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Introduction

Formany problems inconformal mapping it is of importance to have precise

quantitative information concerning the variation of the mapping function

of a region onto a circle, under a deformation of the region. A number of

estimates for this variation in terms of parameters, which measure the de-

formation and the smoothness of the boundary of the region, have been given

in the literature. A survey of such results is contained in [13] and [ll](2).

While the degree of the change in the mapping function itself has been

investigated for various general configurations, the corresponding question

concerning the distortion, i.e. the derivative of the mapping function, has

been studied primarily for nearly circular regions. The object of the present

paper is to obtain such estimates of the distortion for arbitrary regions under

quite general hypotheses.

The paper is divided into two parts. The question considered in the first

part arose in connection with the following theorem [8, p. 364]. Suppose C

and C„ (w = 1, 2, • • • ) denote closed Jordan curves which are represented by

the equations

w = w(t)    and    w = w„(i), 0 ^ t ;= 1,

respectively, where w(t), wn(t) are periodic with the period 1, have continuous

nonvanishing derivatives, and

w„(l)-—* w(l), w^ (t) —> w'(f), as ll —> oo,

uniformly for 0 = 2 = 1. If f(z) and fn(z) map the circle \z\ <1 conformally

onto the interiors of C and C„, respectively, such that /(0) =/„(0) and f'(0)

>0, /„' (0) >0, then, for every p>0,

lim MP [f -/»'} = lim ["— f     I /-' i«ie) ~ /'(«") I Pd0\        = °-
»—»oo n—*« \_2ir Jo -I

We supplement this result here in a quantitative sense by giving an estimate

for the rate of convergence of this integral. Let C and & be two closed Jordan
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curves with continuously turning tangent and let f(z) and/i(0) be the cor-

responding mapping functions defined and normalized as/and/„ above. Then

we obtain a bound for STJcj, {f'—fi } in terms of the "deviation" of G from C

and of other parameters which characterize certain geometric properties of

C and Ci (Theorem I). This result generalizes a previous theorem [14] which

was stated and proved only for a special form of the modulus of continuity

of the tangent angles of C and C\. The present result is general.

The second part of the paper deals with estimates of the actual difference

of the derivatives, i.e. the Maxwgi \f'(z) —f{ (z) \, and of a similar expression

of the derivatives of the inverse functions. These bounds are of the same

type as those for the 2> mean, and the fact that they depend only on certain

parameters characterizing the geometrical configuration, and in no other

way on C and G, makes the results applicable not only to a given pair but

also to a family of pairs C, G, which pertain to the same parameter values.

I. Estimates for the 7> Mean

1. Statement of results. Suppose C and G denote two closed Jordan

curves in the w-plane which possess continuously turning tangents. Let t(s),

ti(s) denote their tangent angles, expressed as functions of the arc length,

and let fi(t) and fii(t) be moduli of continuity for r(s) and ti(s), respectively,

i.e. /3(0 is a monotone function, defined for f>0, with lim^o fi(t) =0, such that

| t(s + h) - t(s) I   ^ 0(h),     0SsSL,0<HI,

where L is the total length of C. Here t(s) may be chosen arbitrarily mod 2ir

and r(s±h) is so determined that t(s±x) is continuous for O^x^h. Through-

out the paper C and G will be subject to some or all of the following assump-

tions:

(i)   C and G are contained in the ring 0 <d g | w\ ^D.

(ii)  If As denotes the (shorter) arc of either curve between w' and w", then

As
i-r = c-
I w' — w" I

(iii) For some e>0, Ci is in the t-neighborhood of C, i.e. every point of Ci is

contained in a circle of radius e about some point of C.

(iv)  C is in the t-neighborhood of G(3).

