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1. Introduction. In an earlier paper [l] a geometric construction was

given for defining a certain Eisenstein series of dimension (always) —4,

namely

(1.1) E(z) = E (?z - P)~*, Im z > 0

summed over all reduced rational fractions p/q (including 1/0). The con-

struction involved perturbations. A modification of the construction could

be used to define Eisenstein series corresponding to subgroups of the modular

group. Further investigation, however, reveals that perturbation construc-

tions will yield only Eisenstein series, (meaning that the cusp forms are not

so constructible). Although the last result appears negative it leads to another

result whose statement constitutes the main theorem (see §2 below). The

statement is independent of perturbation theory altogether and it enables

us to detect the presence of a cusp form by the so-called "period-polynomials"

of a modular form. It also is possible to construct a formalism which is in

itself of interest. In fact a comparable formalism has been discovered by

another method by Bol (see [5]), but apparently has never been applied to

the present purpose.

The method of variation of boundary has been used in the past not only

for minimal problems but also for establishing identities among modules of

Riemann surfaces (see [7» p. 316]). According to a private communication,

M. Schiffer has, in unpublished work, used the method of interior variations

(see [7, p. 283]) to define and establish the dimension of theta-functions with

poles defined on the covering surface of a punctured plane. The present work

by contrast might be said, roughly speaking, to use perturbations around the

boundary (or cusp) points of the covering surface, leading to Eisenstein series

(without poles), or, as is even more important, leading only to these Eisenstein

series. As is well known, the Eisenstein series have rather elementary Fourier

coefficients [2] which depend, for instance, on divisor functions and it is

therefore of value to be able to say that a modular function is linearly expres-

sible in terms of Eisenstein series alone.

2. Main theorem. We consider a congruence sugbroup 8 of linear frac-

tional transformations, T, S, ■ • • ,
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az + b /a    b\
(2.1) z-+Tz =-—, T = ( ).

cz + d \c    d/

(Here a, b, c, d a^e integers for which ad — be =1.) Let k (2:1) denote the num-

ber of inequivalent cusp points or the number of rational points (n, r2, • • • ,

rt) such that rij^Ttj (ij^j). We define k distinct Eisenstein series

(2.2) E(z; rt) =    £    (j* - #)-«, t = 1, 2, ■ ■ ■ , k,
Pli~rt

where the summation refers to all reduced fractions p/q (including possibly

1/0), in the set Trt, where T varies over g. We can easily verify the fact that

4>(z) =E(z; rt) satisfies the following conditions describing a modular form of

dimension —4:

(2.21) (cz + d)~^(Tz) = $(z),

(2.22) 4>(z) = 0(qz - p)~* asz-> p/q (incl. 1/0),

(2.23) <£(3) regular when Im z > 0.

(The limit (2.22) is vertical, in the customary manner.) Now, finally, a modu-

lar form satisfying in addition the stronger relation

(2.3) <p(z) = o(qz - p)~\ as z -* p/q (incl. 1/0)

is called a cusp form.

Main theorem. Let <p(z) be a modular form of dimension —4 belonging to

the group Q. A necessary and sufficient condition that <p(z) be expressible as a

linear combination of Eisenstein series E(Z;rt) with real coefficients is that a third

primitive function P(z) exist for which

(2.4) *(*) = P'"(z)

and for which the function qp(z) defined by

(2.5) (cz + dyP(Tz) - P(z) = qT(z)

be a quadratic polynomial with real coefficients.

Before proceeding any further we should first note that the word "real"

is the key to the theorem, since equation (2.5) leads to equation (2.21) on

triple differentiation in a purely formal manner. Indeed to obtain an explicit

expression for Qt(z) all we need do is note that for a suitable point a in the

upper-half plane and for a suitable quadratic polynomial Q(z), we can repre-

sent P(z) by

(2.6) P(z) -  f <p(t)(z - tydt/2 + Q(z)
J a

and ar(z) by
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/»r_1a
<b(l)(z - t)2dt/2 + (cz + d)2Q(Tz) - Q(z).

a

We call the polynomials qr(z) period polynomials of <p(z) or P(z). By "real

period polynomial" we shall mean one with real coefficients.

