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1. Introduction. There have been many generalizations of the original

Hahn-Banach extension theorem on the extension of a real-valued distribu-

tive function defined on a linear subspace of a real linear space where the

extension is bounded from above by a positive-homogeneous, subadditive

function. The generalizations have taken two forms. One is to add the re-

quirement that the extensions be invariant with respect to a collection of

operators defined on the domain space. Banach proved such a theorem for

commutative groups [3](2), Morse and Agnew for solvable groups [14]. The

second type of generalization is to remove the restriction that the range space

be the real numbers and assume instead, for example, that the range space be

a partially ordered linear space of a special kind [l; 2; 5; 7; 12; 15; 16].

Another extension problem closely related to Hahn-Banach extensions is

that of extending a monotone distributive function defined on a subspace of

an ordered linear space and whose range is an ordered linear space [5; 9; 10;

11; 13]. The purpose of this paper is to consolidate the generalizations of the

Hahn-Banach Theorem, relate these to invariant monotone extension theo-

rems, and further extend the generalizations where there are minimal restric-

tions placed on the range space. This reduces the problem to a characteriza-

tion of abstract semigroups.

2. Background material. The purpose of this section is to introduce with-

out proofs some necessary background material. A knowledge of the basic

concepts of linear spaces, groups, semigroups, and partially ordered systems

is presumed. Unless otherwise noted, all linear spaces have the real numbers

as the scalar field.

Definition 1. A linear space (LS) F is an ordered linear space (OLS) if

there exists a binary relationship, ^(greater than or equal to), such that if

x, y, z are in V and t is any nonnegative real number, then (a) x^x, (b) ii

x^y and y^z, then x^z, (c) if x^y, then tx^ty, (d) iix^y, then x+z^y+z.

Definition 2. A nonempty subset C of a LS F is a cone if x, y in C and t,

a nonnegative real number, imply x+y, and tx are in C. C is sharp (SC) if

x and — x in C imply x=0.
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A. (1) A cone C in a LS F determines an ordering which makes V an

OLS: x^y ii and only if x—y is in C. (2) C, the set of elements greater than

or equal to 0, in an OLS V is a cone. The order determined from C is the

original ordering (3) Cone C is sharp if and only il x^y^z imply x=y.

The definitions of upper bound (ub), lower bound (lb), least upper

bound (sup), greatest lower bound (inf) of a subset of a partially ordered

system are assumed, as is the concept of a directed system.

Definition 3. Given a directed system Q with order indicated by >, and

given a function G from Q to an OLS V, then the limit superior (lim sup) of

G and the limit inferior (lim inf) of G, ii they exist, are defined as follows:

limsupG(0)=   inf  ( sup G(o')),
0 In Q e in Q \ q'>t /

liminfG(a) = sup ( inf G(q')).
1 in 0 I In 0 \8'>« /

A collection of properties associated with the above definitions follows.

B. The sup and inf of a subset of a partially ordered system are unique

if they exist. If sup U exists, sup (tU)=t sup U, where UC.V, an OLS, and

/ is a nonnegative real number. (tU= {tu: u in [/}.) sup (—U) = — inf U.

(-U=-1U.)

lim supG(0) = - lim inf (-G(q)). sup (G(t) + 77(0) = supG(i) + sup 27(0,
q inQ < to 5T

where T is any index set, G and 72 are functions from T to F, an OLS, and

all the sups, exist. The preceeding inequality is true if T is a directed system

and sup is replaced by lim sup. sup (U+W) =sup [7+sup IF and inf (U+W)

= inf [7+inf IF, where U, W are subsets of F an OLS, (U+W={u+w:

u in U, w in IF}), where it is assumed that sup U, sup IF, exist in the first

equality and inf U, and inf IF exist in the second equality. If WQ UQ V, a

partially ordered system, then sup <7^sup IF and inf IF^inf U, assuming

the appropriate sups and infs exist.

Definition 4. A function m from an OLS X into an OLS F is monotone

il.x^x' implies m(x)^m(x'). m is nonnegative if x^O implies m(x)s±0.

C. If m is distributive, m is nonnegative if and only if m is monotone.

The main theorem of this introductory section will now be stated. Certain

portions of it can be found in [l; 2; 9; 10; 11; 13]. However the organization

and the generalized form are due to M. M. Day [5].

