
THE SYMMETRIC DERIVATIVE ON THE (*-l)-
DIMENSIONAL HYPERSPHERE

BY

VICTOR L. SHAPIRO(')

1. Introduction. Let x be a point on the unit (k — 1) -dimensional hyper-

sphere fi in Euclidean £-space, k^3, and let fibea completely additive set

function of bounded variation defined on the Borel sets of fi. Let D(x, h)

represent the spherical cap on fi obtained by intersecting fi with a sphere

whose center is x and radius is 2 sin h/2, and let \D(x, h)\ be the (k — 1)-

dimensional volume of D(x, h). Then p, will be said to have a symmetric

derivative at x, designated by p,(x), if \D(x, h)\~1p[D(x, h)] tends to p,(x)

as h tends to zero.

Let S[aV]= zZn~o Yn(x) be the Stieltjes series of surface harmonics de-

fined by p. We shall show in this paper that if p,(xo) exists and is finite and p.

satisfies the global condition |p,| [D(x{ , e) ] =0 for some e>0, where x0' is the

point diametrically opposite to xa and |ju| is the total variation of p., then S

is summable (C, 8), d>(k — 2)/2 + l, to p,(x0). This result generalizes the

well-known result for Fourier-Stieltjes series where 5>1, see [8, p. 55]. In

case the global condition is not satisfied, we obtain that .Sfcfp.] is summable

(C, n) to p..(*o) where -q>k — 2 lor k~^4 and tj>3/2 for k = 3.

In the special case when p. is absolutely continuous and Y„(x0) =<9(»_1),

we shall show that a necessary and sufficient condition that Sfciju] converges

at Xo to the finite value fi is that p.»(^o) exists and equals fi. This fact general-

ized a result previously obtained by Hardy and Littlewood [5, p. 229] for

Fourier series.

2. Definitions and notation. X will always designate the value (k — 2)/2,

and P^ will designate the Gegenbauer (ultraspherical) polynomials defined

by the equation,

(1 - 2r cos B + r2)~x = zZ r"Pn(cos 9).

With the help of these functions, we can associate to every additive set func-

tion defined on the Borel sets of fi and of bounded variation there, a sequence

of surface harmonics by means of the equation
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T(X)(w + X)   r    x
F»W = '   x+1    •        Pnicos y)dp.(y)

2irA+1       J a

where y is the angle between x and y, that is ii x = (xi, ■ ■ ■ , xk)  and

y = (yi, • • • ,Vk),

cos 7 = (x, y) = *iyi + • ■ • + xkyk.

As shown in [3, Chap. 11 ], rnYn(x) gives rise to an homogeneous harmonic

polynomial of degree n in Euclidean fe-space. We define S[dp] = Ym-o F„(x)

and call this the Stieltjes-series of surface harmonics associated to /jl.

By the terminology 22X=0 Yn(x) is (C, a) summable to a given value, we

mean the usual Cesaro summability defined for example in [8, Chap. 3].

We note that D(xo, h) defined in the introduction is the set

{x, (x, Xo) = cos h}.

[X] will mean the integral part of X and |p| (E) will stand for the total

variation of p in E.

3. Statement of main results. We shall prove the following theorem for

Stieltjes-series of surface harmonics:

Theorem 1. Let p. be a completely additive set function defined on the Borel

sets of ft awcf of bounded variation on ft, and let S[dp] — Yn-o Yn(x). Suppose

fi,(xo) exists and is finite. Then S[dp] is (C, in), 5j>max (3/2, k — 2), summable

to p.s(xo). If, furthermore, p. satisfies the condition that \a\ [D(x0', e)]—0 for

some e>0, where x0' is diametrically opposite to x, then S[dp] is (C, 8) summable

to p,(xo), 5>X + 1.

Concerning the convergence of series of surface harmonics, we shall prove

the following theorem:

Theorem 2. Let f be an integrable function on ft and define p(E), for E a

Borel set on ft, 6y p(E)=fsf(x)dQ(x) where dQ,(x) is the (k — 1)-dimensional

volume element on ft. Let S[f] = Yn-o Yn(x), and suppose that Yn(xa) =0(w-1).