The simplest illustration of a cusp form is probably J'2(z)J(z)~il3[J(z)

— 1 ]_1 corresponding to the sub-group 83 of the modular group generated as

follows:

Here J(z) is (Klein's) invariant for the modular group. The fundamental

domain of g3 belongs to JU3(z) (see [4]). It consists of three translates of the

fundamental domain for the modular group extending to infinity with bound-

ary identified by the above transformations. Thus Q3 has only one cusp point,

one cusp form (given above), and one Eisenstein series (1.1).

3. Proof of necessity condition. Here we shall explicitly exhibit the

third primitive for the Eisenstein series in (2.2). In writing an infinite series

we shall from now on be asserting absolute convergence. When the summa-

tion is over an infinity of fractions p/q it will be readily majorized by the

corresponding sum over all pairs (p, q) not necessarily prime but excluding

(0, 0). The symbol ^' will denote a summation omitting the possible term

having g = 0 (and majorized accordingly).

Define in accordance with the earlier paper [l, p. 343]

(3.1)      e(z; rt) = - —    £   (z2 + l)(q + pz)(-p + qz)~\p2 + qT2.
O    p/q~rt

Then

e(2.r) =  _l    V'     ( 1 P(P2 + 2q2)\
(3  2) eZ'r<   ' 6    ^^ \q3(qz _ p)       q3{pi + qi)2]

+ z2*(rt) + z0(rt) + 8(rt)(z* + z)/6

where

(3.21) a(rt) = -—   J?   Pq~\P2 + q2)~2,
O     p/q~rt

(3.22) p(rt) = -1   X'   rV + 5')-1,
O    p/j~r(

and

0.23, «„)./' *':~w-
(0^ otherwise.
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Finally, differentiating (3.2) with respect to z we find

(3.3) e'"(z;rt) = E(z,rt)

subject to the further conditions deducible directly from equation (3.1):

(3.4) e(i; rt) = 0,        e'(i; rt) real.

For this function e(z, rt), we conclude

(3.5) z*e(z, rt) - e(z, - 1/r,) = 0

directly from the definition (3.1), and by changing the summation index

from p/q to p/q— 1 we find

(3.6) e(z + 1, rt) - e(z, rt - 1) = A,z* + Btz + C«,

where

(3.61) At = a(rt) - a(rt - 1) + S(rt)/2,

(3.62) Bt = 2a(rt) + (3(rt) - p(rt - 1) + S(rt)/2,

(3.63) ' 6  ,fcrf-i \    q\P' + 2pq + 2q*)* q*(p* + q^l
+ a(rt) + /3(r,) + S(r,)/3.

Next we observe that by a composition of the operation z—►— 1/z and z—>z+l

we can build up any operation T* in the modular group (not necessarily in

9). Hence by combining identities (3.5) and (3.6) we find for T*z=(a*z

+ b*)/(c*z+d*),

(3.7) (c*z + d*Ye(T*z; rt) - e(z; T*-1^) = A*z* + B*z + C*

for suitable real constants A*, B*, C*. In particular when T* belongs to g,

T* = T and T~1rt = rt. This proves the necessity portion of the main theorem.

4. Separation of the Eisenstein series. From the nature of the modular

form 4>(z) for every class of cusp points p/q~rt (indexed by t) (l^t^k),

the following limit exists and depends only on t:

(4.1) Lim <b(z)(qz - p)* = A(rt) as z -> p/q.

For any such point p/q we consider the corresponding parabolic transforma-

tions generated by the translation

(4.2) Z'=Z+h,

where Z is a new variable given, for suitably chosen integers r and s, by

(4.3) Z = Sf= (rz- s)/(-qz + p),        rp - sq = 1.

(Here S* is in the modular group.) In terms of z( = (S*)_1Z'), the generating

transformation is
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(4.4) z' ={z{\- htpq) + htp2)/{-htq2z + (1 + htpq)\.

Now, since <p(z)(qz — p)* =<f>(z')(qz'' — p)*, we have the following Fourier ex-

pansions, indexed again by t (l^t^k):

( " 2wivZ\
(4.5) <Kz) = (qz - p)-< {A(rt) + £ A,(rt) exp —^—| .

