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Introduction. The main purpose of this paper is to draw attention to

certain functors, exactly analogous to the functors "Tor" and "Ext" of Car-

tan-Eilenberg [2], but applicable to a module theory that is relativized with

respect to a given subring of the basic ring of operators. In particular, we

shall show how certain relative cohomology theories for groups, rings, and

Lie algebras can be subsumed under the theory of the relative Ext functor,

just as (in [2]) the ordinary cohomology theories have been subsumed under

the theory of the ordinary Ext functor.

Among the various relative cohomology groups that have been considered

so far, some can be expressed in terms of the ordinary Ext functor; these have

been studied systematically within the framework of general homological

algebra by M. Auslander (to appear). A typical feature of these relative

groups is that they appear naturally as terms of exact sequences whose other

terms are the ordinary cohomology groups of the algebraic system in question,

and of its given subsystem.

There is, however, another type of relative cohomology theory whose

groups are not so intimately linked to the ordinary cohomology groups and

exhibit a more individualized behaviour. Specifically, the relative cohomology

groups for Lie algebras, as defined (in [3]) by Chevalley and Eilenberg, and

the relative cohomology groups of groups, defined and investigated by I. T.

Adamson [l], are of this second type. It is these more genuinely "relative"

cohomology theories that fall in our present framework of relative homologi-

cal algebra.
Our plan here is to sketch the general features of the relative Tor and Ext

functors (§2) and to illustrate some of their possible uses or interpretations

by a selection of unelaborated examples. Thus, §3 illustrates the use of the

relative Ext functor in extending the cohomology theory for algebras. §4 deals

with relative homology and relative cohomology of groups, and involves both

the relative Tor functor and the relative Ext functor. §5 discusses the role

played by the relative Ext functor in the cohomology theory for Lie algebras.

Since this paper is intended to serve as a preliminary survey, and since the

topics dealt with are supplementary to the corresponding topics of the non-

relative theory (contained in [2]), we feel justified in presupposing that the
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reader is familiar with the elementary technique and the general notions of

homological algebra.

1. Relatively projective and injective modules. Let P be a ring with an

identity element, 1, and let 5 be a subring of R containing 1. All the P-mod-

ules we shall consider are assumed to be "unitary," in the sense that 1 acts

as the identity operator. An P-module will be regarded also as an S-module,

in the natural way.

An exact sequence of P-homomorphisms between P-modules, ti'.M—>ilf,-_i

(or t*: M{—*Mi+1, with appropriate changes below) is called (P, S)-exact if,

for each i, the kernel of li is a direct 5-module summand of Mi. Clearly, a

sequence of P-homomorphisms ti is (P, 5)-exact if and only if, for each i,

(1): f,o<<+i = 0, and (2): there exists an 5-homotopy, i.e., a sequence of

5-homomorphisms ht: Mi—*Mi+i such that ti+i o hi+hi-i o tt is the identity

map of Mi onto itself.

An P-module 4 is said to be (R, S)-injective if, for every (P, 5)-exact

sequence (0)—>U—>PV—»aTF—>(0), and every P-homomorphism h of U into

A, there is an P-homomorphism h' of V into 4 such that h' o p =?h. Dually,

A is said to be (P, S)-projeclive if, for every such sequence, and every P-homo-

morphism g of 4 into W, there is an P-homomorphism g' of A into V such

thatgog'=g(1).

Let tt: Mi-+Mi-i be any (R, S)-exact sequence. It follows from our defini-

tions and from the exactness properties of the functor Homs that the induced

sequence of homomorphisms Hom«(Af<_i, A)—>HomR(Mi, A), h^>hoti, is

exact whenever 4 is (P, 5)-injective. Similarly, the induced sequence of

homomorphisms Y\.ovc\R(A, Mi)—>Homfl(4, M,_i), h—>tiOh, is exact when-

ever A is (P, S) -projective.

Let 4 be an 5-module, and consider the group Homs(P, A) of all 5-homo-

morphisms of P into A, i.e., of all maps/: P—>4 such that/(sr) = s-/(r), for

all sES and all rER- This group is made into an P-module by defining, for

r and r' in P, (r-f)(r') =f(r'r).

Lemma 1. For every S-module A, the R-module Homs(P, .4) is (R, S)-

injective.

Proof. Let (0)^U^pV^qW-^(0) be an (P, 5)-exact sequence. Since p

maps U isomorphically onto a direct 5-module summand of V, it is clear

that the map h-^hop sends Homs(F, A) onto Homs(P, A). On the other

hand, for any P-module M, there is a natural isomorphism of the group

HomR(M, Homs(P, A)) onto Homs(M, A); k—>ki, where ki(m) =&(m)(l), for

(') If ^ is a homomorphism of a ring T into R, and S=<j>(T), then the (R, S)-injective

(projective) modules are precisely the ^-injective (projective) modules, in the sense of Cartan-

Eilenberg, [2, Chap. II, §6]. In fact, the equivalence of these notions follows from Lemmas 1

and 2 below, and these lemmas themselves amount to the same as Proposition 6.3, Chap. II,

of [2].
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every mGM. Using this, with M=V, and with M= U, we conclude that the

map k—>kop sends HomB(F, Homs(i?, A)) onto HomK(U, Homs(i?, A)),

which means precisely that Homs(i?, A) is (R, S)-injective.

The natural standard identification of an i?-module M with the i?-module

Homs(i?, ilf)CHoms(i?, M), under which each element mGM corresponds

to the homomorphism m', where m'(r) =r-m, for every rGR, gives rise to the

natural exact sequence

(0) -> M -> Homs(i?, M) -> Homs(i?, M)/RomR(R, M) -> (0).

On the other hand, the map h—*h(\) is an S-homomorphism Homs(i?, M)—>M,

sending m' back onto m. It follows that our exact sequence is actually

(R, S)-exact. If M is (R, S)-injective, it follows at once that our sequence is

(R, i?)-exact, i.e., that Homfi(i?, M) is an exact i?-module summand of

Homs(i?, M). Since a direct i?-module summand of an (R, S)-injective mod-

ule is still (R, S)-injective, we conclude that an i?-module M is (R, S)-injec-

tive if and only if Hom#(i?, M) is a direct i?-module summand of Homs(i?, M).

Proposition 1. Let M be an (R, S)-injective R-module, and suppose that

£/—» Vis a homomorphism of R-modules such that the induced map Homs( V, M)

—*Homs(C/, M) is an epimorphism. Then the map HomB(F, M)—>HomR(U,M)

is also an epimorphism.

Proof. We have seen above that there is an i?-projection of Homs(i?, M)

onto Homie(i?, M). We identify HomK(i?, M) with M and note that such an

i?-projection induces an epimorphism HomB(5, Homs(i?, M))^>r\omR(B, M),

for every i?-module B. If we compose this with the natural isomorphism of

Homs(5, M) onto HomB(5, Homs(i?, M)) (whose inverse we defined in the

proof of Lemma 1) we obtain an epimorphism Homs(5, M)—>HomR(B, M).

Moreover, this epimorphism is natural with respect to B, in the sense of the

theory of functors. Hence, using this with B = F and with B = U, we obtain

an exact and commutative diagram

Homs(F, M) -» Homs(J7, M) -»(0)

i I

HomB(F, M) -» Homfi(t7, M)

I I

(0) (0)

from which it follows at once that the map HomB(F, M)^Homs(C/, M) is

an epimorphism.

Lemma 2. For every S-module A, the R-module R®sA is (R, S)-projective.

Proof. Let (0)—>J7—>PF—>,IF—»(0) be an (R, S)-exact sequence. Since the

kernel of a is a direct S-module summand of  V, the map h—>q o h sends
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Homs(4, V) onto Homs(4, W). On the other hand, for any P-module M,

there is a natural isomorphism of Homs(i?®syl, M) onto Hom,s(.4, M);

&—>&i, where ki(a)=k(l®a), for every aEA. Using this, with M=V, and

with M=W, we conclude that the map k^>qok sends Homfi(P®s4, V)

onto Homij(PiS)s^4, IF), which means precisely that R®sA is (P, 5)-projec-

tive.

If M is any P-module, the natural map R®sM—>M gives rise to an exact

sequence (0)—>KM—>R®sM—>M—>(0). The map m—>l®m is an S-isomor-

phism of M onto an S-module complement of KM in P ® sM, showing that our

exact sequence is actually (R, S)-exact. If M is (P, S)-projective it follows

that the sequence is (R, P)-exact, so that M is P-isomorphic with a direct

P-module summand of R®sM. Since a direct P-module summand of an

(R, S)-projective module is still (P, S)-projective, we may now conclude

that an P-module M is (P, S)-projective if and only if it is P-isomorphic with

a direct P-module summand of R®sM, or if and only if Km is a direct P-

module summand of R®sM.

