector Sa, 0 <a < 00. As a matter of fact, the

result obviously holds for any sector

5a' :z = Xo + re*'*, x0 real, 0 g r < 00, -tt/2 + e g d> g x/2 - e.

However, the above equation admits the explicit solution wiz) = /o(2e-*/2),
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where 70 is the Bessel function of order zero. This function has an infinity of

zeros on each of the vertical lines x =x„, where 2e~Zn =X„ and Xn is the nth zero

of 70(x). This example shows that the range of the theorem cannot be ex-

tended to an entire half-plane, either open or closed.

9. A theorem in the half-plane. None of the results of §8 applies to a half-

plane. The following results apply to a half-plane but are of a somewhat

different nature.

Lemma 9.1. Let p(z) be analytic for Re {z} ^x0, and set

max { | p(z) | : | z — x01   = r, Re{z} ^ x0} = M(r), 0^r< oo.

Let z = a, z = b be two zeros of a solution w(z) of w"+p(z)w = 0 such that

Re {a} ^x0, Re {b} ^x0, and \ b — x0| ^ | a — x0|.

If M(r) is monotone decreasing, and if

/> I *►—^=olrM(r)dr S 1,
0

then \b — a\ > \b — x0|.

Proof. For the proof we may assume Xo = 0. Assume a solution w(z) of

w"+p(z)w — 0 has two zeros a, b in Re {z} ^0 with |ft|^|a| and \b\

^ \b — a\. If arg (b—a) =6, then by (7.6) we have

/> R
P\p(a + Pei»)\dp> 1, 7?=  \b- a\ .

o

Now, let r = | 61 +p —7?; note that r= |i| — | & — a\ =«>0 when p=0. More-

over,

| P(a + pe«) |   ^ M( | a + pe" \ )

= M(\b- (R- P)ei» | )

S M( I b |   - 72 + p)

= Mir).

Hence

/IM /» |6|rM(r)dr ^  I      (r - e)M(r)dr > 1,

contradicting (9.1), and proving the lemma.

This lemma leads to obvious zero-free regions and also gives us

Theorem 9.1. Let p(z) be analytic for Re {z} ^x0, and let M(r) be defined

as in Lemma 9.1. If 717(r) is monotone decreasing, and if
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(9.2) f   rM(r)dr g 1,    .
J o

then no solution of w"+p(z)w = 0 has more than 3 zeros in Re {z} ^x0.

Proof. Let w(z) be any solution of w"+p(z)w = 0, and suppose that

w(a) =0, where Re {a} ^x0. According to the preceding lemma w(z) cannot

have another zero z = b in that part of Re {z} ^xo which lies outside the semi-

circle | z —x0| < | a — x0\ and which lies on the same side of the perpendicular

bisector of the line joining z = x0 and z = a as z = a. In addition, wiz) can have

no zero in that part of the circle |z — a\ <\a— Xo\ common to Re {z} ^xo.

For, on interchanging the roles of a and such a zero b, we see that a would lie

in the zero-free region corresponding to z = b.

In particular, then, we see that w(z) can have no zeros in the part of

Re {z} ^x0 common to a sector of angle 120° with vertex at z =x0 and having

the line joining z = x0, z = a as axis of symmetry. The theorem now follows

easily. For if a solution w(z) had « = 4 zeros, then for at least one pair of these

zeros the angle subtended at xo by the lines joining them to x0 would be less

than or equal to 60°, which is impossible.

As mentioned in the introduction, a theorem of this type may be inter-

preted as a sufficient condition for 3-valence of the function /(z) whose

Schwarzian derivative is 2p(z).

10. Zeros in a circle. In this section we use the Green's function to obtain

a sufficient condition for disconjugacy in a circular region.

Lemma 10.1. Let p(z) be analytic in the circle \z\ ^R, and suppose that a

solution wiz) of w"+piz)w = 0 has zeros at a=Rie~i*, b=Riei*, 0<'/'gir/2.

