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1. Introduction. A Lie algebra I over a field E of characteristic p>0 is

called separable if its Killing form B(X, Y) = trace (ad X ad Y) is nondegener-

ate. Separable algebras over algebraically closed fields enjoy many of the

properties of complex semi-simple algebras; in particular the Cartan sub-

algebras are commutative, and they possess root systems which determine

the algebras up to isomorphism. These results, and a complete classification

of the simple separable algebras over an algebraically closed field of character-

istic p>7, have been obtained recently by Seligman [12](2).

In this paper we develop the basic properties of modular Lie algebras;

these are separable algebras which are obtained from semi-simple algebras

of characteristic zero in the following way. Let ? be a semi-simple algebra

over an algebraically closed field C of characteristic zero. Then 2 possesses

a Cartan subalgebra §, and a Cartan basis (Xi) relative to £>, such that the

constants of structure determined by the basis (X,) belong to an algebraic

number field K. A finite set of exceptional prime ideals in K, which is inde-

pendent of the choice of the Cartan subalgebra § and the basis (Xi), is then

defined; this set includes the prime ideals which divide the rational primes

2 and 3, and the primes which divide the determinant of the Killing matrix

(B(Xi, Xj)). Now let p be a fixed nonexceptional prime, and let o be the ring

of p-integers in K. Then 2 =^oXi forms a Lie subring of ?, and I =2/p2 is a

separable Lie algebra over the residue field K = o/p, with the further proper-

ties that the natural homomorphism of 2—>I maps § onto a Cartan subalgebra

f) of I, and defines a (1-1) mapping of the set of roots of £ relative to § onto

the set of roots of I relative to b. We call a Lie algebra I defined in this way a

modular Lie algebra.

As Seligman has observed, a p-power operation can be defined in every

separable algebra I of characteristic p in such a way that I becomes a restricted

Lie algebra in the sense of Jacobson [9]. The study of restricted representa-

tions of I, which preserve the p-power operation in addition to the usual

properties of a representation, is equivalent to the study of right a-modules,

where a is a finite dimensional enveloping algebra of I called the M-algebra. The
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main results of this paper deal with the theory of a-modules, where a is the

M-algebra of a separable modular algebra I. In §7, it is proved that every

irreducible a-module is absolutely irreducible. The Cartan-Weyl theory of

weights of irreducible a-modules is developed, and in particular it is proved

that two irreducible a-modules rtt and m' which possess leading weights X and

X', respectively, are a-isomorphic if and only if X=X'. Not every irreducible

a-module need possess a priori a leading weight; it is proved in §8, however,

that if an irreducible a-module possesses an extreme weight, then it has a

leading weight, and in this case the Weyl group of I acts transitively upon the

set of extreme weights of tn. In §9 it is proved that every irreducible a-module

which possesses a leading weight is a-isomorphic to a composition factor of

an a-module obtained by a reduction process from an irreducible representa-

tion space of ?.

The author wishes to thank Dr. G. Seligman for his generosity in making

available to the author his unpublished manuscript on the classification of

separable algebras, and for his helpful comments on an earlier version of this

paper.

2. A preliminary remark on the rank of a Lie algebra. We begin with

some definitions. Let S be a Lie algebra over an arbitrary field E, having a

basis Xi, • ■ • , Xn over E, and let X* = ET>-^» De tne general element of ?;

then X*E.2R(3) where P = F(ti, ■ • • , t„) is the field of rational functions in

n variables n. Let

(1) /(A; t) = X" + miMx-1 + • • • + m-(t)

be the characteristic polynomial of the l.t. (linear transformation) ad X*:

Y-+[YX*] acting in 2R. Then the p.i(r) are homogeneous polynomials in the

r's with coefficients in the ring generated over the subring of E consisting of

the rational integral multiples of 1 by the constants of structure cy* of 2,

given by the equations

(2) [XiXj] = E cakXk.

There exists a unique integer />0, called the rank of 2, such that pn-i(r) =^0,

and /i„_i+i(r) = • • • =un(r) =0. It is known that the rank of 2 is independent

o'f the choice of the basis Xi, • ■ • , Xn of 2. For reference we state the follow-

ing result, which is an immediate consequence of our definitions.

Lemma 1. Let 2 be a Lie algebra over afield E, and let Q be an extension field

of E. Then the rank of 2a is equal to the rank of 2.

A subalgebra'§ of a Lie algebra 2 is called a Cartan subalgebra if (1) § is

nilpotent, and (2) [£>, J]c§ implies I£§ for all X in 2.

If the base field is infinite, then Cartan subalgebras are known to exist,

and the dimension of a Cartan subalgebra is equal to the rank of 2.

(8) By 8s we mean the Lie algebra obtained by extension of the field E to R.
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3. Preliminary results on semi-simple algebras of characteristic zero(4).

Let 8 be a semi-simple Lie algebra over an algebraically closed field C of

characteristic zero. We write Q for the prime field in C, and Z for the subring

of Q consisting of the multiples of 1; then Q and Z are isomorphic to the field

of rational numbers and the ring of rational integers, respectively. Let § be

a Cartan subalgebra of 8, and let a, (3, • • • be the roots(s) of 8 relative to §.

Let B(X, 7)= trace (ad X ad Y) be the Killing form on 8; then B is non-

degenerate on 8, and its restriction to § is nondegenerate. For each root a,

there exists a unique element H„ in § such that B(H<j , H) =a(H) for all H

in §. Then a(Ha ) is a nonzero element of Q, and if we put Ha = 2a(H„ )~lH<i,

then a(Ha) =2. Let / = dim ^)=rank 8. It is known that there exists a set of I

linearly independent roots at, • • • , ai, called a fundamental system oi roots,

such that every root of 8 relative to § is an image of one of the ai, l^i^l,

by an element of the group W generated by the Weyl reflections A—>A

—A(Hai)ai, l^i^l. Every root a can be expressed in the form a = ^Li #%«•>

where the di are elements of Z. If we write Hai = Hi, 1 ̂ ig/, then Hi, ■ ■ • ,Hi

form a basis of §. The linear functions 2i ff'a» with coefficients g< in Q are

called rational linear functions on §, and may be ordered lexicographically

with respect to the ordered set (ai, ■ • • , ai). In particular the roots are

linearly ordered in this way, and when we write a</3, a<0, etc. it is to be

understood that " <" is the lexicographic order relation. If a is a root and m

an integer, then ma is a root if and only if m— ± 1. For any pair of roots a

and/3, a(Hf)EZ.
If the dimension of 8 is ra, then there exist ra —/ distinct roots, and root

vectors Ea, Ep, • • • in (1-1) correspondence with them which can be chosen

in such a way that the following relations hold.