D. Consider an OLS F, then statements 1, 2, 3, and 4 are equivalent and

they imply 5.
1. F has the least upper bound property (LUBP). That is, every set of

elements A in V with an upper bound has a least upper bound.

2. Given sets A and 23 in F such that a^b, lor every a in A and b in B,

then there exists v in V such that a^v^b for every a in A and b in B.
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3. V has the monotone extension property (MEP). That is, if X is a sub-

space of and OLS F with cone C, such that (a) the cone in X is XC\C, (b) for

all y in Y, (y+X)C\C^0 if and only if (—y+X)C\C9i0, then every mono-

tone distributive function / from X to F has a monotone, distributive exten-

sion F from Y to V.

4. V has the monotone projection property (MPP). That is, if X is replaced

by F in statement 3 above, there exists a monotone, distributive function P

from Y onto F such that P(v) =v for every v in F.

5. V has the Hahn-Banach extension property (HBEP). That is, if (a) X

is a subspace of a linear space F, (b) p is a positive-homogeneous subadditive

function from F to V, (c) / is a distributive function from X to F such that

/(x) ^p(x) for every a: in X, then there exists a distributive extension F oi f

from F to F such that F(y) ^p(y) for every y in Y.

3. Extension theorems. In the next two sections theorems will be proved

about the class of semigroups which permit invariant monotone extensions.

This class is identical with the class of semigroups which permit invariant

Hahn-Banach extensions. This class in turn is contained in the class of semi-

groups which have invariant means definable on the associated Banach spaces

of bounded real-valued functions. All semigroups which are known to have

invariant means are shown to have the monotone extension property. It is

conjectured that all the above classes coincide.

Definition 1. A representation of a semigroup ® is defined in this paper

to be a homomorphism or an antihomomorphism of © into the space of dis-

tributive operators of a vector space (or the image of ® under such a map).

Definition 2. Consider (1) a linear space  Y, (2) X, a subspace of F,

(3) an OLS V with sharp positive cone K and such that V has the LUBP,

(4) G, a semigroup of operators on F, (5) p, a positive-homogeneous subaddi-

tive function from Y to V such that p(gy) ^p(y) for all y in F and g in G,

(6)/, a distributive function from X to Fsuch that/(gx) —f(x) andj(x) ^p(x)

for all x in X and g in G. Then the collection [Y, X, V, K, p,f, G] is said to

have the Hahn-Banach extension property (HBEP) if there exists a distribu-

tive extension F oi f defined from all of Y to V such that F(y)^p(y) and

7"(gy) = F(y) for all y in Y and g in G.

Definition 3. An abstract semigroup © has the Hahn-Banach extension

property (HBEP) if every collection [Y, X, V, K, p,f, G] as in Definition 2,

subject to the additional restriction that G is a representation of ®, has the

HBEP.

Definition 4. Consider (1) an OLS F with cone C, (2) X, an ordered

linear subspace of F with ordering induced by the order in F such that y +X

meets C for every y in F, (3) G, a semigroup of operators on F such that gz

is in C and gx is in X for all z in C, x in X, and g in G, (4) V, an OLS with

sharp cone K and such that F has the LUBP, (5) /, a monotone, distributive

function from X to Fsuch that/(gx) =f(x) for all x in X and g in G. Then the
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collection [F, X, C, V, K,f, G] has the monotone extension property (MEP)

if there exists a monotone distributive extension F ol f from all of F to V

such that F(gy) = F(y) for all y in F and g in G.

Definition 5. An abstract semigroup & has the monotone extension prop-

erty (MEP) if every collection [F, X, C, V, K,f, G] as in Definition 4, subject

to the additional restriction that G is a representation of &, has the MEP.

A few comments are in order. The condition in Definitions 2 and 4 that

K be a sharp cone and the condition in Definition 4 that y+X meet C for all

y in F are more restrictive than the corresponding conditions in the main

theorem, D, of §2, but they appeared necessary in the proof of a few of the

theorems in this section. Perhaps alternative proofs or modifications of the

present proofs will eliminate the need for these conditions. A slightly weaker

version of a portion of the main theorem in §2 is that the group consisting

only of the identity has the HBEP and the MEP.

It will be possible by virtue of the next theorem to restrict attention to

semigroups with the MEP. The proof of the first part of the theorem is

similar to the proof that 3 implies 5 in Theorem D, §2, [5].