(v) To every point WiCCi associated with the value Si of the arc length,

O^si^Li, there corresponds a point wCC, pertaining to the arc length value

o-=a(si), such that \wi — w\ ^ « and that, for suitable choice of the branches,

(b) Condition (iii) does not imply (iv). However, it can be shown that (iii) together with

(i) and (ii) imply that C lies within an ei-neighborhood of Ci where ei = ke and k is a constant

which depends only on d, D, and c. The writer owes a proof for this fact to Fulton Koehler [4].

Inasmuch as it would be sufficient for our purposes to know that C is contained in an ei neigh-

borhood of G with «i=£e, the condition (iv) is not essential.
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x
■n =    Sup     ti(si) — r(cr(ji))   ^-a < 7r/2.

og»iSti 2

Remarks. 1. If C and Ci satisfy hypotheses (i)-(v) and if t is so small that

8(2ec)^a/2, then condition (v) holds also if the roles of C and G are inter-

changed and a replaced by a/2.

For any wdC there exists by (iv) a point WidCi such that |w—Wi\ ^e.

We denote by t*(w) (and t*(wx)) the tangent angle to C at w(Cx at wx). By

(v) there corresponds to WidCi a point w'dC such that \wi — w'\ =^ and

\rt(wx)— t*(w')\ ^w/2—a. Now the length of the shorter arc of C between

w and w' is at most c- \w — w'\ = 2ce. Hence, for suitable choice of the angle

t*(w) (mod 2ir), \t*(w)-t*(w')\ ^/3(2ce)ga/2 and thus

(l.i) \r*(w) -T*(wi)\ = y-y-

On the other hand, if the branch of t*(w) is prescribed, that of t*(w') and

n*(wi) may be simultaneously so adjusted (mod 2ir) that (1.1) holds. This

proves our statement.

2. Conditions (iii), (iv) and (v) are clearly satisfied if C and G are repre-

sented in parametric form by the equations

w = w(t)    and    Wi = wx(t), 0 5= t ^ a,

respectively, such that, |w'(f)| =&>0, | wi (t)\ =& and

| w(t) - Wi(t) |^«, | w'(t) - wi (t) |   = 5,

if 5 is sufficiently small (one can show that r)^irb/2b).

Suppose w=f(z) and w=fx(z) map \z\ <1 conformally onto the interiors

of C and Cx, respectively, such that/(0) =/i(0) =0 and /'(0) >0, fi (0) >0.
Our principal result here is the following theorem.

Theorem I. Under the assumptions (i)-(v) there exist, for every p>l:

(1) a constant Mp, such that(4)

(1.2) MP{f-fi}= [^f^lfi^) -M'ie)\pM]  "= MPe;

(2) a constant Kp such that

(1.3) mp{f - fi } = KPU + 8*i2cMpt)]

where B*(t) is any convex majorant of B(t) in a neighborhood of t = 0, i.e. B*(t)

=(3(0, 8*(t) is convex from above and lim^o B*(t)=0. The constants MP and

Kp depend only on p, d, D, c, a and the functions 8i(t).

(') An estimate in terms of a lower order in t, 3JcP{/—/ij =0(e1/8), was obtained by F. J.

Polansky (see [13, p. 184]) under weaker assumptions on C and &.
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Part (2) contains as a special case a result which was established previ-

ously [14]:

Corollary. If fi(t)=Hf, 0<ygl, and ij=qe'r, where H and q are con-

stants, then

2Wp{/i-/'} ^V,

where Np depends only on p, d, D, c, y, 77, and q.

2. Lemmas. For the proof of this theorem we shall need three lemmas.

Before stating these we introduce the following convention to be adopted

throughout the paper. Suppose, as above, that C is a closed Jordan curve with

continuously turning tangent, fi(t) a modulus of continuity of the tangent

angle r(s), w=f(z) the mapping function described. Let, for any real 6,

s(0) =fo\f'('Bit)\dt. Then we shall mean byt[.s(0)] the branch of this angle for

which

(2.1) r[s(e)] = argf'(e")+e + j,

where arg/'(0)=0. Since arg/'(z) is single-valued and continuous in \z\ :£1,

T[s(0)]— 8 is a single-valued and continuous function and, for any 8i, 82,

(2.2) | r[s(6i)] - r[s(e2)}\   =S 0( | S(0i) - s(62) \), |fc - 0i\ = It.