(3) 8 = £ + 2 CEa + X) CE-a (direct sum);
a>0 o>0

(4) [HH'\ = 0, [E.H] = a(H)Ea,        H, H' G £;

NapEa+p if a + /3 is a root,

(5) [EaEft] =0 if a + 0 is not a root,

Hp if a - - 0,

where for each pair of roots (a, /3), N^GZ; and

B(Ea, Ef) = 0       if a + 0 ^ 0,

(6) 5(£_«, £a) = 2B(Rl, Htf-\

B(E„ H)=0,       5G§.

(*) For proofs of these results we refer to Weyl [14]; for the terminology we use and for a

discussion of some of these questions see also Gantmacher [5] and Harish-Chandra [7 J.

(') We do not call the zero linear function a root.
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A basis Xi, • ■ • , Xn of 2 is called an admissible basis relative to a Cartan

subalgebra § if Xi, • • • , Xm are the root vectors Eai belonging to the positive

roots of 2 relative to §, Xm+t+i, • • • , Xn are the root vectors corresponding

to the negative roots, and (Xm+i, • • ■ , Xm+i) = (Hi, • • • , Hi) is the basis

of § determined by the fundamental system of roots ct\, • • • , ai, all normal-

ized so that the relations (3), (4), (5), and (6) hold. It is known that if £> is

any Cartan subalgebra of 2, then there exists an admissible basis of 2 relative

to §. We shall write (X{) for an admissible basis, and call the field K gener-

ated by the constants of structure Nap in (5) the coefficient field determined

by the basis. Then K is an algebraic number field, which contains all the con-

stants of structure e<yj determined by the basis (Xi).

4. Arithmetical preparations. Let (Xi) be an admissible basis of 2 with

coefficient field K. Let a»,= —ca(Hj) = —cn(Xm+j), 1 ̂ i,j^l; then the a„ are

rational integers with certain properties, and the matrix (a,-,-) is called the

Weyl matrix of 2 (see [7, p. 29]).

We shall write Op for a discrete valuation ring in K, p for the corresponding

prine ideal, K for the residue class field Op/p, and <j> for the homomorphism

(or place) mapping Op upon K.

We note that for any prime ideal p in K such that 2(£p> the elements

B(E-a, Pa) GOp for all roots a. This fact is a consequence of (6), and the

formula

B(HJj, Hi) = a(Hi) = 4^ E (A* + ?/>-)'V1.

where the sum is over all roots (3, and where ppa and qpa are the uniquely

determined rational integers, ppa^O^qpa, such that 0 + ka is a root if and

only if ppa^k^qp*.

Definition. A non-archimedean prime ideal p in K is called non-excep-

tional (relative to the basis (Xi)) if the following conditions are satisfied.

(i) 2£», 3£p;
(ii) det (a.y)Gp; and

(iii) B(E-a, Pa)3iP for all roots a;

otherwise p is called exceptional. Evidently the number of exceptional prime

ideals is finite.

Let p be a non-archimedean prime ideal in K such that 2££p- Let 2P be the

set of linear combinations with coefficients in op of the elements Ha, Ea, where

a ranges through the set of all roots of 2. Inspection of the table (3)-(5)

reveals that 2p is closed under the bracket operation. (The Nap£.0p because

their squares are in Z.)

Next suppose that 2£Ep, and P(P_a, Pa)(£p for all roots a. We prove that

the admissible basis (Xi) is an Op-basis for the ring Sp. It is sufficient to prove

that for all roots a, Ha is an Op-linear combination of the Hi, 1 ̂ i^l. Let

a— E^'i where the dtEZ, l=i=7. Then
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Ha = 2B(Hi, Hi)~*Bi = £(£_„, £„)#„'

= B(E.„ Ea)( £ diH'a,) = 2-^(£_a, £„)( £ 2?(<, ff^ffO

!
= £ £(£_, E„)B(E-ai, Eai)->diHi

t-i

where the £(£_„, Ea)B(E-a., Ea{)-ldiGo», 1 g*^Z.

Finally, let p be a nonexceptional prime ideal in X. We prove that if we

set Bij = B(Xi, Xj), 1 ̂ i, j^n, then the 5,-,-Gop, and det (J3,7)$p. Since 2„

is closed under the bracket operation, it follows that 29 is mapped into itself

by ad Xi, 1 fSigra. But 5y = trace (ad X{ ad Xj), hence the BijGcty. From (6)

we see that the matrix (.By) can be expressed in the form

Bo

(7) (By) = (B(Xi, Xj)) = "
Be

where Bo = (B(X{, Xj)), m + l ^i,j^m + l, where exactly one block

b   = /       0 B(E_a, £„)\

"      VB(£_«,Ea) 0        /

appears for each pair of roots (a, —a), and where the matrix (B,y) has zeros

except for the blocks we have listed along the main diagonal. Then we have

(8) det (Bit) = (det B0) ( H det Ba).
\ o>0 /

By (iii) in the definition of an exceptional prime ideal, the second factor on

the right does not belong to p. We have for all i and j, B(Hi, H,)

= -2aijB(H'ai, H'ai)-1=-aijB(E^ai, Eai) by (6). Therefore

det Bo = det (B(Hit H,)) = (-l)'(det (a,,)) (  II B(£_ai, Eat)\
VlStSI /

so that det J305^p. Thus det (By)£|:p if p is nonexceptional.

We shall discuss the uniqueness of the coefficient fields and of the sets of

exceptional prime ideals determined by two admissible bases (Xi) and (Xi)

relative to Cartan subalgebras § and &', respectively. By a result of Cheval-

ley [4] there exists an automorphism a =exp (ad Z) of the adjoint group of 8

such that £>" = §'. An examination of the table (3)-(6) shows that (X°) is

an admissible basis of 8 relative to §'. The coefficient field relative to the

basis (Xi) is identical with the coefficient field of the basis (X°). By a result
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ofWeyl [14, p. 372], we have the formula Nlff = —(i+l)k, where/3 —ia, • • • ,
fi — a, fi, P+a, • • • , p+ka is the string of roots of the form B+ja, JE.Z, and

consequently the constants N'ap and Nap determined by the bases (Xi) and

(X") of 2 relative to $' differ at most by a permutation of the roots. Therefore

the coefficient field K is independent of the choice of an admissible basis.

In order to compare the exceptional prime ideals relative to the admissible

bases (Xi) and (Xj), we may assume that the Cartan subalgebras which give

rise to these bases are identical. If we let Ea and F« be the root vectors in the

two bases, then since the elements Hi are uniquely determined, (6) shows

that the primes which divide some B(Ea, E-a) are identical with the primes

which divide some B(Ei, E'_a). We use finally the known result that the

determinants of the Weyl matrices relative to two fundamental systems of

roots of 2 relative to a Cartan subalgebra !q differ at most by a unit factor.