Then

(10.1) | b - a\   g 2A f   iA - r)Mir)dr,
Jo

where

Mir) = max | piz) | , A = max (2clf Ri) g R.
I«l-r

Proof. By (7.3) we have

1=2 f\giz,t)\ \piz)\ \dz\.
J a

This time we take the path of integration to be the radial lines joining the

points z = a, z = b to the origin. Writing f=pe-i*, z=re±i*, we have (if f is on

the line segment joining 0 and a),
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rR>(Rx- r)(Rl + p  - 2PR2 cos 2^        ^
1 ^  I      -■-j--1-M(r)dr

J p | b — a |

2 2 1/2
r> (Rx - p)(R2 + r  - 2rR2 cos 2*)

+  I    -j--j-M(r)dr
7 o I o — a I

+ f»C«.->)C«.-r)
7o |J — a I

We obtain a similar inequality with T?i and T?2 interchanged if f is on the line

segment joining 0 and b. In either case it is clear that the inequality is im-

proved by replacing T?i, R2by A. With this change we now have

| b - a |   £ f   (A - r)(A2 + p2 - 2PA cos 2^)1'277(r)<fr

+ I    (A - p)(A2 + r2- 2rA cos 2^)1'2J17(r)7r
7o

+ f   (A- P)(A - r)M(r)dr.
7o

Denoting the right side of this inequality by/(p), we note that/(4) =0, while

f'(p) <0 for p > 0, so that

f(p) ̂  f(0) = 2A f   (A- r)M(r)dr,
7o

and the lemma is proved.

Theorem 10.1. Let p(z) be analytic in \z\ ^R, and set

M(r) = max  | p(z) | , 0 ^ r ^ R.
|s|=r

if

(10.2) RMl'2(R) I    (R-r)M(r)dr^—,
7 o 2

then the differential equation

(1.2) w" + p(z)w = 0

is disconjugate in the circle \z\ <R.

Proof. Assume that the differential equation (1.2) has a solution w(z) with

two zeros in |z| <T?. These zeros cannot be on the same radial line z = reu".
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For, if they were, then by (7.6) we would have

1<  f   iR- r)Mir)dr;
Jo

this, together with (10.2), would imply R2MiR) <7r2/4. But according to

Corollary 1.1, this is sufficient to insure the disconjugacy of (1.2) in |z| <A*.

As in the proof of Theorem 2.1 there is no loss of generality in assuming

these two zeros are Zi=-Rie-*'*, Zi^Rie'*, 0<^gir/2. By Lemma 10.1 we have

2A f   (A - r)M(r)dr ^  | zi - z21 , A = max (i?.i, Ri).
Jo

In the circle \z\ g^4, we have \p(z)\ glf(^4), hence by Corollary 1.1 it fol-

lows that MiA) ^7r2/|zi —z2|2. Consequently

2A f   (A- r)Mir)dr ^ irM'^iA).
Jo

Since R>A, and MiR) ^ MiA), we have

f   iR - r)M(r)dr >  f   (A - r)Mir)dr § x/2AMli\A) > 7r/2i?MI'2(J?).
J o •* o

This contradicts (10.2) and completes the proof of the theorem.

Note that the above theorem gives a new result only in the case that

(10.3) f   iR- r)M(r)dr < 1.
Jo

For, if this integral is greater than or equal to unity, and (10.2) holds then,

as noted in the proof,

(10.4) R2MiR) g 7r2/4,

and the disconjugacy of (1.2) in |z| <A^ follows from Nehari's theorem. The

theorem cannot be sharp since (10.4) (which was used in the proof), is sharp

only if Mir), hence also piz), is constant, whereas one easily sees that Lemma

10.1 is not sharp for p(z)= constant. Nevertheless, (10.2) often provides a

larger estimate for the radius of disconjugacy than (10.4). For example, in the

case w"+z2w = 0, (10.2) is satisfied if i?6g67T, while (10.4) is satisfied if

A56g7r3/8<6ir.
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