Theorem 1. A semigroup, ®, has the MEP if and only if ® has the HBEP

Proof. Assume ® has the MEP. (1) Consider [F, X, V, K, p,f, G] as in

Definition 2, subject to the condition that G is a representation of ®.

(2) Define the vector space F'= {(v, y):v in F, y in F}, where addition

and multiplication are defined co-ordinate wise. Define C = {(v, y)'.v^p(y)}.

It is a straightforward verification that C is a cone in Y' and thus determines

an order which makes Y' an OLS.

(3) Define the subspace X' of Y':

X' = {(v, a:):»in F, xin X}.

y'+X' meets C for every y' in F'. For consider y' = (v, y), and choose

any x in X. Let v'= —v+p(x)+p(y). Then (v', x) is in X' and v'+v =p(x)

+p(y)^p(x+y). Hence (v', x) + (v, y) = (v'+v, x+y) is in C.

(4) Define the representation G' = (1, G) of ®, where (1, g)(v, y) = (v, gy).

Each g' in G' clearly maps X' into itself. Each g' also maps C into itself. This

follows since if (v, y) is in C, then v^p(y)^p(gy) for all g in G.

(5) Define the function/' from X' to V:f'(v, x) =v—f(x). Straightforward

computation shows that /' is monotone, distributive, and fixed with respect

to every g' in G'. Thus by virtue of the assumption that & has the MEP,

there exists a monotone distributive extension F' of /' to all of F' which is

invariant with respect to every g' in G'.

(6) Define F from F to V:F(y)=-F'(0, y). F is distributive and an

extension of/, trivially. Also, F(gy)=F(y) for all y in F and g in G. All that

remains to be verified is that F(y)^p(y) for all y in F.

F'(P(y), y)=P(y)—F(y). F' is monotone and (p(y), y) is in C, since
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p(y)^p(y). Hence, p(y)-F(y) is in K; that is F(y)^p(y). Thus ® has the

HBEP.
To prove the other part of the theorem, assume ® has the HBEP. (1) Take

{ F, X, C, V, K,J, G} as in Definition 4, subject to the additional condition

that G is a representation of ®.

(2) Define the function p from F to V:p(y) =inf {j(x):x in X, x^y},

for every y in Y. p is defined since y+X meets C for each y and V has the

LUBP. Hence the inf exists and is unique.

(3) p is positive-homogeneous since / is homogeneous, and the inf is

positive-homogeneous. The function p is also subadditive for

p(yi + yi) = inf {j(xx + x2):xi, xt in X, Xi ^ yu xt ^ y2}

= inf {j(xi): xi in X, Xi ^ yi} + inf \j(x2): x2 in X, xt = yt}■

The inequality holds since xx+xt^yx+yt, and if set A contains B as a subset,

then inf A ^inf B (if the infs exist). The equality holds since the inf of the

vector sum of two subsets of a vector space is the sum of the infs (if the infs

exist). Hence p is subadditive.

(4) pigy) ^piy) for every y in F and g in G. To prove this, observe that

if x^y, then gx'Szgy, and [gx'.x in X, gx^gy} is contained in {x:x in X,

x = gy}. Therefore it follows that

p(y) = inf {/(*):x in X, x = y] ^ inf {f(gx) = f(x)\gx in X, gx = gy}

= inf [f(x):x in X, x ^ gy} = p(gy).

(5) Thus, since ® has the HBEP, there exists an invariant distributive

extension F of / such that F(y) ^p(y) for all y in F.

(6) F(y) is monotone: If y^O, then F(y)^p(y) ^/(0) =0, and thus F is

monotone. Hence ® has the MEP(3).

Definition 6. (1) Let § be a subsemigroup of a semigroup ®. Define for

each g in ® the right coset of £>, £>g = {g} U {&g: h in 77}, and similarly the left

coset of !Q, gtQ = {g}yj{gh:h in §}. (2) A subsemigroup § of ® is a commuta-

tor subsemigroup if for every g, g' in ®, gg' and g'g belong to the same left coset

and the same right coset of $.

Consider a representation G of ®. If the representation is a homomor-

phism, left (right) cosets of $ are mapped onto left (right) cosets of 77, where

77 is the image of §. However if the representation is an antihomomorphism,

left (right) cosets are mapped onto right (left) cosets. In any case, cosets of a

commutator subsemigroup are mapped onto cosets of a commutator subsemi-

group. Observe that a function defined on a linear space which is invariant

with respect to a subsemigroup, 77, of a semigroup of operators is constant

on right cosets of 77.