Therefore the set of exceptional primes is an invariant of the algebra 2.

5. Modular Lie algebras. A Lie algebra I over a field E of characteristic

p>0 is called separalle if the Killing form B(x, y) of I is nondegenerate. It is

immediate that if I is a separable algebra, then so is F, where F is an extension

field of E'. In any separable algebra I, a p-power operation can be defined so

that I becomes a restricted Lie algebra in the sense of Jacobson [9]. The

definition of xp is based on the fact that (ad x)p is a derivation of I; hence by

[16, p. 53], (ad x)p is an inner derivation ad y. The element y is uniquely

determined because of the separability (see [12]), and hence if we set y—xp,

so that [zy] = [zxp] =z(ad x)p, z£l, I becomes a restricted Lie algebra. In the

sequel, "separable algebra" means "restricted separable algebra" under this

definition of the p-power operation. This paper is devoted to a study of cer-

tain separable algebras which are constructed as follows.

Let 2, (Xi), K, § be as in §4, and let p be a fixed nonexceptional prime,

containing the rational prime p. We shall adhere to these notations for the

rest of the paper, and we shall write o for Op, K for the residue field o/p,

2 for Sp, and d>:d>(a) = a for the homomorphism of o onto K. Then 2 = E°^«

is closed under the bracket operation, and may be regarded as a Lie algebra

over the ring o. p2 = ZJpXi is an ideal in 2, and 2/p2 is a Lie algebra over o.

Let T be the natural mapping of 2 onto 2/p2; we shall write x = XT for

XE2, and I=2/p2. If we define dx = a(XT) = (aX)T, for oGo, then I be-

comes a Lie algebra of dimension n over K which will be called a modular Lie

algebra.

Theorem 1. The modular Lie algebra I=2/p2 defined at a nonexceptional

prime ideal p is a separable algebra over K whose rank is equal to the rank of 2.

The natural mapping T: 2—A maps §02 onto a Cartan subalgebra h of I.

The restriction of the Killing form of I tot) is nondegenerate.

Proof. The cosets (XiT) = (xi) form a basis of I over K, and from (2) we

have [xjXy]= E^'j*x*- ^ B*(x, y) is the Killing form on I, then
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n

B*(xj, Xj) = trace (ad xt ad x}) =   ^ c^Cyj^

— 4>\   /L,   cretin J = <p(B(Xi, Xj)),

and by linearity we have, for all X, Y in 2,

(9) <p(B (X, Y)) = B*(XT, YT).

In particular, det B*(x{, x,)=det <p(B(Xi, Xj))=tf>(det (B(Xit Xj)))t*0 by
the remarks in §4, and hence I is separable.

For each root a of 8 relative to §, we have a(Hx)GZQo for l^i^l.

Therefore, if we set f) = (§(^2)7", we can define a unique linear function a on

f) whose value on HiT is given by a(HiT) =<j>(a(Hi)), 1 ̂ i^l. It follows that

for all HGQrSZ we have

(10) <b(a(H)) = *(HT),

and in particular, since HaG&(~\?,, a(HaT) =(p(a(Ha)) =<p(2) ^0 in K so that

the linear functions a on f) are all different from zero. For any root vector

Xi = Ea, the relation [X(H] =a(H)X{, #G§n2, implies that

(11) [xih] = a(K)Xi, hGi).

From (11) and the fact that all 3^0 we see that [fp<:]c:h implies xGf), and

since f) is commutative, we conclude that f) = (§^2)T is a Cartan subalgebra

of I.
Let/(X; r) be the characteristic polynomial of ad X*, where X* = TViX,-

is the general element of 8. If we let x* = 5ZT<X> De the general element of I

with respect to the basis (XiT) = (xi), then it can be verified that the coeffi-

cients p.t(T') °f the characteristic polynomial/'(X; r') of ad x* are obtained

from the Uk(r) of (1) by replacing the r< by r,', l^i^n, and the coefficients of

the t's, which are in o, by.their images under <p. If / is the rank of 8, then

P*_,+1(t')= • • • =p*(t')=0, so that rank l^l.

In order to prove that the rank of I does not exceed /, we form lL, where

L is any infinite field containing K. Then the linear functions a, extended by

linearity to \L, are all different from zero. Since L is an infinite field, there

exists an element h= ^2^iXi, £iGL, in f)L such that 5(^)^0 for all 3. It fol-

lows from (11) that the characteristic polynomial of ad h has exactly / roots

equal to zero. Now x* = J*.tj Xi also may be viewed as the general element(s)

of lL. Upon substituting £,- for ri in p.t-i(T') we obtain p*_j(£i, ■ • • , £n)^0,

otherwise the characteristic polynomial of ad h would have more than I roots

equal to zero. Thus the rank of lL does not exceed /, and by Lemma 1 and

what has already been proved, the rank of I is equal to /.

(6) We may assume that the t' are transcendental over L.



1956] MODULAR LIE ALGEBRAS. I 167

Finally, by (9) and (6) it follows that B*(h, x,-)=0 for l=^ = w and

w + Z+l =f = « and all h in fi. Therefore the restriction of B* to f) is nonde-

generate, because I is separable. This completes the proof of the theorem.

The linear functions a on fi which were defined in the proof of Theorem 1

are roots of I with respect to fi (see [12] or [16] for a discussion of roots of

Lie algebras of characteristic p > 0.) The following result describes the prop-

erties of the roots a which we shall need.

Theorem 2. The mapping a^it is a (1-1) mapping of the set R of roots of 2

relative to § onto the set R of roots of I relative to t), such that the following state-

ments are valid.

(a) a, 8, a+BER implies a+PER and a+B^a+fi;

(b) aERimplies —aER and —a-* —a.;

(c) ai, • • • ,oti are linearly independent, and form a fundamental systemU)

of roots of I relative to f).

(d) if m=0, 1, • • • , p — \, then maER if and only ifm = \ or m=p — \.

Proof. In order to prove that that mapping a—>a is (1-1) and onto, it is

convenient to extend the base field K to its algebraic closure ft. The functions

a, extended to 6° by linearity, are all different from zero, and this fact, to-

gether with the multiplication table of the basis (xi) of I, implies that fia is a

Cartan subalgebra of In, and that the functions a are roots of I" with respect

to if. Suppose that 3 = /3, where olt^B; then the dimension of the root space

of a is not less than two, and since the characteristic of K exceeds 3, this

contradicts a result of Jacobson [12, Theorems 5.1 and 5.2]. The mapping

a—>a is onto, since a root of I relative to f) distinct from the a would define a

root of Ic distinct from the a, and this is impossible, since the root vectors

belonging to the roots a, together with the elements of fin, span Is. Over the

infinite field ft, elements of la belonging to distinct roots are linearly inde-

pendent.