Proposition 2. Let M be an (R, S)-projective R-module; and suppose that

V—*Wis a homomorphism of R-modules such that the induced map Homs(Af, F)

—>Homs(M, W) is an epimorphism. Then the induced map Hom^Af, V)

—>HomR(M, W) is also an epimorphism.

Proof. We have seen above that there is an P-isomorphism of M onto a

direct P-module summand of R®sM. For every P-module B, this induces

an epimorphism HomB(R®sM, P)—>HomB(iip B). If we compose this with

the natural isomorphism of Homs(M, B) onto HomR(R<gisM, B) (whose in-

verse we defined in the proof of Lemma 2)' we obtain an epimorphism

Homs(M, B)—>HomR(M, B). Moreover, this epimorphism is natural with

respect to B. Hence, using this with B = V and with B = W, we obtain an

exact and commutative diagram

Homs(Af, V) -> Homs(M, W) -* (0)

i i

HomR(M, V) -> HomK(M, W)

I i

(0) (0)

from which we see that the map Hom«(M, V)—>HomR(M, W) is an epi-

morphism.

Proposition 3. Let M be an (R, S)-projective R-module, and suppose that

U—>V is a homomorphism of right R-modules such that the induced map

U<8)sM—>V® sM is a monomorphism. Then the map U®RM-^V®RM is also

a monomorphism.

Proof. There is an P-isomorphism of M onto a direct P-module summand
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of R®sM. For every right i?-module B, this induces a monomorphism

B®rM->B®r(R®sM)=B®sM. Using this, with B=U and with B=V,

we obtain an exact and commutative diagram

(0) (0)

I I

U ®R M->F ®rm

I I

(0)-*U ®s M-+V ®SM

from which we see at once that the map U®rM—*V®rM is a monomor-

phism.
2. The relative Tor and Ext functors. By an (i?, S)-projective resolution of

an i?-module M we shall mean an (R, S)-exact sequence —>&—>Co—*M—»(0)

in which each C,- is (R, S)-projective. It follows at once from Lemma 2

and the remarks following its proof that every i?-module has an (R, S)-

projective resolution. In fact, we may take Co = R®sM, with the natural

map i? ® sM—>M, and then proceed in the same way from the kernel of this

map in order to obtain &—>Co, etc. The (R, S)-projective resolution obtained

from this process is called the standard (R, S)-projective resolution of M.

Let B be an ordinary (left) i?-module, and let A be a right i?-module.

Let • ■ • —>Xi-+Xo—>A—>(0) be the standard (right) (R, S)-projective resolu-

tion of A. Let u( denote the i?-homomorphism X—>X<_i of this resolution, for

i>0; but let «o stand for the 0-map on X0. It is convenient to introduce the

graded i?-module X whose homogeneous components of non-negative de-

grees are the X,-, while its homogeneous components of negative degrees are

(0). Also, denote by u the homogeneous i?-endomorphism of degree — 1 on X

whose restriction to Xi is «<. Thus we have a graded right i?-complex (X, u).

Likewise, from the standard (R, S)-projective resolution —*Fi—>Fo—>B—>(0)

of B, we obtain the graded (left) i?-complex (F, v).

Now form the graded group Z = X®RY, with homogeneous components

Z„= >!<x<—. Xi®RYj, and define the homogeneous endomorphism w of de-

gree — 1 on Z such that, for xGX{ and yGY,

w(x ® y) = u(x) ® y + (—l)'x ® v(y).

Since «2 = 0 and v2 = 0, it follows that w2 = 0, and we have a graded group

complex (Z, w). We define Tor(nR,s\A, B) as the rath homology group Hn(Z, w)

of this complex. Clearly, these groups are (0) for ra<0.

Suppose we have two i?-modules M and N, and two sequences of R-

homomorphisms • ■ —►&—>Co—>M—*(0), and • • —*D\—>£>0—>N—»(0), satis-

fying the following conditions: (1): in each sequence, the composite of suc-

cessive maps is 0; (2): the C-sequence has an S-homotopy; (3): each Di is

(i?, S)-projective.  Suppose also that we are given an i?-homomorphism
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q: N-+M. Then it is easily seen that we can successively find P-homomor-

phisms Di-^d such that the resulting diagram

-> Ci -> Co -> M -»(0)

T        T        U

-> Pi -» Do -* N -» (0)

is commutative. Moreover, if (si) and (ti) are any two such systems of P-

homomorphisms, there is an P-homotopy connecting them, i.e., a sequence of

P-homomorphisms ht: D—>C,+i such that, if c< and a*,- are the maps of the

given sequences, Si — ti = ci+i o hi+hi-i o o\-, for all i (where fe_i=0).

This is enough information to enable one to proceed exactly as in the

usual theory of Torfl and thus establish the following facts. Every pair of

P-homomorphisms A—>4' and B^B' induces a unique homomorphism

ToriR,S)(A, P)—>To4B,S)(4', B'), and these induced homomorphisms have

all the requisite properties to make Tor£fi,S) a twice covariant functor. More-

over, the actual choice of the (P, S)-projective resolutions of A and B that

are used in computing Tor£R,S)(4, B) has, to within natural isomorphisms,

no influence on the result. In particular, one sees from this that, for «>0,

Tor<fl'S)(4, P) = (0), whenever either 4 or P is (P, S)-projective. On the other

hand, it can be seen directly from the definition that, for arbitrary 4 and B,

Tor0R5)(4,P)=4<g>*P.

As in the case of TorB, it is actually sufficient to make a resolution of only

one of the modules; TornR,S)(A, B) may be identified with the homology

group P„(4®RY) of the complex A®RY that is defined as above, using, in

the place of X, the complex whose component of degree 0 is 4 and all whose

other components are (0). Similarly, Tor*'S)(4, B)=H^(X®RB). This can

be proved by the methods of Chapter V of [2]. The critical fact that is

needed is the following immediate consequence of Proposition 3 above: if A is

(R, S)-projective then, for any (R, S)-exact sequence • • —>P,~»P,-_i—> • • • ,

the induced sequence • • —>A ®RBi—*A <g>flP,_i—» • • • is exact (similarly,

with the roles of the left and right modules interchanged). We shall briefly

sketch a direct proof of the above.

Consider the subcomplex X' of X whose components are given by:

XI =Xi, for i>0; X0' =Ui(Xi). The injection X'—>X and the P-homomor-

phism Xo—+4 of our resolution compose to the (P, S)-exact sequence (0)—*X'

—>X—>A—->(0). Since Fis (P, S)-projective, the induced sequence (0)^>X'®RY

—+X®RY-^>A®RY—>(0) is exact. Clearly, the homomorphisms of this se-

quence are compatible with the structure of a complex of each term. Hence if

we show that the homology groups of the complex X'®RY are (0) it will

follow that the map X®RY—>A ®RY induces an isomorphism of Hn(X®RY)

onto Hn(A ®RY), establishing the above claim concerning Yor^'s\A, B). In

order to show that H(X'®RY) = (0) we define an increasing sequence of sub-
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complexes Zk of X'®RY whose components are given by:

zl =  Z Xn-i ®R Yj.

Then each factor complex Zk/Zk~l is isomorphic with X'®RYk- Since X'

has an S-homotopy and Yk is (R, S)-projective, it follows that the homol-

ogy groups of Zk/Zk~l are (0). Hence the injections Zk~l^>Zk induce iso-

morphisms of H(Zk~l) onto H(Zk). Since Z*= (0), for k<0, we conclude that

each H(Zk) = (0). Since Hn(Zk) =Hn(X'®RY), as soon as k>n, we conclude

thatH(X'®BY) = (0).
Let (0)—>U—>F—>IF—>(0) be an (R, S)-exact sequence. This leads (as

above) to an exact sequence of complexes (0)—>U®rF—»F<8>bF—>IF®RY

—>(0). Using that Tor^,S)(A, B) =Hn(A ®rY), we obtain the exact sequence

^Tor<fl'S) (U, B)->TornR-S) (V,B) -*Torifi's) (W,B) ->Tor<*? > (U,B) -^and, clearly,

there is a similar exact sequence with the roles of left and right modules

interchanged.

Now we pass to the discussion of the relative Ext functor. By an (R, S)-

injective resolution of an i?-module M we shall mean an (R, S)-exact sequence

(0)—*M—>C—>Cl—> ■ • • in which each C* is (R, S)-injective. It follows from

Lemma 1 and the remarks following its proof that every i?-module has an

(i?, S)-injective resolution. In fact, we may take C° = Homs(i?, M), with the

monomorphism M—>Homs(i?, M) that we discussed in connection with

Lemma 1, and proceed in the same way with the cokernel C°/Homij(i?, M)

of this monomorphism, etc. The (R, S)-injective resolution so obtained will

be called the standard (R, S)-injective resolution of M.