(3) The referee suggested the proof of the second part of the theorem and the author is

grateful.
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If G is a group, the usual definition of a commutator subgroup satisfies

the above definition. The proof of the next theorem makes use of a technique

developed by Banach [3], and used by Morse and Agnew [14].

Theorem 2. Let ® be an abstract semigroup which contains a commutator

subsemigroup § with the MEP, then ® has the MEP.

Proof. (1) Consider [F, X, C, V, K,f, G] as in Definition 4, where G is a

representation of ®. Restrict the representation G of ® to 77 of §. Then since

Si has the MEP, there exists a monotone distributive extension F' of/ to all

of F such that F'(hy) =F'(y) for every h in 77 and y in F.

(2) Define the function p from F to V:

p(y) =   inf     sup S(d, g, y),
d in D   q in Q

where (1/N(d))( zZa'i^ F'(gg'y))=S(d, g, y) for every y in F, where

D= {d;d a finite subset of G}, and N(d) is the cardinality of d. Note that

S(d, g, x) =f(x) and p(x) =/(x) for every d, g and x.

(3) p(y) exists for every y in F. Given a y, there exists an x and an x' in

X such that y+x and — y+x' are in C. Therefore, by the nonnegative prop-

erty of 7" and each g in G, and the fact that F'(gx) =F'(x) =f(x) for every

x in X and every g in G, it follows that — f(x) ^ S(d, g, y) =S/(x') for all d and g.

Hence, since V has the LUBP, p(y) exists.

(4) p is a positive-homogeneous, subadditive function.

(a) F'(gigiy) = F'(gigiy) for all y in F and gu g2 in G, for gig2 and g2gi are

in the same right coset of 77 since § is a commutator subsemigroup of ®.

The equality follows by virtue of the invariance of F' with respect to 27.

(b) supoinG^(g'g)^sup„ino A(g) for any collection {A(g):g in G} con-

tained in F and any g' in G provided sup A(g) exists. This follows since

g'GQG. A similar statement with g'g replaced by gg' is also valid.

(c) Denote by did2 the collection {gig2: gi in a\ and g2 in <fa}. Then

P(yi + yi) ^  sup S(didi, g, yi + y2)
s in 0

= sup (S(didi, g, yi) + S(didi, g, y2))
0

^ sup S(did2, g, yi) + sup S(dtd2, g, y2)
s a

= T^7t(   E   (BUP-JW)(   IZ F'((g2g)giyi)))
N(d2) \02 ia dl \ <,    N(d2)/ V in dl //

+-777*77 ( £  (SUP-TTTTt)( 2: F'feto)))
A^Ol) V i„ d, \    B       AW/  \02 in d2 If

g sup S(du g, yi) + sup S(d2, g, y2)
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for every di and d2 in D. The last inequality follows in part from (b). The

second to the last inequality follows in part from (a). Hence from the fact

that V has the LUBP,

Piyi + yt) =     inf    ( sup S(di, g, yx) + sup S(d2, g, y2) )
dl,d2 in D \   a g /

=   inf   sup S(dx, g, yx) +   inf    sup S(d2, g, y2)
dl in D      s <U \n D      a

= P(yi) + P(yt)-

(5) Since F has the LUBP, there exists an distributive extension F oi f

to all of F such that F(y) ^p(y) for every y in Y.

(6) F is nonnegative. It is easily verified that S is a nonnegative distribu-

tive function of y for all arguments g and d. This follows because a cone is a

convex set, F' is a nonnegative function, and every g in G is a nonnegative

operator. Consider y in C.

F(y) £ - p(-y) = - inf   sup (- S(d, g, y)) = sup  inf S(d, g, y) > 0.
d g d g

(7) For every g' and every y, F(g'y) =F(y).

1   N
F(g'y - y) = p(g'y - y) = sup— Y F'(gg''(g'y - y))

o   A  ,-_i

= sup [1 (7'(gg'^y) - FWy))l ^ -(/(*) +/(*')),

where x and x' are fixed elements in X as defined in (3) (a) of the proof. The

inequality is true for all integers N. Hence F(g'y— y)=0. By the same argu-

ment F(y—g'y) =0. Hence, since K is sharp, F(g'y) = F(y) for all g' and y.