Then a necessary and sufficient condition that S[f] converges at x0 to 8 is that

p,(xo)=B.

Remark 1. By [l, Theorem 2], it is easily seen that the condition

|/u| [77(xo , «)]=0 for some e>0 in Theorem 1 can be replaced by the condi-

tion that in D(x0', e), p. is absolutely continuous with p(E) =/js/(y)o'ft(y) and

that

f f      l/(y)' ^(yXoc,

4. Fundamental lemmas. Before proceeding with the proof of these theo-

rems we shall prove some lemmas. By S%x (cos 0), we shall designate the sum
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SrX(cos 6) = zZ (j + X)Py(cos e)A'Li
i-o

where   zZn=o Anxn = (l—x)-(a+1'> with a>l. By [g(cos 0)]', we shall mean

ag(cos 6)/d0.

Lemma   1.    | [SS,x(cos   0)]'| ^7C(e)«x+1c9-(a+^+«   for   n~l^0^Tr-e   and

[X] + 2 >a> [X] + l, where K(e) is a constant depending on e but not on n.

We first observe that

A r  x ,  » 2X(X + l)r(l - r2)sin0
(1) IZ (» + X) [Pn (cos 6) ]'r   =-—-

£j (1 - 2r cos 0 + r2)x+2

Let us suppose that X>1. Then since

1 (1 - r2)r sin 0
(2)-

(1 - r)«+! (1 - 2rcosc9 + r2)x+2

1 (1 - r2)r sin 6 1 1

~(1 - r)a (1 - 2r cos (9 + r2)x+1        (1 - r)   (1 - 2r cos (9 + r2)

we obtain from (1) that

(3) [s:,X(cos 0) ]' = KiJZ [Sr^tcos ») I'^-Kcos 6)
i-o

where F„(cos 0) = zZ]-o Pn(cos 0) and Ki is a constant. But

Pj(cos 8) =sin (7 + l)t7/sin 0;

therefore,

cos 6/2 - cos (2n + 3)6/2
(4) 7„(cos 0) =--— ■

2 sin 0 sin 6/2

So if we assume that [5^-1-x-1(cos 0)]' satisfies the conclusion of the lemma,

we see from (3) and (4) that

,[s:W)]'i jiW-wwh£/.
1=0

Therefore in order to prove the lemma we need prove it only in the special

cases X = l/2 and X = l.

To do this we introduce

n

.C°(cos 0) = A°n/2 + zZ (cos j6)Aan-j
J-l
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and observe by [8, p. 56] that

(5) | [5""°(cos 0)]'\   =: K(t)nB~(a+1)        for n'1 ^ 8 g % - t, 1 < a < 2.

For the case X = l/2, we rewrite (2) in the form

1 (1 - r2)r sin 8

(1 - r)a+1 (1 - 2r cos 8 + r2)6'2

1 (1 - r2)r sin 8 1

~ (1 - r)°+1 (1 - 2rcos0 + r2)2 (1 - 2r cos0 + r2)1'2

and obtain that

(6) [Sl'1/2(cos 8) ]' = KtY [S?°(cos 8) ]'p£(cos 8)
(=0

where K2 is a constant. From   [7, p. 160],  | Pn/2(cos 0)| <.(n sin 0)~1/2. So

we conclude from (5) and (6) that

| [.C1/2(cos 8)]'\   = K(e)n'Y<a+dm      for n'1 = 8 = rr - e and 1 < a < 2

which proves the lemma in the special case X = 1/2.

For the case X = l, let us assume that 2<a<3. Then by (2), we obtain

that

[sT\cos 8)]' = K3 Y [sT1,0(cos 0)]T„_,(cos 0)
j-0

and (4) and (5) give us that

i   r    a.l -,    i 2  —(a+2)

| [Sn   (cos 8)]'\   ^ K(t)n 8 for w"1 g 8 ^ rr - «,

and the proof to the lemma is complete.

Lemma 2. | [S£'x(cos 0) ]'| ^ Kna+2X+2 for 0 ^0^ w"1 and a = 0, where K is a

constant independent of n.