Let A and B be i?-modules, and let (X, u) be the i?-complex obtained

(as above) from the standard (R, S)-projective resolution of A. If (0)—>5

—► F°—+.o F1—>„i • • • is the standard (R, S)-injective resolution of B we de-

note by (F, v) the i?-complex formed by the F* and the maps »*, agreeing

that F'=(0), for i<0. Now form the graded group Z whose homogeneous

components are the direct sums Zn= X/«+j=» rlomR(Xi, Y>). Define a homo-

geneous endomorphism w of degree 1 on Z such that, for hGrlomR(Xi, Y'),

w(h) =ho «,-+i4-( — l)Vo h. Then w2 = 0, and (Z, w) is a graded group com-

plex. We define Ext"R:S)(A, B) as the rath cohomology group H"(Z, to) of this

complex. Clearly, these groups are (0), for ra<0.

Using the result on the existence and uniqueness (up to homotopies) of

maps between complexes that we have cited in our above discussion of

Tor£fl,,S), as well as the dual result involving (R, S)-injectivity instead of

(R, S)-projectivity, one can easily establish the following results, which are

quite analogous to standard facts concerning Extjj. Every pair of i?-homo-

morphisms A—*A', B—*B' induces a unique homomorphism Ext"R:s)(A', B)

—>Ext"fl,s)(A, B'), and these induced homomorphisms have all the requi-

site properties to make Ext"Si,s) a functor, contravariant in the first argument,
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and covariant in the second. Moreover, the actual choice of the resolutions

of A and B that are used in computing Ext"B|S) (4, B) has, to within natural

isomorphisms, no influence on the result. In particular, it follows that, for

n>0, Ext"BiS)(4, P) = (0), whenever either A is (R, S)-projective or B is

(P, S)-injective. On the other hand, it can be seen directly from the definition

that, for arbitrary 4 and B, Ext(jj,S)(4, B) =Honiie(4, B).

Now let X' be the subcomplex of X that we have used above in reducing

the computation of Tor^fi"S)(4, B). Since the components of Y are (P, S)-

injective, the (R, S)-exact sequence (0)—*X'—>X—>A—>(0) induces an exact

sequence of complexes (O)^Homie(^, Y)^>Hom'R(X, 7)->Hom'«(X', 7)->(0),

where the prime in Horn' indicates that we take the weak direct sum of the

homomorphism groups for the homogeneous components rather than the full

group of all homomorphisms. Define a decreasing sequence of subcomplexes

Zk of Hom'g(J', 7) by taking Z\= £/£* ]AomR(X'n_j, Y>). Now we can pro-

ceed in almost the same way as in our discussion of X'®RY above and con-

clude that the cohomology groups of the complex Honr^X', 7) are (0).

Hence the map Homij(.4, 7)—>HomB(X, 7) induces an isomorphism of

H»(HomR(A, 7)) onto P"(Homfl(X, 7)) =Ext?fl,s)(4, B).

Similarly, let 7' denote the factor complex of 7 modulo the image of P

in 7°. We then have the (P, S)-exact sequence (0)-*P->7-v7'->(0).Since

each component of X is (P, S)-projective, the induced sequence of complexes

(0)->Hom«(X, P)-»HomB(X, Y)-^Hom'R(X, 7')^(0) is exact. Define a

decreasing sequence of subcomplexes Tk of Homjj(Z, 7') by taking Tk

— ̂ C<&* Hom«(X,-, Y'n~'). Proceeding as before, one now shows that the

cohomology groups of the complex Homs(X, 7') are (0). Hence the map

Homs(X, P)—>HomB(X, 7) induces an isomorphism of P"(HomR(X, B))

onto Hn(Hom'B(X, Y)). We may therefore identify Ext(fiiS)(4, P) with

H»(Hom'R(X, B)), as well as with P"(HomB(4, 7)).

Now let (0)—>P—»F—>TF—>(0) be an (R, S)-exact sequence. This leads to

exact sequences of complexes

(0) -> Hom'K(X, U) -+ HomB(X, V) -> Hom'B(X, IF) -> (0),

and

(0) -> KomR(W, Y) -> HomB(F, 7) -» Hom«(P, 7) -* (0).

Using our reduced expressions for Ext"^), we see that the first of these

sequences yields an exact sequence

-^ Ext^,S)(4, U) -* Ext(«,S)(4, V) -> Ext(«.,S)(4, W) -> Ext(R+s,(4, U) ->.

Similarly, the second sequence yields an exact sequence

-» Ext(«,S)(IF, B) -► Ext"B,S)(F, B) -> Ext<R,S)(P, 73) -+ Ext£X(W, B) ->.
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In particular, consider the (R, S)-exact sequence (0)—>KA—>R®sA—*A

—*(0). This gives rise to the exact sequence Homfi(i?(g>,s.4, B)^>rlomR(KA,B)

-*Ext\RiSi(A, B)-*(Q). For every hGrlomR(KA, B), let Ih denote the R-

submodule of the direct sum B-\-R®sA that consists of all elements of the

form h(k)+k, with kGKA. Put Eh = (B+R®sA)/Ih. The natural map of B
into Eh is a monomorphism, so that we may identify B with its image in E*.

The projection of B+R®sA onto R®SA, followed by the natural map

R®sA—>A, induces an i?-epimorphism Eh—>A whose kernel coincides with B.

The map that sends each element aGA onto the coset mod Ikoi l®aGR®sA

is an S-monomorphism A—>Eh, and its composite with our epimorphism

Eh-^A is the identity map on A. Thus we have attached to h an S-trivial

extension of the i?-module B by the i?-module A, i.e., an (R, S)-exact se-

quence (0)—>B—>Eh—>A—>(0). It is not difficult to check that this yields a

homomorphism of Hom^i?^, B) onto the group (with the Baer composition)

of the equivalence classes of the S-trivial extensions of B by A. Moreover,

the kernel of this homomorphism turns out to be exactly the natural image of

HomB(i?®s^4i B) in rlomR(KA, B). Hence we conclude that Ext(fi„s)(.4, B)

is isomorphic with the group of the equivalence classes of the S-trivial extensions

of B by A.
Finally, let us observe that, iw the case where the subring S is semisimple,

in the sense that every unitary S-module is semisimple (or, equivalently, that

S is semisimple as an S-module), every i?-exact sequence is automatically

(R, S)-exact, whence we have, for all ra, and all modules A, B, TornR,S)(A, B)

= Toii(A, B), and Extfog,^, B)=ExtnB(A, B).
3. Relative cohomology of rings and algebras. Let K be a commutative

ring, and let P be an algebra over K. We suppose that P has an identity ele-

ment, 1, and that Q is a -fiT-subalgebra of P such that 1GQ- We denote by P'

the X-algebra anti-isomorphic with P, and by p—*p' the algebra anti-iso-

morphism of P onto P'. Put R=P®kP', with its natural structure of an

algebra over K. Let S denote the natural image of Q®kP' in R. We regard P

as an i?-module such that, for pi, pi, p in P, (pi®pl)-p = pippi.

For any (unitary) i?-module M, we define the relative cohomology group

Hn(P, Q, M) for (P, Q) in M as Extn(R,S)(P, M). In order to interpret and

handle some of these groups, we shall give an explicit (R, S)-projective resolu-

tion of P.

For ra^O, let Xn stand for the tensor product P®q • • ■ ®qP, with ra-)-2

factors P. The i?-module structure of Xn is such that, for a, b, pi in P,

(a®b')-(po® • ■ • ®pn+i)=apo®pi® • ■ • ®pn®pn+ib. It is easily seen that

there is an i?-isomorphism of R®sXn-i onto Xn (where, momentarily, X-i

is to stand for P) sending (a®b')®(pQ® ■ ■ ■ ®pn) into a®po® • • •

®pn-i®pnb, and whose inverse sends po® • ■ • ®pn+i into (po®p'n+i)

®(pi® ■ ■ ■ ®pn®l). Hence each Xn is (R, S)-projective. Let u0 be the

i?-homomorphism of X0 onto P such that Uo(a®b') =ab. For ra>0, let «„ be
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the P-homomorphism of X„ into X„_i for which

n

Un(Po ®   ■   ■  ■   ® pn+i)   =   JZ (-1)KP<>  ®   •  ■  •   ®  PiPi+1  ®   •  •  '   ®  Pn+l).
1-0

It is easily checked that m„_i o m„ = 0. In order to see that we have indeed an

(P, S)-projective resolution of P, we merely have to exhibit an S-homotopy,

h. Define h-i: P—>X0 by h_i(p)=\®p. For n^O, define hn: Xn—>X„+i such

that h„(p0® ■ • • ®pn+i) = l®po® • • • ®pn+i- The verification that this is

actually an S-homotopy presents no difficulties.