Here, it must be remembered, Z contains the variables p, q implicitly. On

triple integration, for some constants, u(p/q), v(p/q), w{p/q), we obtain

/ 1 \ z3        »       / 1 \    / hi y 2irivz

+ w(l/0)z2 + o(l/0)z + «(l/0)

where ri denotes the class 1/0, while the other values, p/q(?±\/0)~rt,

A(rt) - /  ht V 2«VZ
(4.7) P(z) = - '  '       + (qz - p)2T,Ar(rt) ( —)  exp ——

oq3(qz — />) ,=i \2iriv/ ht

+ v(p/q)(q* ~ P)2 + v(p/q)(qz - p) + w(p/q).

In particular, we can compute the period polynomials. Call

(4.8) m(z) = - htq2z + (l + h,pq).

Then from equation (4.4)

(4.81) (qz' - p) = (qz - p)/m(z),

and, in accordance with equation (2.5),

(4.91) m2(z)P(z') - P(z) = U(l/0)z2 + V(l/0)z + W(l/0)

where

1/(1/0) = A(l/0)hi/2,

(4.92) F(l/0) = A(l/0)h\/2 + 2hiw(l/0),

W(l/0) = 4(1/0)^/6 + w(l/0)hl+ o(l/0) Ai,

and for p/q^l/0,

(4.93) m2P(z') - P(z) = U(p/q)(qz - p)2 + V(p/q)(qz - p) + W^/?)

where

#W?) = ? htw(p/q) - qhtv(p/q),

(4.94) F(/>/9) = - A(rt)h't/6 - 2qhtw(p/q),

W(p/q) = htA(rt)/3q.
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One conclusion is now immediate: // all period polynomials of equation

(2.5) are real, i.e., if U(p/q), V(p/q), W(p/q) are real, then the three leading

terms of the expansions (4.6) and (4.7) of P(z) about each cusp point have real

coefficients, i.e., A(p/q), w(p/q), v(p/q) are real. As a corollary to our main

theorem, it would eventually follow that the u(p/q) are then real for a proper

choice of additive constant in P(z).

We can simplify the sufficiency portion of the main theorem by subtract-

ing from our <p(z) (with real period polynomials) the linear combination

4(r,)P(z; r,). The difference, which we may also denote by <p(z), would then

be a cusp form. Thus it suffices to show that a cusp form with real period poly-

nomials is identically zero.

5. Formal role of perturbation theory. To see the relevance of period

polynomials to perturbation theory, let us assume that P(z) has real period

polynomials. Then first of all define a quadratic polynomial with real co-

efficients

(5.1) qo(z) = az* + 0z + y

such that Po(z) = P(z)+go(z) satisfies the condition

(5.2) P0(zo) = 0,

(5.3) dPo(zo)/dz real

for some Zo with Im zo>0. We find a, p\ y from the linear equations

P(z0) + azl + /3s0 + 7 = 0,

(5.4) P(zo) +cal + pz7+y = 0,

P'(zo) + 2aZo + 0 = P7^ + 2e^+ 0

with determinant 2(z<> — Zo)2?^0.

Now Po(z) still has real period polynomials. With it we define for a real

small parameter e

(5.5) f.(z) = z + ePo(z),

an infinitesimal mapping function. We can define for it an infinitesimal varia-

tion of P, any matrix of g (see equation 2.1).

/a + Ae    b + Be\
(5.6) Tt = ( )

\c + Ce   d + DtJ

such that

(5.7) UTz) = Tt(Uz)) + o(t).

In fact to determine Pe we write down the (real) period polynomial (see (2.5)),
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(5.8) (cz + d)2Po(Tz) - P0(z) = ATz2 + BTz + CT.

Then differentiating equation (5.7) with respect to e, at e = 0, we find

Ac — Ca = At,

(5.91) Ad + Be - Cb - Da = BT,

Bd - Db = CT,

and from the unimodular property of Tt (to within e),

(5.92) dA - cB - bC + aD = 0.

Equations (5.91) and (5.92) in A, B, C,D have determinant — (ad — bc)i= —1,

which fixes real values A, B, C, D and hence a real Tt.

Thus we can think of fc(z) as a function defining an infinitesimal perturb-

tion mapping of the upper half z-plane onto itself, first of all, leaving point

and direction invariant at z = zo and, secondly, leaving the upper half plane

invariant, to the extent that the Fuchsian group has a real perturbation. The

remainder of the paper amounts, heuristically speaking, to showing that the

boundary variations induced by fe(z) are exactly the variations at the cusp

points, and that such variations produce just Eisenstein series.