To prove this lemma we write

1 (1 - r2)rsin0

(1 - r)*'1 (1 - 2rcos8 + r2)x+2

(1 - r2)r sin 0 1

~ (1 - r)a+1(l - 2r cos0 + r2)x+3'2 (1 - 2rcos0 + r2)1'2

and obtain that

(7) [s"'X(cos 8) V = Ki Y [^'X_1/2(cos 0) 1'P^cos 8),
:_0
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5£'°(cos 8) being defined as in Lemma 1.

If we assume that the conclusion to the lemma holds for 5J'x-1/2(cos 8),

we can use the fact that | Pi/2(cos 8) | ^ 1 and obtain from (7) that

| [Sn  (cos 0) J'I   ^KiZ^J = Kn
i-o

So to prove the lemma, we need only show that the conclusion of the lemma

holds for S£'°(cos0). But

| [S»'°(cos0)]'| =   zZjsin j9An-j   ^ Kn+\

and the proof is complete.

We now state a lemma of Kogbetliantz [6, p. 139].

Lemma 3. For — Ka^k — 1 and for 0^0 ^7r

| .CX(cos 0) I   g K(n + l/^sin 0/2)-<a+1>.

We next define the expression B„(h) by

(8) Bl(h) =   f  Pn(cose)(sinefde/p>n(l)  C   (sin0)iXd0

and prove the following lemmas:

Lemma 4.  |73X(A)| ^K(hn)~* for 0^h^w/2 where K is a constant inde-

pendent of n.

Lemma 5. |23X+1(A)— B„(h)\ ^Kh2nfor O^h^ir where K is a positive con-

stant independent of n.

To prove Lemma 4 we have by [7, p. 80, pp. 166 and 167] that

| p\(cos 0) |   ^ 2r10_Y~1 for 0 ^ 6 ^ ic/2,

x /« + 2X - 1\
(9) p„(i) = ( y

|Ft(cOS0)|     ̂    Pn(l).

We conclude that the left side of the inequality in Lemma 4 is majorized by

a constant multiple of

n\-l   C   fl-XflZX^    I  W2X-1   j      02X0^

which gives the right side of the inequality, and the lemma is proved.
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To prove Lemma 5, we let g(w) equal the square of the normalizing coeffi-

cient of P„(r), that is [3, p. 174]

co,      f<») - / V-Mfc. - ,■>""* . ^±M Ai,
7_i (w + x)r(x)

and obtain from the Christoffel-Darboux formula [3, p. 159] that

P„(CQS 8)Pn+l(l)   ~  Pn+l(CQS fl)Pn(l)

2 sin2 0/2
(11)

= 2g(n) ̂±7 £ ieiDY'pVflosffiP^V).
«+l ,-=o

From (8) and (9), we see that the left side of the inequality in Lemma 5 is

majorized by a constant multiple of

| PX+i(l)PX(cos 0) - P^(l)P„+i(cos 0) |
max -•

0g»§» W4X_2

But by (9), (10), and (11) this expression in turn is majorized by a constant

multiple of

h2 »
—— n2*-2YiPx~l = h20(n),
n ,_o

which is the right side of the inequality in Lemma 5, and the proof of the

lemma is complete.

5. Proof of Theorem 1. Let us first suppose that u(E) =0 for £ a Borel

set contained in D(x0', e) where e is a positive number between 0 and tt/2.

Then with 5>X + 1 but less than [X]+2, we have

(12) S'n(x) = Y Yj(x)ALj = -^ f <£X(cos y)dp,(y)
j-o 2irK+l J a-D(I0',€)

with cos y = (x, y) and S£-x(cos y) defined in the beginning of §4.