An P-module M may be regarded as a two-sided P-module, and we shall

treat it as such in our notation, whenever this is convenient. The cochain

complex with the groups HomB(X„, M) may be identified with the cochain

complex with groups Cn(P, Q, M) consisting of all w-linear (with respect to

K) functions / from P to M such that, for a EG and piEP,

q-f(pi, ■ ■ ■ , Pn) = f(qpi, pt, • ■ ■ , pn),

f(pu • ■ ■, P<q, pi+i, •'', Pn) = f(pu • • • , pi, qpi+i, ■ • ■, pn),

f(Pu ■ ■ ■ , Pnq) = f(pi, ■ ■ ■ , pn)-q.

Here, C°(P, Q, M) is to be the group of all elements mEM for which q-m

= mq, for all qEQ- The coboundary operator 8: Cn(P, Q, M)^>Cn+1(P, Q, M)

is given by the usual formula

(8f)(pu ■■- , pn+i) = pvf(pt, ■■■ , pn+i)
n

+   £  (-!)'/(/>!,  •  •  •   .  PiPi+U  ■■■   ,  Pn+i)
i=l

+  (-l)"+1/(^l,   ■■■   ,Pn)-Pn+l.

These relative cohomology groups can be used to obtain generalizations

of the results of the ordinary cohomology theory for algebras (which is the

case where K is a field and Q coincides with K). One of the simplest of these

is as follows.

Theorem 1. Suppose that Hl(P, Q, M) = (0),for all P®KP'-modules M.

Then, if a P ® rP'-module is semisimple for its induced structure of a Q®kQ'-

module, it is semisimple also as a P ® kP'-module.

Proof. Let V be a P® xP'-module satisfying the condition of the theorem,

and let U be a submodule of F. Put W= V/U, and let t denote the natural

epimorphism V—*W. Since V is C/®ic()'-semisimple, there exists a Q®kQ'-

monomorphism h: W—> V such that tohis the identity map on IF. To every

pEP let us associate a map hv of IF into U by setting hp(w) —h(w) p—h(wp).

Then fepGHome(IF, U). Now Home(IF, U) can be given the structure of a

two sided P-module such that, for pEP and gGHomQ(IF, U), (p-g)(w)

= g(wp) and (gp)(w) —g(w) p. Moreover, remembering that Q contains the
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X-multiples of the identity element of P, and that our modules are unitary,

it is easily verified that this actually makes Hom^IF, U) into a P®kP'-

module. Now one verifies directly that the map p—>hp is an element h' of

C1(P, Q, HomQ(IF, U)), and that 5h' = 0. By the assumption of our theorem,

there exists an element g in C°(P, Q, Home(IF, U)) such that 5g = h'. This

means that g is an element of Homg(IF, U) such that qg = gq, for all qGQ,

and h(w)p — h(w-p)=g(wp)—g(w)-p, for all pGP and wGW. Clearly,

h-\-g is therefore a Q®xP'-homomorphism of IF into F, and t o (h-\-g) is the

identity map on IF. Put f = h-\-g and, for every pGP, let/,, be the map of IF

into U that sends each wGW into fp(w) =f(pw)—p-f(w). Evidently,

fpGHorn/.-(IF, U). We make Homp-(IF, U) into a two sided P-module such

that, for pGP and kGrlomP,(W, U), (pk)(w)=p-k(w) and (k-p)(w)

= k(p-w). It is easily seen that this actually makes Homp'(IF, U) into a

P®kP'-module. Now one verifies directly that the map p—*fp is an element

/' of Cl(P, Q, rlomP-(W, U)) and that 6/' = 0. Using the assumption of the

theorem once more, we conclude that there is an element k in Homp-(IF, U)

such that f(p-w)-p-f(w)=p-k(w)-k(p-w). Clearly, f+k is a P®KP'-
homomorphism of IF into V, and / o (f+k) is the identity map on IF. Thus

U is a direct P®j2p'-module summand of F, and, since U is an arbitrary

submodule, we have proved that F is semisimple.

Observe that, with i? and S as before, the last part of our proof has

actually shown that every (R, S)-exact sequence of i?-modules is also (R, i?)-

exact. Conversely, this property implies that Hn(P, Q, M) = (0), for all Mand

all «>0, as is seen at once by applying it to an (R, S)-projective resolution

of P.
In particular, the assumption of Theorem 1 is satisfied if P is the ring

of all m by m matrices with elements in Q. Indeed, let pa be the usual matrix

units, and let / be an element of Cl(P, Q, M) such that 5f = 0. Put

«= ZXi Paf(Pu). Then it can be verified directly that uGC°(P, Q, M), and
that 5u =/, which proves our assertion. Using also the above remark, we con-

clude that if P is a full matrix ring over Q then Hn(P, Q, M) = (0), for all ra > 0

and all P ® kP'-modules M.

We shall now obtain some general results connecting relative cohomologi-

cal dimension with relative global ring dimension. These results are relativ-

ized versions of results of Cartan-Eilenberg (cf. Proposition 4 and its corol-

laries, in [4]) and actually represent the situation in a smoother form, in that

no special assumptions need be made.

Let P, Q be as above, and let T be another if-algebra with identity ele-

ment. Let A and B be r<g»xP'-modules, written as left T- and right P-mod-

ules. We define the structure of a two sided P-module on Hom^Cd, B) such

that, for aGA, pGP, hGrlomT(A, B), we have (p■ h)(a) = h(a■ p) and

(h-p)(a) =h(a) ■ p. It is easily checked that this actually makes Homr(.4,.B)

into a P®KP'-module.
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Theorem 2. Hn(P, Q, Homr(4, B)) is naturally isomorphic with

ExtlE,F)(A, B), where E = T®kP' and F is the natural image of T®KQ' in P.

For the proof we require the following lemma:

Lemma 3. If A is (E, F)-projective then Homr(4, B) is (R, S)-injective.

Proof. Let X and 7 be P-modules (treated as two sided P-modules), and

let v be an S-homomorphism of X into 7. Then v induces the homomorphism

v': HomP,(Y, P)->HomP.(X, B), where v'(h)=ho v. Now HomP-(X, B), and

similarly the other such groups, are P-modules, with the following left T-

and right P-module structures: (t-h)(x) =t-h(x) and (h-p)(x)=h(p-x).

Clearly, v' is then a P-homomorphism. Moreover, with qEQ, we have

((h o v) -q)(x) = (ho v)(q-x) =h(q-v(x)) =((h-q) o v)(x), which shows that v' is

also a right C/-homomorphism. Hence v' is an P-homomorphism. If v is not

only an S-homomorphism, but even an P-homomorphism, it follows in

exactly the same way that v' is an P-homomorphism.

Now let (0)->P-»F->IF—>(0) be an (P, S)-exact sequence. Then it fol-

lows from what we have just seen, applied to the homomorphisms of the given

sequence, and also to those of an S-homotopy, that the induced sequence

(0) -> B.omP,(W, B) -► HomP-(F, B) -> KomP.(U, B) -> (0) is (P, F)-exact.

Next let us observe that there is a natural isomorphism between

HomR(U, Homr(4, P)) and HomB(A, HomP'(U, B)) (and similarly with V

or IF in the place of U). In fact, if hEHomR(U, Homy(4, P)) the correspond-

ing element of HomB(^4, HomP'(P, B)) is h', where h'(a)(u) =h(u)(a). It can

be checked quite directly that the correspondence between h and V is indeed a

natural isomorphism between the two composite Horn functors.

Since4 is (P, P)-projective, the epimorphism Honif><(F, B)—>Homp -(£/, B)

of the (P, F)-exact sequence derived above induces an epimorphism

WovciE(A, HomP'(F, B))^HomE(A, HomP'(U, B)). Using the natural

isomorphism just observed, we conclude that the map Hom^F, Homr(4,P))

—>HomR(U, Homr(4, P)) that is induced by the map U—*V of the given

(P, S)-exact sequence is an epimorphism. Thus HomT(A, B) is (P, S)-

injective, and Lemma 3 is proved.

Now let • • • —>Xi—>X0—>4—*(0) be an (P, F)-projective resolution of 4.

This induces the sequence

(0) -> Homr(^, B) -> Homr(X0, B) -> Homr(Xi, B) -► • • • .

Apart from the fact that the roles of (P, S) and (P, P) are interchanged,

this situation is the same as that in the first part of our proof of Lemma

3. We conclude that the sequence connecting the Homr is (P, S)-exact,

and, by Lemma 3, is therefore an (R, S)-injective resolution of Homr(4, B).

It follows that Hn(P, Q,  Homr(4, B)) is naturally isomorphic with the
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rath cohomology group of the complex HomB(P, Homr(X, B)). On the

other hand, the map h—>h(l) is easily seen to be a natural isomorphism of

HomB(P, HomrCX'i, B)) onto HomB(Xi, B); the inverse map is k-+k', where

k'(p)(x)=k(x-p)=k(x)-p. Hence the complex HomB(P, Hom'r(X, B)) is

naturally isomorphic with the complex Hom^X, B). This means that

Hn(P, Q, HomT(A, B)) may be identified with the rath cohomology group of

the complex Hom^X, B), i.e., with Ext"£iF)(.4, B). This completes the proof

of Theorem 2.