In the earlier paper on the subject [l], a type of variation was used for

which fc(z) could only be approximated, while from geometrical considera-

tions F« was known exactly (with no error term in equation (5.7)). In the

present work our knowledge will be less explicit but the fact that our varia-

tions preserve the boundary (Im z = 0) of the upper half plane will still be

the characterizing feature of the Eisenstein series.

6. Perturbation interpretation of real period polynomials. To see the

geometric significance of real coefficients we first reduce the problem by the

assumption (see §4) that all A(rt) =0 or that the modular form (p is a cusp

form. Then under the assumption that the period polynomials of some <t>(z)

are real, we subtract w(l/0)z2+o(l/0)z-l-Re w(l/0) from P(z) in accordance

with formula (4.6) leaving PM(z) with the property

(6.1) PM + hi) = P„(z)

and then, for some pure-imaginary constant c„,

(6.2) P„(z) =   f " *(/) (z - t)2dl/2 + c,

since, according to formula (4.6),

(6.3) PM) —» cM as Im z —> °o.

Our sufficiency proof finally reduces to showing that under the assumption of

real period polynomials, Px(z)—cx, with the incidental result that cx = 0.

We define the coefficients w(p/q), v(p/q), etc., with regard to P»(z) as in
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§4. We parametrize C* a circle of fixed radius p tiangent to the real axis, from

above, at a fixed z=p/q (^1/0), as follows:

(6.4) z - p/q = 2p sin deie, 0 < 6 < 2ir.

It is easily seen that according to formula (4.7)

(6.5) exp 2riZ/h, = exp - 2ir/(2p?2A(),

so that formula (4.7) always applied to P„(z) has the form

(6.6) P„(z) = w(p/q) + v(p/q)(qz - p) + 0(1) (qz - p)\

We finally obtain, permitting w(p/q), v{p/q) to be nonreal for the moment,

Im Pm(z) = Im w(p/q) + Re v(p/q)2pq sin2 #

+ Im v(p/q)2pq sin t? cos & + 4p2?2 sin2 00(1)

which we shall compare with

(6.8) Imz=2psin20, for 0 < 6 < 2ir.

Hence we are led to the following variational criterion of real coefficients:

The functions f(z) =z±ePx,(z) map C* into the upper half {-plane again, i.e.,

(6.9) t|lmP„(z)|   < Imz

for e a sufficiently small positive quantity, if and only if, the period polynomials

have real coefficients, i.e., ii and only if w(p/q), v(p/q) are real.

7. Estimates for the sufficiency proof. The sufficiency proof will be con-

summated by a return to equations (6.7) and (6.8) with estimates so improved

that from now on the 0 symbol will refer to p/q as well as 8 (when relevant).

To avoid unnecessary difficulties in notation assume the fundamental domain

for group g has only one cusp-point.

Our assumption is now that a given cusp form0(z) leads to a third primi-

tive Pw(z) (see equation (6.2)), with real values for v(p/q) and w(p/q)). We

shall show <f>(z) =0.
First of all, note that for a cusp form v(p/q), w(p/q) are expressible in

terms of derivatives of Px(z) since

PM(Z) = P.ip/q) + PL(p/q)(z - P/q)

+ P«Wq)(z - p/qY/2 + (qz - pY[P„(Z) - C„]

according to equation (4.5). Next we observe that in the expansion

00

(7.2) <b(z) = YjA' exp 2%ivz/h (hx = h),
v=l

according to a theorem of Kloosterman [3],
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(7.3) A, = o(v1+")

for any constant /x satisfying

(7.4) n > 7/8.

From this we form the estimates

(7.51) qv(p/q) = PL(p/q) = o(q>),

(7.52) 2q<u(p/q) = P'^p/q) = 0(92).

To see estimate (7.51) we write (from formula (6.2))

<p(t)(t - p/q)dt = - -   1

/pla+Hi n-rlq+llq

<t>(t)(t- P/q)dt-   I 4>(z)(r/q + z)dz

where t=(pz+s)/(qz-\-r), according to a transformation of g, and <p(t) is

transformed, in the second integral according to property (2.21). Thus by

substitution of the Fourier series (7.2), we find

" / 27TK\ /    h h*   \

(7.54)
(2ir ivp 2-tcivr \

exp- exp-).
hq                    hq   /

The estimate (7.51) (and similarly (7.52)), follow now from the easy result

(0(qi+>), ifg>-l,
" 2tp

2^ V exp-— = ■ 0(log q), g = - 1,
»-i hq

10(1). g<-i.