Statements (a) and (b) are obvious. We have a,-(P,F) = —<f>(aij) for

1 £i,j£l. Since det </>(a,y) t^O, the roots 5i, • • • , ai are linearly independent.

Now let A be any p-integral linear function on tQ:A(Hi)Eo, l^i^l. We write

<£A = A f°r the unique linear function on fi such that A(PiP) =<j>(A(Hi)),

l^i^l, in agreement with our definition of the roots a. Let S,- be the reflec-

tion determined by a* on the dual space of §, and let Si be the reflection de-

termined by Hi on the dual space of f). Then for all p-integral linear functions

A, AS,- is p-integral, and

(12) 4>(ASi) = AS,-, lgtg /.

From (12) and the fact that ai, • • • , cti is a fundamental system, (c) follows

(7) By analogy with Cartan's definition in the characteristic zero theory, we call Si, • • • ,Si

a fundamental system if every root a is an image of some a< by an element of the group of l.t.

on the dual space of 6 generated by the reflections X—>X—\(hi)Si, lgj'g/, where ht=HiT.
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directly. Finally, since the characteristic p>3, statement (d) holds for In,

and hence for I, by [12, Theorem 5.3].

We show next that the p-power operation on the basis elements x< of I

is given by the following formulas.

P ■

Xi  =0, 1 ^ i ^ m, m + / + 1 :S i < n;
(13) P ~     _

Xi  — Xi, m + 1 g i g m + I.

That the xp — 0, l^i^m, m+Z+l =i*^ra, follows from a result of Jacobson

[12, Theorem 4.1]. For t = l, • • • , I we have xm+i = HiT, and by the defini-

tion of the p-power operation it is sufficient to prove that for all X£2,

X(ad Hi)"= [XH{] (mod p2). We need check it only for a root vector Z = £a,

and in this case the statement is obvious, since a(Hi)GZ.

6. Preliminary results on representation theory. We show in this section

that each irreducible representation of 8 gives rise to a restricted representa-

tion of I. Let 21 be the universal associative algebra of 8 (see [2; 6; 15]). Let

P = (ii, ■ ■ ■ , im), Q=(ji, • ■ • , ji), R = (ki, ■ ■ ■ , km) be row vectors whose

coefficients are non-negative rational integers. We write \P\ = ^™,i„ and

similarly define \Q\, | R\ ; we write 0 = (0, ■ • • , 0) so that 10| =0. If (Xi) is
an admissible basis of 8 (see §3), then the elements(8)

Z(P, Q,  R)   —   Xl    ■   ■   •  Xm Xm+l  ■   •   -   Xm+lXm+l+l  '  '  '   Xn ,

where |P|, \Q\, \R\ s?0, form a basis of 31 over C. The number \P\ +| Q\

+ \R\ is called the degree of Z(P, Q, R). The degree of F= J^a(P, Q, R)Z(P,
Q, R), a(P, Q, R)GC, is defined to be the largest | P\ + \ Q\ +1 R\ for which
a(P, Q, R) 7^0, and we write deg F for this number, with the convention that

deg 0 = — oo . Then it is known that

deg (F +G) ^ max (deg F + deg G),

(14) deg (FG) = deg F + deg G,

deg [FG] = deg (FG - GF) < deg F + deg G.

From (14) it follows in particular that deg (Xit • • ■ Xir)=r, l^ij^n, and

deg (       X)      ail...irXil- • • Xir\=    max    (r), o,-,...<r G C.
\oSr,l&ijSn /        <>.y.r*0

Let S3 be the set of all linear combinations of the Z(P, Q, R) with coeffi-

cients in o. Then S3 is contained in the subring of 21 generated by the elements

of 2= ^ioXi and o; in fact, 33 is identical with this subring. All that has

to be proved is that Z(P, Q, R)Z(P', Q', R') is an o-linear combination of the

(8) We shall identify 8 with the linear part of 21.
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Z(P, Q, R), and this, in turn, follows if we can show that an arbitrary product

Xil ■ ■ ■ Xir of the Xj is an o-linear combination of the Z(P, Q, R). This

fact is established by induction on the degree of Xn • • • X,r, and on the

minimum number of transpositions of the X^ required to put A',-, • • • Xir in

the form Z(P, Q, R), i.e. in the form Xil ■ • • Xir, where ji^ji^ • • • ^jT.

The reduction is achieved by the usual straightening process, using the fact

that [XiXjj— Ec<;'*-^*> where the djkEo.

Let a be the M-algebra (see [9]) of the modular Lie algebra I = 2/p2 over

K; we shall identify 1 with its image in a under the natural imbedding of I

into a. Then a has a basis over K consisting of the standard monomials

(15) Z(P, Q,  R)   =   Xl    •   •  •   Xm Xm+1  •  •  •   Xm+*Xm+!+l  •  •   ■   X„   ,

where 0^=it,jt, kt<p.

Now a, as well as I, can be regarded as a Lie algebra over o, having the

elements (15) as a set of generators, and scalar multiplication defined by

af — df for a£o, /£a. The mapping P:2—>I may be regarded as an o-linear

homomorphism of the Lie algebra 2 over o into the associative algebra a

over o. Thus T is an o-linear mapping of 2—>a such that

[XT]T = [XT, YT] = (XT)(YT) - (YT)(XT)

for all X, F£2. From the properties of the algebra S3 which we have derived,

it follows that T can be extended uniquely to an o-linear associative homo-

morphism T of 33 onto a such that if = 1, XT = XT for all X£2, and such

that (aX)T = d(XT) for X£2, a£o. We shall determine the kernel of the

homomorphism T.

From the definition of the £-power operation in I, it follows that for each

XE2 there exists an element XM, which is uniquely determined mod p2,

such that X^T=(XT)p, and such that for all FG2,

(16) F(ad X)p = [YXM] (mod p2).

From this formula we obtain the following congruence in 33:

(17) [F, Xp - XM] = 0 (mod p33)

for all XG2, FG33. From (16), since F->[FX™] and (ad X)' are derivations
in 33 modulo p33, we have

F(ad X)" m [FXM] (mod p33).

On the other hand we have by a well known identity [10, p. 102], F(ad X)p

= [FXp] (mod p33). From these formulas we obtain (17).

Lemma 2. The o-linear homomorphism F:2—>I can be extended to a unique

homomorphism T of 33 onto the u-algebra a of I, such that the kernel Xof T is the

ideal in 33 generated by the elements X^—X^, l^i^n, and the elements of p.
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Proof. Obviously the ideal V generated by the X1?1 — X\ and p is contained

in 36. Now let F be an element of 93 such that FG%'; we prove that FT?^0.