Let c(P, Q) denote the largest non-negative integer ra (or oo, if there is no

largest such ra) for which there exists a P®KP'-module M with Hn(P, Q, M)

5^(0). We call c(P, Q) the relative cohomology dimension of the pair (P, Q). On

the other hand, let d(P, Q) denote the relative global dimension of the pair

(P, Q), i.e., the largest non-negative integer ra (or oo, if there is no largest

such w) for which there are P-modules U and F with Ext\PtQ)(U, V) j* (0). We

shall also have to deal with d(R, S), where R = P®kP' and S is the natural

image in R of Q®kP'- Here (and similarly later), where there is an evident

natural map Q®kP'^>P®kP' underlying our definition, we shall write

d(P®KP', Q®kP') instead of d(R, S), whenever we wish to make a result

quite explicit. Note that it follows immediately from the definitions that

c(P, Q) ̂ d(P®KP', Q®kP'). On the other hand, consider Theorem 2 with

T = P. We have then E = P®KP', while F is the natural image in P®KP' of

P®kQ'. Hence Theorem 2 shows at once that c(P, Q)^d(P®KP', P®kQ').

Thus we have d(P®KP', Q®KP') ^ c(P, Q) ^ d(P®KP', P®kQ').
Now interchange P and P', and accordingly also Q and Q'. This gives

d(P'®KP, Q'®kP)^c(P', Q')^d(P'®KP, P'®kQ). Since switching the
order of the factors in a tensor product of algebras is a natural isomorph-

ism, we have d(P'®KP, Q'®kP) = d(P®KP', P®kQ') and d(P'®KP, P' ®kQ)

= d(P®KP', Q®kP'). Hence our two chains of inequalities give equalities.

Corollary 1. d(P®KP', Q®kP') = c(P, Q) = d(P®KP', P®kQ')

= c(P', Q').

Now consider Theorem 2 with T = K. Then E—P' and F = Q', whence we

see that c(P, Q)^d(P', Q'). Similarly, c(P', Q')^d(P, Q).

Corollary 2. c(P, Q)^max (d(P, Q), d(P', Q')).

We are now in a position to obtain the following generalization of a result

due to Cartan-Eilenberg [2, Chapter IX, Theorem 7.11].

Theorem 3. Let Q be a commutative ring with identity element, and let

P = Q[xi, • • ■ , x„] be the ring of polynomials in ra variables with coefficients in

Q. Then d(P, Q) =n = c(P, Q).

Proof. We regard Q as a P-module such that, for qGQ and p(xu • ■ ■ , x„)

GP, we have p(xi, • • • , x„) -q = p(0, • • • , 0)g. We shall use a complex that

was originally introduced by J. L. Koszul [6]: let V denote the free Q-module
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of rank n, with the free basis yi, • • • , y„. Let Vk denote the homogeneous

component of degree k of the exterior Q-algebra constructed over V. Thus, in

particular, V0 = Q, Vi= V, and F* = (0), for all k>n. The homogeneous com-

ponent of degree k of Koszul's complex is defined as P*=P®<jV*. Let to

denote the map p(xu • ■ ■ , xn)-*p(Q, • • ■ , 0) of P onto Q. Clearly, to is a

P-epimorphism P = P0—»(?. Let v—*v' denote the Q-monomorphism V—*P

that sends each y< onto xf. For k >0, let h be the P-homomorphism of Tk into

7i_i that sends p®vi • • • vk, where pEP and v(E V, onto

n

2^, (— \)i-xpv'i ® vi ■ ■ ■ Vi-iVi+i ■ ■ ■ vk.
i-i

It is easily verified that 4-i o tk = 0. Since each Tk is (P, Q)-projective (actu-

ally, P-free), there remains only to exhibit an S-homotopy in order to con-

clude that (T, t) is a (P, ())-projective resolution of Q. We define h-i'. Q—>To

by putting h-i(q)=l®q. Now observe that each Tk is a free @-module; for

k>0, the elements 1 ®yj, • • • yjk and xix • • • x,- ®yj, • • ■ yjk, where ji<

jt< • • • <jk and ii^it^ • • • ^i„, constitute a free Q-basis for Tk; and the

elements 1 ® 1 and xfl • ■ • x,- ® 1 constitute a free Q-basis for To. Hence we

can define an S-homomorphism hk: Tk-^Tk+i such that ho(l®l)=0,

ho(x{l • • • xi<i®l)=Xi1 ■ • ■ Xi    ®yiQ, and, for k>0,

hk(l ® yj, ■ ■ • yik) = 0,

while

hk(xh ■ ■ ■ xiq ® yfl • • • yik) = (-.1)**,-, • • • Xi,_, ® yj, ■ ■ ■ yjkyiq,

if iq>jk, and =0 otherwise. It is not difficult to verify directly that h is in-

deed a 6}-homotopy of (T, t).

Since Q is annihilated by every polynomial with constant term 0, it

follows immediately from the definition of tk that the induced map

Homp(PA_i, £>)—>HomP(Pfc, Q) is the 0-map, for all k>0. Hence, for all

k^O, we may identify Exty>>0)((?, Q) with HomP(P*, Q). In particular, we

see that Ext("PiQ>Q, Q) is isomorphic with Q. Hence we have d(P, Q) ^n.

, Now let P = P[zi, • • • , z„] be the polynomial ring in n new variables with

coefficients in P. There is an isomorphism x of R onto P®qP such that

X(P) = 1®P, for pEP, and x(z<) =x,®l -ligiXi. Then x(P) = l®P, and the
natural operations of P®qP( = P®qP') on P make P into an P-module

(via x) such that r(zi, • • ■ , zn)-p=r(0, • ■ ■ , 0)p, for all pEP and all

r(zi, • • • , zn)ER- Now consider the construction of the beginning of this

proof, with R in the place of P, and P in the place of Q. It gives an (P, P)-

projective resolution of P whose components reduce to (0), for degree >n.

Through the isomorphism x, this becomes a (P®QP', t2®oP')-projective

resolution of P. Hence we conclude that c(P, Q) ^n. Using our first result and

Corollary 2, we obtain n^d(P, Q)^c(P, Q)^n, and Theorem 3 is proved.
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4. Relative homology and cohomology of groups. Let G be a group, and

let K be a subgroup of G. Let R be the group ring Z(G) of G over the ring Z

oi the integers, and let S = Z(K). If r—*r' is the coefficient sum homomor-

phism of Z(G) onto Z we regard Z as an P-module such that rz = r'z. For a

unitary P-module ilf, we define the relative cohomology groups for (G, K)

in M by Hn(G, K, M) = Ext(B,S)(Z, ilf). Accordingly, we shall exhibit an

(R, S)-projective resolution of Z.

For all ra^O, let Xn denote the free abelian group generated by the set of

(ra-+-l)-tuples (Ao, • • • , An) of cosets Ai = gtK, with giGG. The P-module

structure of Xn is such that, for gGG, g-(Ao, • • ■ , An) = (gA0, • • • , gAn).

Agreeing momentarily that X_i = Z, there is an P-isomorphism of P(g>sX„_i

onto Xn sending g®(Ai, • • • , An) onto (gK, gAi, • • ■ , gAn); its inverse

sends (^40, • ■ • , An) onto go<8>(go-1^4i, • • • , go~lAn), where go is any repre-

sentative of Ao in G, whose particular choice has no influence on the image.

Hence each Xn is (P, S)-projective.

We define u0 to be the coefficient sum homomorphism of X0 onto Z. For

«>0, we define «„: X„—>X„_i such that

n

Mn(^40, •  •  •   , An)   =   X (—l)*'(i40,  • • •  , Ai-1, Ai+l,  ■  ■  •   , An).
1-0

As is well known, (X, u) is an acyclic P-complex, and there remains only t°

exhibit an S-homotopy, h. We define h-.x: Z—»X0 by putting h-i(z) =z(K).

For ra ̂ 0, we define hn: X„—>Xn+i such that h„(A0, ■ • ■ , A„) = (K, A0, • • • ,

An). The verification that h is then indeed an S-homotopy presents no diffi-

culties.

If M is an P-module, thecochain complex Hom'B(X, M) is the usual homo-

geneous group complex, except for the fact that cosets have taken the place

of group elements.

Any P-module M may be regarded also as a right P-module such that,

for gGG and mGM, the right transform m-g of m by g is given by g~*-m.

With this being understood, we define the rath relative homology group

Hn(G, K, M) as TornR-S)(M, Z).
In the case where K is of finite index in G, one can proceed as in the

ordinary cohomology theory for finite groups (cf. [2]) and introduce negative

dimensional cohomology groups in such a way that (after H"(G, K, M) has

been replaced by a certain factor group of itself), for every (P, S)-exact mod-

ule sequence (0)—>U—>V—>W—»(0), one has a doubly infinite exact cohomol-

ogy sequence

->H*(G, K, U)-*H<{G, K, y)->£T«(G, K, W)^H^(G, K, U)-+ • • •.