8. Completion of sufficiency proof. We next consider the system of discs

(solid circles) given by the inequalities in the z-plane

(8.1) ImZ>\

where Z = S*z is the most general transformation of the complete modular

group. The discs are bounded by circles in the upper half-plane tangent to the

real axis at p/q (5^.1/0) with radius

(8.2) p = 1/(2X?2)

(in addition to the "infinite disc" Im z>X). Under the simplifying assumption

that the group g has one cusp point, all such discs are equivalent under mo-
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tions of g. As was known to Hermite, these discs completely cover the upper

half-plane if X is a constant satisfying

(8.3) X < 31'2/2.

Now using the value of p in equation (8.2) we obtain from equation (6.7) the

estimate

(8.41) Im P„(z) = o(q") sin2 6/q2

where z is associated with the disc at p/q. By differentiation of equation

(7.1), we similarly obtain

(8.42) P'„(z) = o(r).

We now consider the Farey subdivision of the real axis of order N, con-

sisting of all positive and negative reduced fractions p/q with 0<q^N. We

call 6i*(N) the portion of the upper half-plane covered by the infinite disc

and all discs belonging to the fractions p/q in the Farey subdivision. The

highest boundary point of (R*(N) has its imaginary part at most equal to

2/N2. This follows from the fact that in the Ford configuration (with X = l)

(see [6]), any two Farey neighbors pi/qi, pi/qi have tangent circles with

point of tangency at distance from the real axis = (o2-r-g|)_1 = 2(5i-(-g2)""2

^2/N2. Thus from equations (8.41) and (6.4) we conclude, taking A7 = e_1/^,

that for e a small positive quantity, the function

(8.5) {■(*) = z + tP„(z)

maps (R*(e-1/") into a region (say) (Rj(e-1'") of the f-plane. The mapping is

unique because, by virtue of the estimate (8.42), | eP'„(z)\ —>0 for z in

(R*(e-i/c) as e -> 0.

Perform the transformation

(8.61) w = exp 2iriz/h,

(8.62) w' = exp2vit/h;

then the mapping (8.5) determines a mapping of (R(e-1/"), the w-image of

(R*(e-1/',)1 into (Ro^-1'"), the w'-image of (R*(€-1/"). Specifically if we set

(8.7) P„(z)=G(w)

we find that the transformation (8.5) becomes

(8.8) w' = w exp 2iri(G(w)/h,

a mapping which preserves the origin and the direction at the origin (since

Coo is pure-imaginary). But by our earlier estimates the boundaries of

(R(e_1/") and (Ro(«_1/") differ from the unit circle (and from one another) by a

perturbation of size 0(2/N2)=0(e2!u)=o(e) for p.<2, while the resultant in-
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terior mapping (8.8) is actually a perturbation of order e unless G(w) =0. This

completes the sufficiency proof of the main plroblem.

9. Concluding remarks. The first thing we might notice is that Klooster-

man's estimation (7.3) of the Fourier coefficients is much tpo sharp. A closer

examination of the steps shows that it would suffice to know that At = 0(v*),

which applies to the Eisenstein series as well as the cusp forms.

One might infer that a purely function-theoretic proof of the main theo-

rem should be possible employing no such number-theoretic device as the

Farey subdivision, perhaps along the lines of §5.

We should add that §5 is more than a heuristic motivation for the use of

z+tP(z). If we reverse the sequence of equations, from (5.7) to (5.5), our

main theorem gives a proof that cusp forms are not definable by a variational

process which forms a real perturbation of the transformation matrices of the

group g (since such a perturbation leads to a real period polynomial). In

fact, in §6 we saw that variations arising from cusp forms would cause some

of the "discs" to "perturb" the real axis by moving below the upper half-

plane. The earlier paper [l] indicates how Eisenstein series, on the other

hand, could be constructed by a variational procedure which forms a real

perturbation transformation of the group g.
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