Theorem 3. An abstract commutative semigroup has the MEP.

Proof. The proof is almost identical with the proof of the last theorem,

employing only the following two simplifications: F' is merely a monotone

distributive extension of /, and commutivity eliminates the need for the

argument in (4) (a) of the above theorem.

Corollary 1. Given a semigroup G and a descending chain of subsemigroups

of G, {Gi}, such that Gi+X is a commutator subsemigroup of Gi and G = GX, then

if there exists an element Gj in the chain with the MEP, then G has the MEP.

Definition 7. A semigroup G is solvable if there exists a finite descending

chain of subsemigroups d, i = l, • • • , N, such that G = GX, Gn is commuta-

tive, and Gi+X is a commutator subsemigroup of G,. (If G is a group this is

equivalent to the definition of a solvable group.)

Corollary 2. A solvable semigroup (group) has the MEP.
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The next theorem is concerned with finite groups and is definitely false for

finite semigroups. A counter example will be presented shortly.

Theorem 4. A finite group has the MEP.

Proof. Let G be a representation of the finite group on an OLS F with

associated C, X, V, K, f as in Definition 4, then by the main theorem in

§2, there exists a monotone distributive extension F' of/to all of F. Define 7",

the desired extension:

F(y) = (1/N)   zZ F'(gy),        where N is the order of G.
0 in O

It is easily verified that 7" is a monotone distributive extension of/. From the

fact that multiplication by a fixed element of a group is merely a permutation

of the group, it follows that F(g'y) = F(y) for all g' in G and all y.

Theorem 5. Given a semigroup ® and given a collection of subsemigroups

of ®, 3) = {b}, with the properties (a) Ubi„s> (d) = ®, (b) 35 forms a directed sys-

tem under set inclusion, (c) each b in 3) has the MEP, then ® has the MEP.

Proof. (1) Let [F, X, C, V, K,f, G] be defined as in Definition 4, where

G is a representation of ®. The representation G of ® induces, by restriction,

a representation d ol b for every b in J). Each representation satisfies the

conditions in Definition 4. Hence since b has the MEP, there exists a mono-

tone distributive extension, Fd, of 7" to all of F such that Fd(gy) =Fd(y) for

every g in d and y in F.

(2) Define p(y)=\im sup<nnD Fd(y)=inld>inD (sup<(>d' Fd(y)), where D is

the collection of induced representations of the b's, D clearly forms a directed

system under set inclusion (order indicated by >). Note also that Ucf. = G.

(a) p is well defined, (b) p is positive-homogeneous and subadditive, and

(c) / is under p. By assumption, for each y in F there exists an x and x' in X

such that y+x and —y+x' are in C. Thus Fd(y+x) and Fd(—y+x') are in

K for each d. From this it follows that —f(x) g Fd(y) ^f(x') tor every d.

Since F has the LUBP, p(y) exists and is unique for each y. From the prop-

erties of the lim sup it is clear that (b) holds./ is under p. In fact,/(x) =p(x)

tor every x in X.

(3) Since F has the LUBP, and hence the HBEP, it follows that there

exists a distributive extension F of / to all of F such that F(y) ^p(y) for all y.

(a) F is monotone. Consider y in C. Then

F(y) ^-p(-y) = - ini(supFd(-y))
d' \d>d' /

= sup (   inf Fd(y) ) = 0, since Fd(y) is in K for each d.
d'   \ d>*' /
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(b) The proof will be complete when it is shown that F(gy) = F(y) for

every g in G and y in Y. It is asserted that

Pigy - y) = P'igy - y), where P'igy - y) =      inf     (sup Fd(gy - y)).
d" in D,i in d" \d>d" /

First, since the union of elements in D cover G, such d'"s exist for each g.

In particular, for each d' in D there exists a d" in 7> such that g is in d" and

d">d'. Also it is noted that sup<j>d' Fd(gy— y) = sup<i>d" Fd(gy—y) for

d">d'. Hence taking the infimums with respect to the proper index sets it

follows that p'igy-y)^pigy-y). Since [d":d" in D, g in d"}Q{d':d' in D],

the reverse inequality follows. A more immediate proof could be given by

making use of the theorem that replacing a directed system D by a residual

subset D" oi D leaves lim sups unchanged.