In fact, for all ra^O, let I_n_i = Horn2(X„, Z), made into an P-module

such that, for AGHomz(X„, Z), gGG and xGXn, (g-h)(x)=h(g~1-x). Since
(X, u) is (P, S)-exact and ZQS, the induced sequence
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(0)->Z = Homif(Z, Z)->Homz(X0, Z) =X_i->X_2-» • • • is (P, S)-exact.

Composing this sequence with the given resolution (X, u) of Z, we obtain

a commutative and (P, S)-exact diagram

• ■ • —> Xi —> Xo    —*    X_i —* X_2 —> • • •

z
/   \

(0) (0)

Using the natural isomorphism between HomB(P, Homz(X, Z)) and

Hom«(X, Homz(U, Z)), for arbitrary P-modules PandX, we see easily that

the P-modules Homz(Xn, Z) (n^O) are (P, S)-injective(2). This has the

significance that, if we make the same construction with any other (R, S)-

projective resolution (X', u') of Z, the resulting "complete resolution," in

which X'_„_! = Homz(X„', Z), is equivalent, up to P-homotopies, with the one

displayed above.

If M is an P-module, we define the generalized cohomology groups

Hq(G, K, M), for — oo <q< oo, as the gth cohomology groups of the complex

Homg(X, M), where X now stands for the weak direct sum of all the Xq,

with — oo <q< oo. It follows from the remark above that these cohomology

groups are still independent of the particular choice of the original (R, S)-

projective resolution of Z.

Now let us make use of some of the special features of the resolution

(X, u) that we defined in the beginning. It is clear from our definition that

(for w^O) each X„ has a finite (because K is of finite index in G) free basis

over Z whose elements are permuted among themselves under the action of

G. It follows from this that Homz(Xn, Z) is also (P, S)-projective. In fact,

using such a basis, we can define an P-isomorphism of Xn onto Homz(Xn, Z).

This is done as follows: for each basis element x of X„, let x' be the element of

Homz(X„, Z) that takes the value 1 at x, but the value 0 at each of the other

basis elements. Clearly, there is a Z-isomorphism of X„ onto Homz(X„, Z)

that maps each basis element x onto x'. Since the basis elements are per-

muted among themselves under the action of G, we have (gx)' =gx', for

every gEG and every basis element x. Hence our Z-isomorphism is actually

an P-isomorphism.

Hence our above (P, S)-exact sequence connecting the Xq for — oo <q< oo

is a complete (R, S)-projective resolution of Z, and therefore leads to the

doubly infinite exact cohomology sequences announced above. It is easily

seen from our definition of the Xn that the cohomology groups Hq(G, K, M)

are precisely those defined by Adamson in [l]. Moreover, Adamson has

shown that the doubly infinite exact cohomology sequence results from any

(s) The proof is similar to, but much simpler than that of Lemma 3.
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P-exact sequence (0)—>Z7—*V—rW—*(0) with the property that, for every

subgroup P of K that is an intersection of conjugates of K, the induced se-

quence (0)—>l7x—>FL—>WL—>(0) of the i-fixed subgroups is still exact. Since

this condition is evidently satisfied whenever the given sequence is (R, S)-

exact, Adamson's result is stronger than what we have obtained above by

using merely the general theory.

Next we observe that, if K is of finite index in G, we can augment the

system of homology groups for (G, K) by using the same complete resolutions

of Z. Thus, for all — oo <q< oo, we define Hq(P, Q, M) as the gth homology

group of the complex whose components are the M®RXq. This replaces the

former H0(P, Q, M) by a certain subgroup of itself. If (0)—>P—>F—>IF—>(0)

is an (R, S)-exact sequence, we have then a doubly infinite exact homology

sequence

-> Hq(G, K, U) -> Hq(G, K, V) -> Hq(G, K, W) -»■ P,_i(G, K, U) -> ■ • • .

In the ordinary theory for finite groups, one has H~n(G, M) ^Hn~i(G, M)

and H-n(G, M)fsH"~l(G, M), for all «>1 (also for n — l, when the modified

H° and Ho are used). The reason for this is that then the groups Xn of the

usual homogeneous resolution of Z (take K = (1), in the above) have a finite

free Z-basis (the (w + 1)-tuples of group elements) on which G operates with-

out fixed points, which means that the Xn are free P-modules of finite rank.

Now it is easily seen that a finite free P-basis for X„ allows us to define, for

every P-module M, isomorphisms between HomK(Homz(X„, Z), M) and

M®RXn, and between M®RKomz(Xn, Z) and Homie(X„, M), these iso-

morphisms leading to isomorphisms between the homology and cohomology

groups, as indicated above.

In the relative case, this breaks down, and we are left with separate

(augmented) homology and cohomology structures. There is a very simple

example showing that the positive dimensional homology groups differ from

the negative dimensional cohomology groups, and also that the negative di-

mensional homology groups differ from the positive dimensional cohomology

groups.

Let G = KXL, where K and L are groups of order 2. Let s be a generator

for K, t a generator for L. Let Z' be the P-module whose underlying group is

the additive group Z of the integers and where the operators are given by

s-z= —z, and t-z = z, for all zEZ'. Then the P-fixed subgroup Z'K of our

P-module Z' is (0). Now it has been shown by Adamson (see also §6, here)

that if K is a normal subgroup of G one has H"(G, K, M) =Hq(G/K, MK), for

every P-module M. Hence we have H"(G, K, Z') = (0). On the other hand, let

I(K) be the kernel of the coefficient sum homomorphism of Z(K) onto Z. As

we shall see in §6, we have then Hq(G, K, M)=Hq(G/K, M/I(K)-M). By
what we have said above about the ordinary homology theory for finite

groups, this last group may be identified with H~q~1(G/K, M/I(K)- M). If
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M = Z', we have M/I(K)-M = Z/2Z, with trivial G/X-operators. G/K being

cyclic, these cohomology groups are well known. In our case, they all coincide

with Z/2Z.
We refer to [l ] for such information on the relative cohomology groups

as is significant for field theory. The relative homology groups have not been

investigated, and their significance remains to be elucidated.

By way of illustration, we shall be content here with an elementary inter-

pretation of H2(G, K, M) in the framework of the theory of group extensions.

Let M be an P-module. By a (G, if)-extension of M we shall mean a pair

(E, p), where E is a group containing both K and M, and p is a homomor-

phism of E onto G satisfying the following conditions: (1): for eGE and

mGM, eme~1 =p(e)m; (2): p is the identity map on K; (3): the kernel of p is

M; (4): the identity map of K into E can be extended to a map q oi G into E

such that p o q is the identity map on G, and q(gk) =q(g)k, q(kg) =kq(g), for

all gGG and kGK.
We shall say that two such extensions (E, p) and (E't p') are equivalent

if there exists an isomorphism t of E onto E' which is the identity map on M

and on K, and such that p' o t=p. With the usual composition, one obtains

the structure of an abelian group on the set of equivalence classes of (G, K)-

extensions of M. We shall show that this group is canonically isomorphic with

H2(G, K, M).

We shall employ a shortened form of the cochain complex derived from

the homogeneous (P, S)-projective resolution of Z. At the beginning of this

section, we exhibited an P-isomorphism of P®sX„_i onto Xn. This yields

an isomorphism of HomB(Xn, M) onto HomB(P<g>sXn_i, M). Now this last

group may evidently be identified with Homs(X„_i, M), whose elements

may be regarded as the functions/of ra-tuples of cosets gK, taking values in

M, and such that/(k4i, ■ • • , kAn) =kf(Ai, • • • , An), whenever kGK. In

terms of these functions, the coboundary operator turns out to be given by

(of)(Au ■ ■ ■ , An+i) = gi-f(gi Ai, ■ ■ ■ , gi An+1)

n+l

+ 2 (-1)'/C4i, • • • , 4<_l, Ai+i, • • • , An+l),
.-1

where gi is any representative in G of the coset Ai. Here, a 0-cochain is an

element m of MK, and (5m)(.41) =gi-m— m.

Now a (G, if)-extension of M gives rise to 2-cocycles/ of the type just

described, as follows:/(.4i, Ai) = q(gi)q(gr1gi)q(gi)~1, where g,- is a representa-

tive of A i in G, whose particular choice has no influence on the expression

defining f(A\, Ai). If q' is any other map satisfying the above condition (4),

then q'(g) =r(g)q(g), with r(g)GM. Also, for kGK, we have kr(g)q(g) =kq'(g)

= q'(kg)=r(kg)kq(g), whence r(kg) =k-r(g). On the other hand, r(g)q(g)k

= <l'(g)k=q'(gk) =r(gk)q(g)k, whence r(gk)=r(g). Hence r may be regarded
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as a 1-cochain r' for (G, K) in M. If/' is defined from g' in the same way as

/ was defined from q we find that/' =/+Sr'. Hence a (G, P)-extension of M

determines a unique element of H2(G, K, M). As in the analogous inter-

pretation of the ordinary cohomology group H2(G, M), it can now be shown

that this correspondence induces an isomorphism between H2(G, K, M) and

the group of equivalence classes of the (G, P)-extensions of M.