Let F= I>(P, <?. R)Z(P, Q, R), a(P, Q, R)Go. Since all the X^ have degree
not greater than one, it follows that F is congruent mod 36' to an expression

F' = ^,a(P, Q, R)Z(P, Q, R) with coefficients in o in which all the components

of P, Q, R in a term whose coefficient is not zero are less than p, and such that

no nonzero coefficient is in p. Since FG%', £'(££', and hence F' t*0. Moreover

Ff = F'T since %'Ql, and £'7V0 because the elements z(P, Q, R) in which

the components of P, Q, and R are less than p are linearly independent in a.

Thus 36' = 36, and the lemma is proved.

Let p be a representation of 21 by l.t. in a finite dimensional space 2ft

over C. Then 2ft becomes a right 2l-module if we define UF= Up(F) for

UG'Sfl, ££21. Conversely every right 2l-module defines a representation of 21.

When we speak of 2l-modules, it is assumed that the vector spaces involved

are finite dimensional. Similar remarks apply to the w-algebra a of I. If 2ft

(resp. m) is an 2l-module (resp. a-module), then a linear function A (resp. X)

on § (resp. f)) is called a weight of 2ft (resp. m) if 2ftA = { U\ UH=A(H) U for

all HG&} t^O (resp. ntx = {u\uh=\(h)u for all hG§} 9*0). A linear function

A on § is called an integral linear function ii A(Hi)GZ for l^i^l; A is a

dominant integral function if A(ili)=0 for l_i^/. It is known that every

weight of an 2l-module 2ft is an integral function, and that every 2l-module

has a highest weight A, with respect to the lexicographic order in the set of

rational functions on Jp, such that A is a dominant integral function. The

weights of an 2I-module 9ft have the property that A(Ha) is an integer for

every root a, and that if A is the highest weight, and a any positive root,

then A(.?7a)=0. If 2ft is an irreducible 2I-module, then the dimension of the

space 2ftA belonging to the highest weight A is equal to one. Two irreducible

2l-modules having the same highest weight are 2I-isomorphic. If A is any

dominant integral function on §, then there exists a (finite dimensional)

irreducible 2l-module whose highest weight is A. For proofs of these results,

see [7; 14].

Lemma 3. Let 2ft be an irreducible %-module. Then there exists a finitely

generated o-submodule 2fto of 2ft such that 2fto spans 2ft, and such that 9fto93C:9fto.

Proof. Let A be the highest weight of 2ft, and let t/^0 be an element of

2JJa. By our remark above, for every positive root a, A(Ha) ^0. By [7, pp.

51, 52], the elements UZ(0, 0, R), R = (ku ■ ■ ■ , km), 0^kj^A(Ha,), where Qy
is the positive root such that Xm+i+j belongs to —ay, form a set of C-generators

of 2ft. A close inspection of the argument shows that these elements form a

set of o-generators for the o-module 2fto consisting of all o-linear combinations

of the elements UZ(P, Q, R), (P, Q, R arbitrary). Since the elements

Z(P, Q, R) form an o-basis for 93, we have 9fto93C:2fto, and the lemma is

proved.
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Corollary. The module Wo/'ifllox' is an a-module, finite dimensional over

the field K.

Proof. The assertion follows from the facts that SUo is a finitely generated

o-module such that 3fto33C2JJo, and that £ is the kernel of the homomorphism

f of 33 onto a.
We shall call the a-module Sfto/STJioX associated with an irreducible §1-

module SW a tp-module belonging to Sft.

Let n be the radical of a (if I is not commutative then n^O by a result of

Hochschild [8]). Let/-*/* be the natural mapping of a—>a/n = a*, and let

a* = Ee»*a* De a decomposition of a* into minimal right ideals, where the e,*

are mutually orthogonal idempotents. Since a has an identity elenient, Theo-

rem 9.3C of [l ] implies that there exist mutually orthogonal idempotents e<

such that ej+n = ei* for each i, and such that a = Ee»a is a decomposition of

a into indecomposable right ideals. By Theorem 9.2G of [l], em is a-iso-

morphic to eya if and only if e?a* and efa* are a-isomorphic. We can partition

the e< appearing in the decomposition a = Ee»a mto equivalence classes, et

being equivalent to ej if ei<x and ejO. are a-isomorphic. Let e(1), • • • , e(*> be

the idempotents in a which are the sums of the elements in the distinct equiv-

alence classes. It follows that (e(1))*i ■ • * i (e(k))* are central, mutually

orthogonal idempotents in a*, which are the identity elements of the distinct

simple ideals in the two sided Wedderburn decomposition of a*. If in is any

irreducible a-module, then since m is a-isomorphic to one of the efa*, there

exists one of the e{i) such that ue^ =u for all uEm. Since the eU) are mutually

orthogonal by construction, me(i) = 0 if k^j, and we shall say that tn belongs

to the jth class. It is easily proved that an irreducible a-module mi belongs

to the jth class if and only if mie(j)y*0, and that an arbitrary a-module ntj

has a composition factor of thej'th class if and only if i^e^^O.

Now let 2JI be an arbitrary irreducible ST-module, and let STJJo be the o-sub-

module of 3JI constructed in Lemma 3. Let Fj be any element of 33 such that

FjT = e<». Then if u= P+SDMt is an element of the ^.-module Wo/WdH, we
have ueif> = PFy+SftoI. We have proved the following lemma.

Lemma 4. A <p-module SfJJo/SDJoX has a composition factor in the jih class if

and only if SUoF;$imo3E, where F, is any element of 33 such that FjT = eii).

7. The Cartan-Weyl theory of weights of representations of a modular

Lie algebra. We begin with some general remarks on the representations of

associative algebras (see [10] for a complete discussion). Let a be a finite

dimensional algebra over a field E. An extension field F3P is called a splitting

field if every irreducible aF-module is absolutely irreducible, that is, it remains

irreducible for arbitrary extensions of the field F. Let n be the radical of aF.

Then F is a splitting field if and only if aF/n is a direct sum of full matrix

algebras over F. If F is a splitting fielrFand ft^P, then ft is a splitting field.

If FQQ, F a splitting field, then every irreducible a°-module q is equal to mQ,
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where m is an a-F submodule of q. This property is characteristic of split-

ting fields.

Lemma 5. Let E be a perfect field, and let fl3£ be a splitting field. Then E
is a splitting field if every irreducible aa-module q is equal to tn", where m is an

a-E-submodule of a.

Proof. Let it be the radical of a. Then a/n is a separable algebra, and it

follows that na is the radical of aa, so that

(18) (a/n)«^a°/nn =n»,® •■• ©fl»,

where Uh is the algebra of hXh matrices over fl. For each i, l^i^r, there

exists a minimal right ideal q,- in aa/na oi dimension hi over Q (corresponding

to the ith direct summand fl/,<), which, by the hypothesis, has the form

q»=(m,)a, where the m,- are irreducible a-£-modules of dimension hi over £.