Observe that p'igy— y) =0 for all g and y. This follows since Fdigy—y) =0

for g in d. Hence F(gy— y)^0. Similarly 7"(y—gy)=0. Thus, by virtue of

the sharpness of K, F(y) = F(gy) for all y and g.

The next theorem asserts that the MEP is preserved under group exten-

sions.

Theorem 6. Given an abstract group ®, a normal subgroup § oj ©, such

that § and the Jactor group 9J} = ©/,£> have the MEP, then ® has the MEP.

Proof. (1) Consider [F, X, C, V, K,J, G] as in Definition 4, where G is

a representation of ®. Restrict the representation G of ® to 77 of §. Since

£> has the MEP, there exists a monotone distributive extension F' of/ to all

of Y with values in V such that F'(hy) = F'(y) for all y in F and h in 77.

(2) Consider elements g' and g" of G which are in the same coset modulo

77. Then g'=hg" for some h in 77. Hence F'(g'y)=F'(hg"y)=F'(g"y) for all

y in Y. Therefore F'(y), considered as a function on G for each y, is constant

on cosets of G modulo 77.

(3) Define the function space A to be the collection of all functions from

9JJ to F. This clearly forms a vector space with respect to pointwise addition

and multiplication by real scalars.

(4) Define the map L from F to A as follows: Ly=z in A, where z(m)

= F'igy) for any g in the coset of G modulo 77 corresponding to m. From (2)

it is clear that L is well defined. It is also easily checked that 7 is a distribu-

tive function. Denote the image of Y under the mapping L by Y'.

(5) Define the set C in Y':C'=LC, the image of the cone C in F. It can

be verified easily that C" is a cone in Y'. C determines an ordering in L Y

which makes Y' an OLS, and L a monotone function. It is noted that if z

is in C, then z(m) is in K for every m in 2U.

(6) Denote the image of X with respect to L by X'. q is in X' if and only

if q(m) =J(x) for every m in W and for some x in X.

(7) z+X' meets C for every z in Y'. For given z in Y', z = Ly for some
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y in F. Hence there exists x in X such that y+x is in C. Hence z+q = Ly+Lx

= L(y+x) is in C.

(8) Define the right regular representation M of 9U on F':ra'z(m)

= z(mm') for all m in 50? and z in Y'. mq = q for every a in X' and w in M. Also

mz is in C for all z in C and w in il7. The last two statements are easily

verified.

(9) Define R, a function from X' to V'.R(q) =f(x), for every q in X' where

q = Lx. R is (a) monotone (b) distributive, and (c) R(mq) =R(q) for all q in X'

and m in M. (c) follows immediately from (8). R(tq+t'q')=F'(x"), where

Lx" =tq+t'q' =tLx+t'Lx' =tf(x)+t'f'(x')=tR(q)+t'R(q'). Hence (b) follows.
If a is in X' and C, then x, where q =Lx, is in C and hence, since/ is mono-

tone, R(q) =f(x) is in K, and R is monotone.

[F', X', C, V, K', R, M] thus satisfy the conditions of Definition 4 and

since 3JI has the MEP there exists an extension 5 of R to all of Y' with values

in F such that S is monotone, distributive and S(mz) =S(z) for every m in

M and z in Y'.

(10) Define F from F to F:7"(y) =5(Ly) for all y in Y. F is monotone

and distributive since both 5 and L have these properties. F(x) =S(Lx) =f(x)

for all x in X. Hence F is an extension of/.

•FQdO =S(Lgy). 7,gy(m) =F'(g'gy) where g' is in the coset m. Let g be in

the coset m*. Hence Lgy (m) = Ly (mm*) =m*(Ly(m)) lor all tn in 9Jc. Thus

Lgy = m*Ly for all y in F and g in tn*. Therefore F(gy) = S(m*Ly) = S(Ly)

= F(y) for all g in G and y in F since S is invariant with respect to elements

in M. Thus the theorem in proved and G has the MEP.

Given a semigroup with the MEP, it does not necessarily follow that a

subsemigroup has the MEP. An example of such a situation will be presented

later. However, the statement is true for groups and subgroups.

Theorem 7. If ® is a group with the MEP then any subgroup $p of ® has the

MEP.