5. Relative cohomology for Lie algebras. Let L be a Lie algebra over a

field P, and let K be a subalgebra of P. Denote the universal enveloping

algebras of K and L by S and P, respectively, identifying S with its canonical

image in P. If M is an L-module, over F, then the structure of a unitary

P-module is induced on M in the natural way, according to the definition of

the universal enveloping algebra. We regard P as a unitary P-module with

trivial operators, i.e., such that P-P=(0). Now we define the relative co-

homology groups for (L, K) in M as the groups Ext(B,s)(F, M).

We shall give an explicit (P, S)-projective resolution of F. Let P+ denote

the ideal of P that is generated by the elements of L, and similarly define

S+. We take Xo = R/RS+, noting that this P-module is isomorphic with

R®sF, and thus (P, S)-projective. The canonical projection of P onto P

induces an P-homomorphism «o of X0 onto F. For «>0, we put Xn

= P®S • • ■ ®sR®sR+/RS+, with n factors P. We then define the P-

homomorphism un: Xn—»Xn_i such that, for fj£P and vER+/RS+,

n-l

«»(fi ® • • • ® r» ® v) = ^ (-l)i_1''i ® • • • ® riTi+i ® • • • ® rn ® »
1=1

+ (-1)"-Vi ® • • • ® r„_i ® r„-t>.

It is easy to check that w„_i o m„ = 0, and since each X„ is (P, S)-projective,

there remains only to exhibit an S-homotopy, h. We define A_i: F-^R/RS+

as the restriction to P of the natural P-homomorphism R-+R/RS+. For

«>0, we define ft„: X„—>Xn+i such that hn(rx® ■ ■ ■ ®r„®i») = l®ri® • • -

®rn®v. Finally, we define h0: Xo—»Xi as follows: the canonical projection

r-^r+ of P onto P+, followed by the natural P-homomorphism R+—+R+/RS+,

induces an F-linear map »—m+ of R/RS+ onto R+/RS+. We set ho(v) = 1 ®v+.

Then ho is indeed an S-homomorphism. For, let r be a representative in P of

vER/RS+, and let sES. Then s-v is the coset mod RS+ of sr. Hence (s-t>)+

is the coset mod RS+ of (sr)+. But (sr)+ = sr++r'05+, where r° is the component

of r in P Hence (s-»)+ is the coset mod RS+ of sr+, and therefore coincides

with s-v+. Hence ho is an S-homomorphism. Clearly, the other hn are also

S-homomorphisms, and it is easy to verify that h is indeed an S-homotopy.

In order to compare these new relative cohomology groups with those

defined by Chevalley-Eilenberg (see [3], and [5]), we have to consider an

altogether different P-complex. This complex arises from a relativization of

the P-projective resolution of F that is used in showing that the ordinary
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cohomology groups Hn(L, M) coincide with the groups ExtB(P, M)(*). This

resolution is as follows: denote by En(L) the homogeneous component of

degree ra of the exterior algebra built over the P-space L. The adjoint repre-

sentation of L extends to an L-module structure on En(L) such that, for

x, Xi in L, x-(xi • • • x„) = [x, xi]x2 • • • x„+ • • • +#i • • • xn_i[x, x„]. We

put Xn = R®FEn(L). On the one hand, X„ has then its natural P-module

structure, derived from the ordinary multiplications in P. On the other hand,

using the Z-module structure of En(L), we can define an Z-module structure

on Xn whose operations commute with the operations of the natural R-

module structure. In fact, for xGL, we define the operator tx on Xn such that,

for rGR and vGEn(L), tx(r®v) = r®x-v — rx®v.

The P-homomorphisms Ui of the resolution of F will be P-homomorphisms

with respect to the natural P-module structure, in principle. However, they

will also be P-homomorphisms with respect to the P-module structure that

corresponds to our additional L-module structure. The definition of the Ui is

inductive. The map Uo is the canonical projection of R onto P. The map

Ui*. X\—>Xo is defined such that, for rGR and xGL = Ei(L), Ui(r®x) =rx. We

have then evidently «oo«i = 0, and it is easily checked that each tx, and

each operator of the natural P-module structure, commutes with «o and «i.

Now suppose that uk has already been defined for k=0, 1, • • • ,ra —1, where

ra^2, and that, for all 2g£gra —1, rGR, xGL and vGEk-i(L), we have

Uk(r®vx) =uk-i(r®v)x + ( — l)htx(r®v) (the meaning of the notation in the

first term is that, if uk-i(r®v) = X)< »\-®»i, then uk-i(r®v)x stands for

2Z» rt®ViX). Then we attempt to define un in such a way that this relation

continues to hold for k = n. Clearly, this requirement can be met, provided

only that the expression on the right depends only on r and the product

vxGEn(L), but not separately on v and x. By the multilinearity of the ex-

pression, and by the definition of the exterior algebra as a homomorphic

image of the tensor algebra, this will follow as soon as we have shown that the

expression reduces to 0 whenever v is of the form wx, with toG£„_2(Z,). For

ra = 2, the expression then becomes rwx®x+tx(r®wx) =rwx®x — rx®wx — 0,

observing that, here, wGF. Now suppose that ra>2. Then, reducing the first

term, our expression can be written (un-i(r®w)x-\-( — \)n~Hx(r ®w))x

+ ( — t)ntx(r®wx)=( — l)n-1tx(r®w)x+( — 1.)ntx(r®w)x = 0. Hence u„ can in-

deed be defined as desired. Evidently, un is then an P-homomorphism with

respect to the natural P-module structure. Also, by induction on ra, one shows

first that u„ commutes with each tx, and then that un-i oun = 0. We omit this

straightforward computation.

Now let / be the ideal of E(L) that is generated by the elements of K, and

put Jn = J(~\En(L). Let Qn denote the kernel of the natural homomorphism

R®FEn(L)-*R®sEn(L) (note that, through its Z-moduIe structure, En(L)

(3) This is carried out in [2, Chap. XIII]; our treatment includes the ordinary groups as a

special case.
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has the structure of an P-module; our tensor product is taken with respect

to the induced S-module structure of En(L)). Put Yn = R®FJn+Qn- We shall

show that w„(7„)C7„_i. Evidently, tz(Xn)EQn, for every zEK. On the

other hand, it is seen at once by induction on k that, with ZiEK, rER and

vEEn(L), we have rzx • • ■ zk®v—r®zi ■ ■ ■ zk-vEtK(Xn) = zZ'eK l*(xn)-

Hence Qn = tK(Xn). Since un commutes with the operators tz, it follows from

this that un(Qn)EQn-\- On the other hand, the inductive definition of un

shows at once that un(R®FJn)ER®FJn-i-\-tK(Xn^i), whence we may con-

clude that m„( 7„) C 7„_i. Hence un induces an P-homomorphism gn of

Z„ = X„/ 7n into Z„_i = Xn_i/ 7„_i such that g„-i o gn = 0. The S-module struc-

ture of En(L) induces in the natural fashion an S-module structure on

En(L/K), and we may evidently identify Zn with R®sEn(L/K), concluding,

in particular, that each Zn is (P, S)-projective.

Next we show that the complex of the Z„ is acyclic. For this purpose,

we define an increasing sequence of subcomplexes, as follows: let Rp denote

the set of all elements of P that can be written in the form zZ< r>'5<> with

SiES, and r,- a product of no more than p elements of L. In particular, P0 = S,

and Pp = (0), for p<0. Put ZS = Pp_„®sPn(L/P)(4). It follows at once from

the inductive definition of. w„ that qn(Zpn) C^-i, so that the Zvn (n = 0,1, • • • )

make up a subcomplex Zp of the complex of the Z„. Now consider the factor

complex Zp/Zp~l. It is easily seen that (Zp/Zp~1)n is isomorphic with

Pp_„(Z/P)®PPn(L/P), where Pt(L/K) denotes the homogeneous com-

ponent of degree t of the symmetric algebra built over L/K. The boundary

operator (Zp/Zp~1)n—»(Z"/Zp-l)n_i that is induced by qn is thereby trans-

ported into an F-linear map of Pp-n(L/K)®PEn(L/K) into Pp_n+i(P/P)

®FEn-i(L/K) sending each element of the form a®Vi • • • vn onto

y.Li ( — l)'~1avi®vi - ■ - Vi^iVi+i • • • vn, as is seen by induction on n. Thus,

the complex Zp/Zp~1 no longer involves the Lie algebra structure. Moreover,

we know from the proof of Theorem 3 that this complex is acyclic. Hence the

injections ZP~1-^ZP induce isomorphisms of H(Z"~1) onto H(ZP). Hence each

H(Zp) = (0), and it follows that H(Z) = (0).
If M is an P-module, the cohomology groups of the complex with the co-

chain groups Homjj(Z„, M) evidently coincide with the relative cohomology

groupsfor (L, K) in Masdefined by Chevalley-Eilenbergin [3] (seealso [5]).