Clearly no two of the m, can be a-isomorphic. Therefore, if /,• is the dimension

over £ of the centralizer of m,-, it follows that the dimension d over £ of

a/n is not less than ^h2tti. On the other hand d= ^£,h2 by (18). Therefore

]C^< = S^«'». and hence <, = 1 for all i. It now follows from Burnside's Theo-

rem that a/n is a direct sum of full matrix algebras over £, and that £ is a

splitting field.

Theorem 3. Let I be a separable modular algebra 2/p2, where p is a non-

exceptional prime ideal in K. Then K is a splitting field for the u-algebra a of I.

Every irreducible a-module m is a direct sum of weight spaces ntx belonging to the

distinct weights of tn.

Proof. Let Q be the algebraic closure of K; obviously fl is a splitting field.

Moreover K is a finite field and hence perfect. By Lemma 5, K is a splitting

field if we can prove that an arbitrary irreducible aa-module q is equal to

ma, where m is an a-X-submodule of q. Since fj is a finite dimensional com-

mutative subalgebra of I, it is immediate that q has at least one weight X; let

u?±0 belong to X. If x% is one of the root elements among the (xi) then ux«

is either zero, or belongs to the weight X + 5. Consider the K subspace m

generated by the elements

(19) uxh ■ • • xir, r ^ 0,

where either 1 rgiy^m or m+l+1 ^*y^w; each of these elements is either a

weight vector or zero. We observe that if w is any weight vector belonging to

a weight p, then because of (13), u(xi)r = u(xi), w + l=i = m+/, and hence

n(xi)GK0, where K0 is the prime field contained in K, for w+l^i = w+/.

It follows from this remark that niaCm, and maaaQmP. By the irreducibility

of q, we have mQ = q, and the first part of the theorem is proved.

Now let m be an irreducible a-module, Q the algebraic closure of K; then

ma is irreducible, and hence ma = mB, where nti is an a-submodule generated

by weight vectors of the form (19). By the remarks preceding Lemma 4,
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m and nti are a-isomorphic. But since nti has a basis consisting of weight

vectors, we have nti= E(mi)x where the X are the distinct weights of nti.

Since m=mi, the same statement applies to rrt, and the theorem is proved.

Remark. Let m be an arbitrary a-module such that m is spanned by

weight vectors. If Xi, • • • , X, are the distinct weights of m, then m = E*-i m^<

(direct sum). From this we see that if m has a basis consisting of weight vec-

tors belonging to weights Xi, • • • , X„ then every weight of m appears among

the X,-. The proofs of these facts are easy, and we omit them.

The (1-1) mapping a—*a of the roots of 2 onto the roots of I defines a

linear order relation among the roots of I; thus we shall write a>0 if a>0,

and 5</3 if a<B.

Lemma 6. Let m be a a-module, and let m have a weight X such that for some

weight vector u^O belonging to X, mx, = 0, for l_^'_m. Then the subspace nti

generated by all elements uz(0, 0, R) is an a-submodule.

Proof. Clearly miX<Cmi for w + 1 =^ = m. Let x^ be a root vector belonging

to a positive root a, and let uz(0, 0, P) =wx,1 • • • x,-r be a generator of rm.

Since «x^ = 0, we can assume that uz(0, 0, P')x^ = «x,l • • • XiXaEvxi when-

ever s<r. If a is the least positive root, then, if x,r = x^, we have

(20) UXh ■ ■ ■ XirX-a = UXh ■ • • X.-^XsXi,. + uxh ■ ■ ■ x.-^Jx^xh],

which is in nti because of our induction hypothesis, and because [x^xj] is

either zero, or in fi, or a multiple of x^+„ where /3+a <0, otherwise 0 <B+a <a,

and 0<fi+a<a since the mapping a^a preserves sums of roots and the

order relation. Thus we can also assume that mix7Cmi for all y <a. Then by

(20), wx,-, • • ■ x<rx5 = Mx,-, • • • Xir_,[x3X5] (mod nti), where [x^x5] is either

zero, or in fi, or a multiple of x^+s, where fi+St<a. In all cases, «xtl • • • x,-,x„

Gttli by our induction hypothesis, and the lemma is proved.

We shall call a weight X of an a-module m a leading weight of m if there

exists a nonzero vector u belonging to X such that

(21) mx,- = 0, 1 £ « £ m,

(22) uxh ■ ■ ■ xir = 0

whenever r>0 and the xtt belong to negative roots a,- such that Ej-i ay = 0.

Even though the system of weights of an a-module rrt may not admit a linear

order relation, we shall call X a highest weight of m if X + a is not a weight for

all roots a>0.

We remark first that if X is a highest weight of m, then X is a leading

weight of m. Obviously condition (21) is satisfied. If an expression of the

form (22) is different from zero, then mx,-, • • • *,•,_,?*0 belongs to the weight

X + Si + • • ■ + ar_i = X — ar,

where — ar>0 since — ar corresponds to — aT, and this contradicts our as-

sumption that X is a highest weight.
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It is possible to verify that the three dimensional simple modular Lie

algebra I of characteristic p obtained from the three dimensional unimodular

Lie algebra of characteristic zero at a nonexceptional prime has exactly p

inequivalent irreducible restricted representations (counting the trivial one

dimensional representation), of degrees 1, 2, • • • , p. The representations

of degree 1,2, • • • , p — 1 all have a highest weight, while the representation

of degree p has a leading weight which is not a highest weight.

The significance of the concept of leading weight is clarified by the follow-

ing result.

Theorem 4. Let m be an irreducible a-module which possesses a leading

weight X. Then the dimension of nu is equal to one. Let m. and tn' be irreducible

a-modules which have leading weights X and X' respectively. Then m and m' are

a-isomorphic if and only if\=\'.

Proof. Let «5^0bea vector in m belonging to X which satisfies conditions

(21) and (22). Since nt is irreducible, m has a basis consisting of elements of

the form (19), each of which is a weight vector. The first assertion of the

theorem will be proved if we can show that any vector of the form (19) which

has weight X is a multiple of u. Actually we prove somewhat more, namely,

that iiw = uXi1 • • ■ XiT is an element of the form (19) of weight X, then w = au,

where a is an element of K which depends only upon X, and the sequence of

root vectors X(v • • • , Xi„ and not upon the action of a upon tn. Let

p7!, • • • , p\- be the roots corresponding to *<„ • • • , xir. Then 2j3< = 0. If all

/3<<0, then w = 0 by (22). We have thus reduced the problem to the situation

considered by Cartan and Weyl (see [13, p. 282]), so that if w?*0, then at

least one of the p\>0. The argument of Cartan and Weyl, together with the

properties (21) and (22) of a leading weight, can be applied to prove the first

assertion.