Proof. The proof of this theorem uses methods similar to the proof of

Theorem 6.
(1) Consider [F, X, C, V, K,f, 27] as in Definition 4, where 77 is a repre-

sentation of Sj>. Since F has the LUBP, there exists a monotone distributive

extension of/, F', to all of F.
(2) Consider the left cosets of ® modulo Sj>, g*. Pick a representative g

from each coset g*. Thus if g' is in g* then g' = gf) for some l) in §, where g

is the representative of g*.

(3) Define A to be the vector space of functions from ® to F. Define L,

a map from F to A:Ly=z, where z(g') =F'(hy). for every g' in ®, where g'

is in g*, g is the representative of g*, and g' = gt). L is well defined and dis-

tributive.
Denote by C the image of C, LC. C is a cone and with respect to the
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order determined by C, L is montone. Denote X' =LX. Again as in the last

theorem z+X' meets C for every z in Y'. Also Lx(g') =J(x) for every x in X.

(4) Consider the right regular representation Gf of © on Y'. Then it fol-

lows that gfq = q for every q in X' and every gf in Gf. Also gfz is in C for

every z in C and g# in Gf.

(5) Define the map R from X' to V:R(Lx) =J(x) for every x in X. It can

be shown that R is monotone and distributive, and since X' is left point wise

invariant by all elements of G#, R(gfq) =R(q) for all q in X' and g# in Gf.

Thus [F', X', C, V, K, R, G#] satisfy the conditions of Definition 4, and by

virtue of the assumption that © has the MEP, there exists a monotone, dis-

tributive extension S of R to all of Y' such that S(gfz) = S(z) for all gf in Gf

and z in Y'.

(6) Define F from F to F: F(y) = S(Ly) for all y in F. Then exactly as in

the previous theorem, F is monotone, distributive and an extension of/. It

remains to show that F(hy) = F(y) for all h in 77 and y in F. Since F(hy)

= S(L(hy)), it will be sufficient to prove that L(hy) =gf(Ly) for some gf in

Gf, because 5 is invariant with respect to each gf in Gf. Now L(hy)($')

= F'(h'hy), where g' = gf>', g is the representative of g* the coset containing

0'. Therefore Lhytf) =Ly(*") =7y(g'g'-1g") = ((g'-1g")#7y)(g'), where g"

= gf/fi. Note that j'-"j" = rrWi=i. Hence Lhy(a.') = (hfLy)(Q') for
every g' in ®. That is, Lhy = i)f(Ly), and the theorem is proved.

Theorem 8. 7/ aw abstract group © /zas the MEP, then so has every homo-

morphic image § oj ©.

Proof. The proof is trivial and follows from the fact that every representa-

tion of ^ is a representation of ®.

From the preceding theorems a few of several obvious corollaries are

presented.

Corollary 3. 7/ every finitely generated subsemigroup of a semigroup has

the MEP, then so has the semigroup.

Corollary 4. If every finitely generated subsemigroup of a semigroup is

solvable, then the semigroup has the MEP.

Corollary 5. If every finite subset of a group generates a finite subgroup,

then the group has the MEP.

The following theorem is concerned with invariant, monotone, distribu-

tive projections.

Theorem 9. Let Y be an OLS with cone C. Let V be a subspace of Y such

that the induced cone K in V is sharp, and V considered as an OLS has the

LUBP. Also assume y+V meets Cfor all y in Y. Let G be a semigroup of oper-

ators on Y, such that G considered as an abstract semigroup has the MEP, gy

is in C for all g in G and y in C, and gv=v for all g in G and v in V. Then
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there exists a monotone, distributive function P from Y onto V such that P(v)=v

for all v in V and P(gy) =P(y) for all y in Y and gin G.

Proof. Let 7 be the identity map on F, then [F, F, C, V, K,I,G] satisfy
the conditions of Definition 4, and since G has the MEP, there exists an

extension P of 7 with the desired properties.

Theorem 10. Let Y, C, V, K, and G be as in Theorem 9. Let X be an OLS

and let f be a monotone, distributive function from V to X. Then there exists a

monotone, distributive function F from Y to X such that F is an extension of

f and F(gy) = F(y) for all y in Y and g in G.

Proof. Define F=fP, where P is the function considered in Theorem 9.

7" is clearly the desired extension.

Theorem 11. Let V be an OLS with the L UBP and whose positive cone K

is sharp. Let X be a subspace of V such that v+X meets K for every v in V.

Let G be a semigroup of operators on V such that G considered as an abstract

semigroup has the MEP, g maps K into itself for every g in G, gx=x for every

x in X and g in G. Then there exists a monotone, distributive operator from V to

V such that F(gv) = F(v) for all v in V and all g and F is the identity on X.