If we knew that the complex (Z, q) has an S-homotopy, we could therefore

conclude that these relative groups coincide with the groups Ext"Ris)(F, M).

In general, the question of the existence of an S-homotopy, and also that of

the coincidence of the Chevalley-Eilenberg groups with the Ext"Rts)(F, M)

is not settled. However, in the case where the relative groups have a topologi-

cal interpretation, as the topological cohomology groups, over the field of the

(4) R has an F-basis consisting of the ordered monomials in the elements of an ordered

basis of L, an endsection of which is a basis of K. Hence each Rp is a direct right S-module sum-

mand of B. This is used implicitly from now on.
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real numbers, of homogeneous spaces of compact analytic groups, it is pos-

sible to prove the existence of an S-homotopy for our complex (Z, q). The

algebraic essentials of this case consist in the base field being of characteristic

0, and the subalgebra K being reductive in L, i.e., L being semisimple as a

PJ-module. We then have the following result:

Theorem 4. Let L be a finite dimensional Lie algebra over afield F of char-

acteristic 0. Let Kbea subalgebra of L, and assume that K is reductive in L. Then

the complex (Z, q) defined above is an (R, S)-projective resolution of F, and hence

the relative cohomology groups for (L, K) in any L-module M (as defined by

Chevalley-Eilenberg) coincide with the groups Ext"RiS)(F, M).

Proof. There remains only to show that the complex (Z, q) has an S-

homotopy. Since K is reductive in L, L/K is semisimple for its natural struc-

ture as a if-module. It follows (see Proposition 1 of [5]) that the ra-fold

tensor power of L/K is also semisimple as a if-module. Since En(L/K) is a

homomorphic image of this if-module, it is semisimple. On the other hand,

R may be regarded as an L-module such that, for zGL and rGR, zr = zr—rz.

Let Rp be the subspace of P that is spanned by the products of no more

than p elements of L. Then, with respect to the L-module structure just

defined, Rp is an L-submodule of R. Moreover, as an L-module, Rp' is a

homomorphic image of the sum of the homogeneous components of degrees p

of the tensor algebra built over L, with its natural structure as an L-module.

Restricting the operator algebra to if, we obtain the structure of a semi-

simple if-module on this tensor algebra, because if is reductive in L. Hence

also Rp is a semisimple if-module. Since R is the sum of the submodules

Rp , it follows that P is semisimple as a if-module, and, in fact, is the sum of

finite dimensional simple if-submodules. The same is therefore true for the

tensor product R®rEn(L/K) (again by Proposition 1 of [5]), when this is

regarded as a if-module with operators az (zGK) such that az(r®u) = (zr — rz)

®u+r®zu. Now it is evident that each az maps the above F„ into them-

selves. Hence the az induce the structure of a if-module on Z„, for which Z„

is semisimple. We have az(r®u) = zr®u+tz(r®u), and, since tz(Xn)GY„, it

follows that the if-module structure on Z„ that is induced by the az coincides

with the if-module structure that corresponds to the natural S-module struc-

ture of Z„. Hence Zn is semisimple with respect to its natural S-module struc-

ture. Since the complex (Z, q) is acyclic, it follows that it has an S-homotopy,

and Theorem 4 is proved.

6. Reduction of relative groups. If if is a normal subgroup of a group

G, and M is a G-module, then the relative cohomology groups for (G, if) in

M reduce to the ordinary cohomology groups for G/K in the if-fixed part

MK of M. An analogous reduction takes place in the case of a Lie algebra L

relative to an ideal if of L. We shall absorb these known results in a more

general result concerning certain (P, S)-projective resolutions.
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Let P be a ring with 1, and let P be a central subring of R such that

1£P. Let S be a subring of P such that PCS. Suppose also that there is

given a projection homomorphism q oi R onto P. Let Sq denote the kernel of

the restriction of q to S. Assume that SqRQRSq, i.e., that the left ideal RSq

of R is also a right ideal. We may then form the factor ring R' =R/RSq. We

assume, finally, that P' is P-projective, for its natural structure as a P-

algebra.
Using the projection q, we may regard P as an P-module such that, for

pGP and rGR, rp=q(r)p. Now consider the standard (R, S)-projective

resolution (X, u) of P. One sees at once by induction on ra that each Xn is

annihilated by S„ so that it may also be regarded as an P'-module. We claim

that, when so regarded as an P'-complex, (X, u) is an P'-projective resolution

of P.
In order to see this, consider R®sU, where U is any P-module that is

annihilated by Sq. The exact double P-module sequence (0)—*RSq—>P—»P'

—>(0) induces the exact P-module sequence RSq ® SU-^R® SU-+R' ® sU-+(0).

Since U is annihilated by S„ the first map of this sequence is the 0-map.

Hence P® sUis isomorphic with P'®sU. Now P' and Uare both annihilated

by Sq, and S/Sq is isomorphic with P in such a way that corresponding ele-

ments operate in the same way on U, R'. Hence we have R'®sU = R'®pU.

Now suppose, furthermore, that U is P-projective. Then U is a direct P-

module summand of a free P-module, N, say, and R'®pU is a direct P'-

module summand of R'®PN, which is a free P'-module. Hence R'®PU is

P'-projective, and therefore also R®sU, when regarded as an P'-module in

the natural fashion, is P'-projective.

Since P is annihilated by Sq and is P-projective, it follows therefore that

Xo( = R®sP) is annihilated by S„ and P'-projective. Since R' is P-projec-

tive, every P'-projective module is also P-projective. Since the complex

(X, u) has an S-homotopy, which is a fortiori a P-homotopy, the kernel of uo

is a direct P-module summand of Xo, and hence is still P-projective. Hence

we may now repeat the whole argument to conclude that Xi is P'-projective,

and that the kernel of Mi is P-projective, etc. Hence (X, u) is indeed an P'-

projective resolution of P.

Now let M be an P-module, and let M' denote the set of all elements of

M that are annihilated by S,. Then M' is an P-submodule of M. Moreover,

M' may be regarded as an P'-module and, as such, is canonically isomorphic

with HomB(P', M), where P' is regarded as a left P-module and a right

P'-module in the natural fashion. If U is any P'-module, regarded also as an

P-module via the natural homomorphism of P onto P', there is a natural

isomorphism between HomB'(?7, HomB(P', M)) and HomB(c7, M) sending

hGrlomRI(U, HomB(P', M)) onto hiGHomR(U, M), where hi(a)=h(a)(l),

for every aG U; the inverse sends k onto k', where k'(a)(r') =k(r'-a). Using

these isomorphisms, for U = Xf (i = 0, 1, • • • ), and the isomorphism between
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M' and HomjjfP', M), we find that Ext"Bis)(P, M) is naturally isomorphic

with ExtMP, M').
In the application to the cohomology of groups, we have P=Z, and q is

the coefficient sum homomorphism of R=Z(G) onto Z. If K is a normal sub-

group of G, we take S = Z(K) and see at once that all our above assumptions

hold in this case. The result is that H"(G, K, M) is naturally isomorphic with

H"(G/K, MK). Moreover, if K is of finite index in G, it is easily seen that the

P-modules Homz(X„, Z), as defined in §4, may be regarded also as P'-

modules and, as such, are the same as those resulting when the X„ are re-

garded as P'-modules and the operations on Homz(X„, Z) are defined by

referring to G/K. Hence the result for the cohomology groups holds also in

negative dimensions.

Similarly, if Af is a right P-module, and U is an P'-module as before, we

may identify M®RU with M®RR'®R>U. Using this with P = X,-
(i = 0, 1, • • • ), we find that Tor„R,S)(M, P) is naturally isomorphic with

Torf (M®RR', P). Moreover, M®RR' may evidently be identified with

M/M-Sq.
In the case of homology for groups, this shows that, if K is normal

in G, Hn(G, K, M) is naturally isomorphic with Hn(G/K, M/I(K)-M),

where I(K) is as in §4. As above, this continues to hold for negative n,

when K is of finite index in G.

In the application to the cohomology of Lie algebras, we have P = F (the

base field), and q is the projection of the universal enveloping algebra P of the

Lie algebra L onto F. If K is an ideal in L, we take S to be the universal en-

veloping algebra of K, and see that all the above assumptions now hold. The

result is that then Hn(L, K, M) is naturally isomorphic with Hn(L/K, MK),

where now MK is the set of all elements of M that are annihilated by K. This

result holds for the relative groups as proposed here, as well as for the relative

groups of Chevalley-Eilenberg (in which case it is well known, of course).
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