Now let m and tn' be irreducible a-modules having the same leading

weight. The result established in the first part of the proof, and Weyl's

method [13, p. 283] lead at once to the statement that m and tn' are a-iso-

morphic. It is not completely trivial, however, to prove that if m and tn' are

a-isomorphic irreducible modules which possess leading weights X and X', then

X=X'. Suppose that X^X', and suppose that there exists an a-isomorphism S

of m' onto m. Let «^0 belong to X, and let u't^O belong to X', where both u

and u' satisfy the defining properties (21) and (22) of a leading weight. Then

u'S belongs to X', and it follows that both X and X' are leading weights of m.

Since tn is irreducible, by Lemma 6 and the remark after Theorem 3, there

exist root vectors xiv ■ ■ • , xir belonging to negative roots such that

Ui = uXii • • • xtr is a nonzero element of mv. Moreover r>0 since X^X'. Be-

cause X' is a leading weight, and mv is one dimensional, it follows that

UiXi = 0, l^i = m. We can apply Lemma 6 again, and obtain negative root

vectors */„ • • • , */,, s>0, such that wx<, • • • #,-,*y, •■•*/, is a nonzero ele-
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ment of nix. This statement contradicts our assumption that X is a leading

weight, and the theorem is proved.

We emphasize that all the statement in Theorem 4 are valid if the words

"leading weight" are replaced by "highest weight."

8. The action of the Weyl group of I upon the system of weights of an

a-module. The Weyl group of 2 with respect to § is the group of l.t. in the

dual space §* of ^> generated by the reflections Sa, where ASa=A— A(Ha)a,

A£§*, and a is a root. It is known that the reflections determined by a funda-

mental system of roots generate the Weyl group, and that if a and B are roots,

then aSp is a root. Similarly we define the Weyl group of I with respect to fi

to be the group of l.t. in the dual fi* of fi generated by the l.t. s^, a a root,

where Xs5=X— X(/s5)a, and h„ = HaT. We observe that s|=l and that

s_5 = 55. Moreover, if a and /3 are roots, then aSg is a root. Since a(fyj) =<^(a(P/j)

by (10), we have

<b((aS,,)(Hi)) = <j>(a(Hi)) - 0(a(P„))<Kfi(ff.)) = (asjO(P.P)

for 1 = i = I, proving that asp is the root of 1 corresponding to the root aSp of 2.

The following result is based on a theorem of E. Cartan [3, p. 360] for

representations of complex semi-simple algebras. As in the classical theory,

a weight X of an a-module m is called extreme if it is impossible to find a root

a su'ch that both X+a and X —a are weights.

Theorem 5. Let m bean irreducible a-module. If m has an extreme weight,

then m has a highest weight, and the Weyl group of I acts transitively upon the

set of extreme weights of m.

Before giving the proof, we establish some preliminary results.

Lemma 7. If \ is a weight of an a-module m, then so is \s„for every root a.

7/X is extreme, then~Ks„is extreme. If\ is extreme, and if'X +a is a weight, then

for any vector u belonging to X, the weights belonging to mx^, t = 0, 1, • • • , where
x is the root vector among the x,- belonging to a, include Xs5.

Proof (9). Since Ha is a linear combination of the Ht with coefficients in

Qr\o for all roots a, it follows thatX(fc5) =\(HaT)EKa. If X+fca is a weight

for all kEKo then Xs„ is a weight since\(h5)EKo. If not all X+&a are weights,

then by Lemma 5.1 [12], the weights of this form lie in disjoint arithmetic

progressions, each symmetric about X — 2~1\(h5)tt. Since X and Xs«j are sym-

metric, X$5 is a weight.

If Xs5 is not extreme, then \ss±$ are weights for some root fi. Applying

ss, and using the first statement of the lemma, we infer that (Kss±p~)Sa

=\±$~sd are both weights. But we have shown that $~ss is a root, hence X is

not extreme, and the second assertion is proved.

(•) This lemma is well known (see [13; 12 ]); we include the argument in order to emphasize

those facts which we need for the proof of Theorem 5.
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Finally let X be extreme, and let X+a be a weight. If u?*0 belongs to X

then raa;_5 = 0 since X is extreme. We form Ui = ux^, i — Q, 1, 2, • • • , and prove

by induction that UiX-^ = aUi-i, where c,= — ik(ha)— i(i— 1). For some

r<p — 1 we have Mr^0, wr+i = 0, and it follows that cr+i= — (r + l)\(h~)

— (r + l)r = 0. Since r + 1^0, r— —\(h-),a.na\ ur belongs to X5„. This completes

the proof.

Lemma 8. Let a be the u-algebra of I. Then the subalgebra $ of a generated

by the root vectors Xi, l^i^m, belonging to the positive roots, is a nilpotent alge-

bra.

Proof. 8 is the enveloping algebra of the subspace g of I generated by the

Xi, l=i^w, and will be nilpotent by a result of Jacobson [ll] if we can

prove that g is a (Lie) subalgebra of I all of whose elements are nilpotent in a.

Now g = ©7\ where ® is the o-submodule of 2 generated by the Xt, l^i^m.

Since [XiXj] is either zero or a multiple of a root vector belonging to a posi-

tive root, for 1 ̂ i, j^m, ® is closed under the bracket operation, and hence g

is a subalgebra of I.

We prove now that a p-power of every element of ® is in 36, the kernel of

T. By (13), -X7G36 for 1 =i' = m. We shall use the identity (see [16, p. 91])

(23) (X 4- YY m X* + Y> + s(X, Y) (mod p93)

where X, F£93, and s(X, Y) is a sum of commutators of p-factors which are

either X or Y. Now let F = ^a,X< be an element of ®; then from (23) we

have

Y» m Yd X*t + y(1> (mod p93)

= F<» (mod 36),

where F(1)£®, and F(1) has the property that the minimum root a< whose

coefficient in Fa) is not zero is greater than the minimum root whose coeffi-

cient in F is not zero. If we iterate this process, and use the fact that the

number of roots is finite, we obtain Yp £36 for some integer t^O. This proves

the lemma.
Proof of Theorem 5. Let X be an extreme weight of m. We prove that there

exists an elements 5 of the Weyl group of I such that Xs is a highest weight

of tn. Since m is irreducible, it follows from Theorem 4 that tn has at most one

highest weight, and we shall have proved that all the extreme weights of m

lie in one system of transitivity relative to the Weyl group, namely the one

that contains a highest weight.

If X is a highest weight, there is nothing to prove. Suppose that X + a is

a weight for some a > 0, and let u 5*0 be a vector belonging to X. By Lemma 7,

there exists an integer r^O such that ux~ belongs to \s«, which is again an

extreme weight. We assert that r>0, for if r = 0, Xss=X, and the center of
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symmetry for the arithmetic progressions of weights of the form X+ka is X.