Proof. Let 7 be the identity map on X. [V, X, K, V, K, I, G] satisfy

Definition 4. Hence the desired extension exists.

4. Invariant means. There is a very close relationship between semigroups

with the MEP and the HBEP and semigroups with an invariant mean

definable on them. In this section a relationship will be developed and certain

counter examples will be presented.

Definition 1. A mean on a semigroup G is a distributive functional M

defined on m(G), the linear space of real-valued bounded functions on G, such

that (a) M(x) ^0 for all x in m(G) such that x(g) ^0 for all g in G,

(b)  M(e) = 1, where e is the constant 1 function on G.

It is easily proved and a well known result that condition (a) or (b) in

Definition 1 can be replaced by (c) ||Af|| =1.
Definition 2. Given a semigroup G and m(G), the right (left) regular

representation, Ra (L„) on m(G) is defined: (2?„x)(g') =x(g'g) ((Lgx)(g') =x(gg'))

for every x in m(G) and every g' in G.

Definition 3. A mean If on a semigroup G is right invariant if M(R„x)

= M(x) for every x in m(G) and g in G. A similar definition holds for a left

invariant mean. A mean is invariant if it is both left and right invariant.

The following theorem which is proved in [6] is quoted. If a semigroup

possesses a left invariant mean and a right invariant mean then it possesses

an invariant mean. If a group possesses a right (left) invariant mean, then it

possesses a left (right) invariant mean and hence an invariant mean.

The collection of semigroups which are known to have invariant means,
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[6], corresponds exactly to the class of semigroups which have been proved

here to have the MEP and hence the HBEP. It seems probable that the

classes of semigroups with the HBEP, the MEP, and with invariant means

correspond. It can be shown that when certain additional restrictions are

placed on the range space, then the class of semigroups which have the ex-

tension properties with respect to these suitably restricted spaces is precisely

the class with invariant means. However, with no additional restrictions the

following theorem is easily proved. (A stronger theorem can be proved but

requires additional preparatory material.)

Theorem 1. The class of semigroups with invariant means contains the

class with the HBEP (MEP).

Proof. (1) Let G be an abstract semigroup with the HBEP. Consider: m,

the space of bounded, real-valued functions on G; X, a subspace of m consist-

ing of the constant functions on G (the set of functions of the form te, where

t is a real number and e the constant 1 function); R, the real numbers.

(2) Define/, from X to R:f(te) =t for every real number t. Consider the

right regular representation Rg on m. Since X is left pointwise invariant by

this representation,/ is trivially invariant with respect to this representation.

Define p from m to R:p(y) =\\y\\ for every y in m. Clearly f(x) ^p(x) for every

x in X. Further since Gg is contained in G, p(Ray) ^p(y) for every y in m and

g in G. The same results hold for the left representation. Hence [m, X, R, R*,

p,J, Rg], where R* is the set of nonnegative real numbers, satisfy the condi-

tions of Definition 4 of the previous section. Since G has the HBEP, there

exists a distributive extension Mr of / to all of Y which is invariant with

respect to the right regular representation, such that Ms(e) = 1, and il7s(y)

^||y|| for all y in Y. From the last two conditions it follows that ||-Mb|| =1.

Hence Mr is a right invariant mean for G. Replacing Rg by Lg, it follows that

there exists a left invariant mean for G, hence an invariant mean.

The only examples in the literature of groups which do not possess invari-

ant means and hence do not have the HBEP and the MEP are groups

which contain a subgroup which is a free nonabelian group on two generators

[6]. An example of a two element semigroup which does not possess an in-

variant mean is given by the following multiplication rules: aa=ba = a,

bb=ab=b [6]. An example of a semigroup which possesses the MEP but

which contains a subsemigroup which does not is given by adjoining to the

above semigroup an element c with multiplication rules: cc = ac = ca=bc = cb

= c. The proof that this semigroup possesses the MEP is presented.

Consider a representation {a', b', c'} on an OLS Y with associated

X, C, V, K,J, all satisfying the conditions of Definition 4 in §3. Then since

V has the LUBP there exists a monotone, distributive extension F' of /.

Define F:F(y) =F'(c'y) for all y in Y. This is clearly an invariant monotone

distributive extension of /.
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