We turn now to the three lemmas.

Lemma 1. Suppose C is the curve described in §1, which satisfies hypotheses

(i) and (ii), and w=f(z) is the function defined above. Then there exist two con-

stants mi and m2 which depend only ond,D,c and the function fi(t) such that for

\zi\ =1, \z2\ gl

(2.3) mi\zi — 22|2g  | f(zi) — f(z2) |   g w2| zi — Zi\112,

andifs(8)=f0\f'(eit)\dt,

(2.4) | s(t?2) - s($i) |   g m21 e2 - ft I1'2.

Furthermore, there exists a function o(x), 0<xgl, with limx_o S(x) =0

which depends only on /3(w2r1/2) such that, for 0^8^2ir,

(2.5) | arg/(««•) - arg/V«) |   =g 5(1 - r) (arg/'(0) = 0).

Finally, if w is in the interior 1(C) of C and \w\ ^d, then the inverse func-

tion of f(z) maps w onto a point z such that | z\ ^d/D.

Proof. The inequalities (2.3) and (2.4) follow immediately from [12,

p. 255]. The function 5(x) is easily determined and (2.5) established by use of

the Poisson integral representation of arg/'(z) in \z\ <1. One merely needs

to observe that fi(mitll2)+t is a modulus of continuity for arg/'(e'') and that
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2Ui{arg/'(ei9){ =arg/'(0)=0. The last statement of the lemma follows by

application of Lindelof's principle to the functions w/D and f_1(w).

Lemma 2. Suppose C and w=f(z) have the same meaning as in Lemma 1.

Letw0=f(eie),Wi =f(reie), for some r, 0<r<l, awci let co be the shortest distance

of wxfrom C. Suppose \wx\ =c7 Let X denote the length of the arc l:w=f(peie),

r 5Sp = 1. Then there exists an to > 0 which depends only ond, D, c and the func-

tion 8(t) such that if co :£ e0,

X ^ 2co.

Proof. The tangent angle at any point f(pe'e) of I is given by

p(p, 8) =8 + arg f'(pe<°), 0 =~ 8 = 2x.

Let w2 be a point on C closest to wx so that co = | Wt — wx \. The direction angle

of the segment wxw2, which is normal to C at w2, is

p. = 82 + argf'(ei°>),

where d2 is determined hy Wt=f(eiH) and is so chosen that |t?—02\ = x. Hence

p.(p, 6) - p. = 8-82 + arg/V") - arg/'(««) + arg/'(«") - arg/'(««•)

= r[s(6)} - r [*(*,)] + arg/'(p«*) - zrgf'(e").

Hence, by (2.2) and by Lemma 1, (2.4) and (2.5):

I m(p, 8) - p |  =: /3( | *(*) - *(02) |) + 5(1 - r)

=" j8(w2| t? - ^l1'2) +5(1 - r).

We obtain from (2.3)

(1 - r)2 =:  | rei9 - e''^|2 =" co/wi,

and since r| eie — eih\ g |re<9 — e'92| we have, because of the assumption

| wx\ ^d and the last part of Lemma 1,

x   . x /co\1/2       x    D /o>\112
(2.7) |0-fl,     £—\eu-eu*\   g—( —)     =-(—I    .