Therefore since X —a and X+a are symmetric about X, X —a is a weight,

contrary to our assumption that X is extreme.

We now repeat the argument with Xs^, and the vector uxT«, r>0, belonging

to Xs„. If a highest weight is not obtained by this process, then the construc-

tion yields products x^, ■ • ■ Xar5^0, where the a,->0, containing an arbitrarily

large number of factors. But this is contrary to the fact that the subalgebra 8

generated by the x,-, 1 ̂ i = w, is nilpotent, by Lemma 8, and the theorem is

proved.

9. Every irreducible a-module with a leading weight is a constituent of a

^-module. The main theorem can be stated as follows.

Theorem 6. Let m be an irreducible a-module which has a leading weight

Xt^O. Let A be the dominant integral function on H such that A(Hi) is the ra-

tional integer, 0^A(Hi)^p — l such that <p(A(Hi)) =\(H{T), l=i^/, and let

9Jt be an irreducible ^.-module whose highest weight is A. Then nt is a-isomorphic

to a composition factor of a <p-module SDJo/SDJoI belonging to 5DL

Proof. For simplicity we shall write hi for H,T, and P.- for Xm+,-, 1 ̂ i^l'

Find hi0, 1 ^io^l, such that uht^ti, where u is a fixed vector belonging to X-

Let /j=X(/f,0)~1A,-0; then uh = u. Let e('> be the idempotent element of a such

that ve{i) =v for all v in tn, which was constructed in the discussion preceding

Lemma 4. Let (0:m) = {/|/£a, m/=0}. Then there exists gE(0:u) such that

e^ = h+g. Let g= J<grf#(P* Of Ri), diEK.
Let U be an element of weight A in 2K such that the elements UZ(0, 0, P)

generate SUo. Let H = cHitl, where <j>(c) =X(A,-„)-1; then (p(cA(Hio)) = 1. Let

G = E'E* aiZ(Pi, Qi, Ri), where the a,- are elements of o such that #(a.) =a,-,

and let E=H+G; then Hf = h, GT = g, and Pf = A+g = e('>. By Lemma 4,
it is sufficient to prove that UEE^ioH-

We write Yj = ajZ(Pj, Qj, R,), and yj = djz(Pj, Qj, Rj); then G= E/eiFy;
g = E/£r Vi- We define two subsets J and J' of / as follows:

/= {v\vei,UY,*0, UY,EWlx},

J' = {j»|i» G 7, My, ̂  0, My, G ntx}.

We prove: (i) if vEJ then P, = P„ = 0, and Y,=a,Z(0, Q„ 0); and (ii) PC/.
First we observe that if P, = P„ = 0, and if Q, = (ji, ■ • • ,ji), then

UZ(0, Q„0) = A(Pi)'i • • • A(Hi)nU

and

(24)        «z(0, Q„ 0) = X(Ai)A • • • \(hiY*u = #(A(#i)» ■ • • A(H,)>')u

since <t>(A(Hi))=\(hi).

Now let vEJ', and consider uy, = a,uz(P„ Q„ P„), My,£ntx, My^O. If

P,^0, then My, = 0. If P, = 0, P,^0, then
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uy, = dMhi)il ■ • • \(h,)''uz(0, 0, Rv) G wx,

and uy, = 0 by (22), since X is a leading weight of m. Therefore P, = R, = 0.

Similarly if vGJ, then £K = £, = 0, proving (i). If vGJ', then UY, = a,UZ(0,

Q„0)£2ftA, and by (24),

«z(0, Q„ 0) = <KA(#i)» • • • A(Ht)n)u 9* 0

and a,^0, hence UY, = a,A(Hi)h • • • A(Hi)''Uf*0, and (ii) is proved.

If vGJ, then P, = R, = 0 by (i), and hence My,£rrtx.

Now let F=2>e/F,; we Prove that c/F£p2ft0C2fto36. By (i) we have
UY=dU, where

d = £ a,A(Bi)h ■ • • A(H,)'', Q, = fji. ' • '. . i«)«

Let y= ]C»e' y»; then uyGmx, and since /'CJ by (ii), uy is the com-

ponent of ug of weight X in the expression of ug as a sum of vectors belonging

to distinct weights. Since ug =0, ray =0 because vectors belonging to distinct

weights are linearly independent. On the other hand, uy = eu, where

e = £ d\(hi)n ■ ■ ■ \(hi)n, Q, = (jh ■ ■ ■ j,),

and e=<p(d) =0, and <f£p.

Now write G= Y+Y', where F'= X^e'-' F„. Since E=H+G we have
f7£=rjJff4-Z7F4-?7F' = (cA(7fio)+a')7J+(7y', and cA(Hit)+d = l (mod p).
From the definition of J it follows that if UY' is expressed as an o-linear

combination of the generators UZ(0, 0, R) of 2fto, the coefficient of U is zero.

If W£9fto, then although an expression W= ^aiUZ(0, 0, Ri), a,£o, is not

uniquely determined, since U is the only generator of weight A, the coefficient

of U is uniquely determined, and will be called the A-component of W. We

have shown that the A-component of UE is = 1 (mod p). The theorem will be

proved if we can show that the A-component of any element of 2fto36 is in p,

and this we shall do by using the generators of 36 (see Lemma 2). An arbitrary

element of 9fto36 is a sum of terms of the following types, and it is sufficient

to verify in each case that the A-component is in p.

(a) W£p2fto implies that the A-component is in p.

(b) W=UFX\G, F, G£93, l^i^m; then W=UX\FG (mod p2fto) by
(17), and hence W=0 (mod p2fto).

(c) W= UF(Hl-Hi)G, 1 =i = /; then

W = U(Hi - Hi)FG (mod p2fto)

■ (A(Hi)" - A(Hi))UFG (mod p9ft0)

m 0 (mod p9fto)

by (17).
(d) W= UFX\G, m+l^i^n; then
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W = UFGXi (mod p9D?0)

= E akUZ(0, 0, Rk)XPi (mod pSWo), ak E o,

and the A-component of Ea* UZ(0, 0, Rk)X1 is zero. This completes the proof

of the theorem.

Remarks. In a subsequent paper we plan to show how a theorem analo-

gous to Theorem 6, in combination with results of Seligman [12] and Harish-

Chandra [7, Theorems 1 and 2], can be applied to prove that the Weyl matrix

of a modular separable algebra determines the algebra up to (restricted)

isomorphism, and that every separable algebra of characteristic p which

satisfies certain conditions is isomorphic to a modular Lie algebra.

The following problem may be raised in connection with Theorem 6, but

remains unsolved. Find necessary and sufficient conditions in order that a

linear function X on a Cartan subalgebra fi of a modular separable Lie algebra

I be a leading weight of an irreducible a-module, where a is the M-algebra of I.
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