Next, we introduce the continuous function f(x) which has the following

properties:

(i) f(x) =0 for x in D(x0', e),

(ii) f(xo)=p.(x0),

(iii) frf(x)dSl(x)=p[D(xo, 7r-e)],
and set pi(7i) =JBf(x)dQ,(x) for E a Borel set on ft. By [l, Theorem 2],

Ri(x0)/An-^p,(xo) for S>X when Rn is defined by the last expression in (12)

with p. replaced by p.i. Consequently to prove the second part of this theorem

it is sufficient to show that
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(13)      —- [Rn(xo) - si(*„)] =  f Sn* [(x0, y)]dp2(y) = o(n)
r(X) J li-Bd,',.)

with [X]+2>5>X + 1 and/ij=/ii—/z.
To do this, we define a one-dimensional completely additive set function

cr of bounded variation on [0, tt] in the following manner:

To every Borel set Z on [0, ir] associate the set Zk~1 on fi where Z*_1

= {x, xCXl and (x, sr0)=cos 8 where 0£Z}. Then a is defined by cr(Z)

=p2(Zk~1). So in particular if Z= [0, h], a(Z) =p2[D(x0, h)].

With this definition we obtain that

f SnX [(*„, y) ]dp2(y) =    f ^'J* (cos 0)aV(0)
J a-D (z0',t) Jo

(14)

= -  (     p2[D(x0, 0) ] [S? (cos 0) ]'dd
J o

since both ju2[7J>(:x:o, ir — e)] and /i2[2?(aco, 0)] are zero.

Now by construction pi[D(x0, 8)]=o[\D(x0, 0)| ] =o(02X+1) as 0->O.

Therefore by Lemma 2,

f "   ju, [D(*0, 0) ] [S!'X (cos 0) ]'cZ0 = o ( f llnd2X+ln+2X+2dd)
(15) Jo \Jo /

= o(ws),

and by Lemma 1,

T    p2[D(x0, 6)][SI*(cosO)]'d0
J „-i

where ^i(fe)(i = l, 2) tends to zero with ft.

From Lemma 1, we also obtain that

(17) f * '»i[D(x0, 0)][5Jn,X(cos0)]'ci0 = 0(n+1~ln) = o(n).
J;.

We therefore conclude from (13), (14), (15), (16), and (17) that

I        5 J i      —8
lim sup | Rn(xo) — Sn(x0) \n    =0.

Since Rn(x0)/An-^p,(x0), the second part of Theorem 1 is proved.

To prove the first part of the theorem, we suppose that k — 2<n<k — 1

for k=4 and 3/2<ij<2 for k = 3 and set p=p3+pt, where for Borel sets E,



1956] THE (fc-l)-DIMENSIONAL HYPERSPHERE 521

p3(E) =0 for £Cft-7>(x0, 3t/4) and m(E) =0 for EdD(x0, 3ir/4). Then

-4» 2^Vx+1Jn
n n

By the part of the theorem proved above, 7'—>ps(xo) for ij >X + 1. By Lemma

3 with k-2<r)<k-l,

K(n+ l)k~2 f \dm(y)\
|       1, i J a-Dlx^MH)
\ I ' n      — n

/      3*Y+1
( sin — )     nv

\      8/

We conclude that 77JJ tends to zero as w—» oo, and the proof of Theorem 1 is

complete.

Remark 2. To show that r] cannot be taken equal to k — 2 in the above

proof, choose pi to be the mass distribution with mass 1 at x0' and zero else-

where. Then

"«~2 = TT^T t (i + X)(-1)'P*(1M£.
2A„   irx+1 ,_o

By [8, p. 43] for 77*~2 to tend to zero, (w+X)P„ (1) would have to be o(w*~2).

But (n+X)PX1(1 )»-<*-*>->!/(*-3)! as w->°°. So in Theorem 1, r] must be

chosen greater than k — 2.

6. Proof of Theorem 2. The sufficiency condition of Theorem 2 follows

immediately from Theorem 1 and the usual Tauberian theorem for Cesaro

summability [4, p. 121].

To prove the necessity, we set Fh(x) = \D(x, h)\~1fo(x,h)f(z)dU(z) and

obtain that

f Pn[(x, y)]Fh(y)dQ(y)

(18) =| D(x, h) f1 J f(z) IfPn [ix, y) ]XD(v,h)(z)dQ(y)~\ dQ(z)

= i d(X, h) r r /(z) r r p\ u*, y> i^y)! <*ooo

where Xe(x) stands for the characteristic function of the set E.

Then by [3, p. 243],

(19) Pn[(x, y)] = Pn(l) I £21 [*(»)]_1 Y s'n(x)S'n(y)
i-l

where h(n) is the maximum number of linearly independent surface harmon-



522 V. L. SHAPIRO [March

ics of degree n on fi, and Sjn(x), j = 1, • • ■ , h(n), are a set of linear independ-

ent, orthonormal surface harmonics on fi.

On the other hand, by [3, p. 240] with z= (1, 0, • ■ ■ , o) and x given by

spherical coordinates in terms of z, Sn(x) can be chosen as a constant multiple

of
2\_t

(20) Y(m,; 0„ ± *) = «*'"»* R  (sin 0a+1) ̂pZ^T'^os 0a+1)
a-o

where n=m^mi'^ ■ ■ ■ ̂ m^^O. [For the spherical coordinate notation

see [3, p. 233] with p = 2\.} Let us call S„(x) the function obtained in (20)

when the sequence (n, 0, ■ ■ ■ , 0) is used. Then Sl(x) is the function P£[(x, z) ],

normalized.

We shall now show that,

(21) f       S'n(y)dQ(y) = 0, fori^l.
J D(i,h)

For there must then exist some a^O such that w,^0. Let qi he the last such a.

Recalling that

da(y) = (sin 0x)2X(sin 02)2X-X • • • (sin 62X)d6i • • ■ ddiXd<t>

where O^0t^ir (q = l, ■ • • , 2X), and 0^<£^27r, we see immediately that (21)

holds in case gi = 2X. Let us suppose then that ai^2X. Then

(sin 0S1+1) Pm„-m,l+i       (COS 09l+l)   = Pm,y (COS 0,1+i).

But by [2, p. 177]

I    P^'^cos 0)(sin 0)2X_a d8 = 0 for n ^ 0
Jo

and consequently (21) holds.

We thus obtain from (18), (19), (20), and (21) that

f Pl[(x, y)]Fh(y)dQ(y)

(22)

= r(«) f        Pn[(y, w)]dQ(y) I  f(z)Pn[(x, z)]dQ(z)

where

#(«) | 7>(w, «) I 1. J q J

1 r !
=- by [3, p. 236, formula 29].

D(W,  h)Pn(D
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Consequently with 5[f]= ^„°=o Yn(x) and Bn(h) as in Lemmas 4 and 5, we

conclude from (22) that

S[Fk] = Y Yn(x)Bn(h)
n=>0

and, furthermore, from the continuity of Fh(x), from the fact that  F„(x)

= 0(n~1), and from Lemma 4, that

.Qlh~l] x °° x

(23) Fh(x0) =   Y YH(x0)Bn(h) +       Y      Yn(x0)Bn(h)
n-0 n=q[h 'l+l

where q is a fixed, large positive integer.

Since there clearly is no loss of generality in assuming that

n

Pn = V Yn(x0) -> 0,
1=0

we shall make this assumption and shall show this implies that 7a(x9)—>0.

By Lemma 4 the second sum on the right in (23) is majorized by a con-

stant multiple of

(24) Jrx    Y   »"1(+X) = 0(o"x).
n-9[*-1l

Using Abel summation by parts on the first sum on the right side in (23),

we obtain that this sum is equal to

(25) " Y    Rn[Bn(h) - Bl+i(h)] + P4i»-'jP8X[»-'j(A).
n—0

By Lemma 4 the second term in (25) tends to zero as h—>0. By Lemma 5 the

first term in (25) is majorized by

h2  Y 0(11)
n— 0

which tends to zero with h. We consequently conclude from (23) and (24)

that

limsuplP^xe)!   = O(r^).

But this fact implies that limA,o 7/>(xo)=0, and the proof of Theorem 2 is

complete.

In closing we point out that with no change in the proof of Theorem 2 the

condition that p be absolutely continuous can be replaced with one requiring

only that p [0(x, h) ] be continuous at x0 for h small.
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ERRATA, VOLUME 79

Arithmetical predicates and function quantifiers. By S. C. Kleene. Pages

312-340.

Page 329, lines 20-21. For "those with superscript "Q" partial recursive,

uniformly in Q);" read "those with superscript "Q" partial recursive uni-

formly in Q);".