1 ' 2   ' '        2r\Wl/ 2    a1 \w,/

Thus, from (2.6),

Hence we can determine an ei>0 which depends only on d, D, c, and B(t) such

that the right-hand side of this inequality does not exceed x/8 if co^ei. This

implies that the tangent to any point of / forms an angle ^x/8 with the normal

wxWt to C. Hence / lies within an angle AWI of opening x/4 with vertex at wx,

which is bisected by the line WiWt-
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There exists an e2>0, which depends only on d, c and fi(t) such that the

circle of radius e2 about any point w of C contains only such points of C in

its interior which lie in the angle Bw of opening 7r/4 with vertex at w and

symmetrical about the tangent to C at w(b). By (2.3) and (2.7), \w2 — w0

^m2(D/d)ll2(w/mi)Ui = ka)11'1. We take now e0 = min (ti, [e2/&]4),co = \wi — w2

g€0. The point w0 at which / and C intersect must lie within the angles AWI

and BWi, and a simple trigonometric calculation shows that

l I co ir
\ Wo — w2\   g — sec — •1 '"28

Furthermore, the projection of / onto the line WiW2 does not exceed

CO IT       _       T / 1 IT \
co H-sec — sin — = co { 1 -J-tan — ).

2 8 8 \        2 8/

Finally, since the tangent line at any point of / forms an angle with the line

wxWi which is ^7r/8, we have

/ 1 IT \ TT
X ^ co I 1 H-tan — ) sec — < 2co.

V 2 8/ 8

Lemma 3. Suppose C and G satisfy hypotheses (i), (ii), (iii), and (v) of §1.

Let G denote the largest subregion common to the interiors of both curves, which

contains w = 0. Then there exists an ei which depends only on d, D, c, a and the

function fi(t) such that, if e^ei:

(a) the image T of G by means of the inverse function of w =f(z) is star-

shaped with respect to z = 0;

(b) if z = h (£)maps |f | <1 conformally onto T such that h(0) =0, h'(0)>0,
then for every q<Tr(ir— a)-1

(2.8) WlJ  ~j~T     \  =\-TT>-7tA    ' r = P^,0<pgl;
I    K?)       ) Lcos ?(tt/2 - a/2) J

(c) for every p>l there exists a constant Hp which depends only on p, d, D, c,

a, and (3(0, such that

(2.9) 2Kp{A(f) -r} =Hpt.

Proof, (a) By [7, p. 87] the boundary of G is a closed Jordan curve and

hence the boundary of T is a closed Jordan curve in \z\ g 1. This curve is com-

posed of arcs 7fc which are images of arcs of G and therefore lie in \z\ <1

(except for their endpoints) and of point sets which are images of parts of C

and hence are on \z\ =1.

(6) See, for example [12, p. 256]; the first part of the proof of Lemma 1 in that paper proves

our statement concerning tt.
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We denote as in §1 by t*(w) (t*(w)) the tangent angle to G (or C) at the

point w. Suppose now that z = reie is an (interior) point of an arc yk. Since

yk possesses a continuously turning tangent, the angle between the normal

to 7* and the radius at z is given by

v(z) = n* [f(re<»)] - arg/'(r«") - y - 0,

where t* [f(re<e) ] is, of course, determined only mod 2x. By hypothesis there

exists a point w'=f(eie') on Csuch that, for wx=f(rew), | wx— w'\ ?Se and

(2.10) | n*(wi) - r*(w') |   = t, = — - a.

We may assume \d' — d\ =^x. We choose the branch of t*(w') =r[s(d')] in

accordance with (2.1), and (2.10) determines then the choice of t*(wx). We

obtain thus

v(z) = r*x [f(re<°)] - t[s(8')] + r[s(8')] - r[s(8)] + arg/'(«") - arg/'(«")•

Hence, by (2.2) and (2.5),

(2.11) | v(z) |   = i, + 0( | s(0') - s(8) | ) + 5(1 - r).

li e ̂  eo, the bound of Lemma 2, then, since Wi has at most the distance e from

G we have by this lemma, \f(reie)-f(eie)\ gX^2e. Hence, by (2.3),

(1 -r)2 = - |/(«*•)-/(«") |   ^--
W?i ff»i

Furthermore (see (2.7))

1 2 L w»i J 2 \«i/

We can determine, therefore, an ei g«0, which depends only on c7, 7>, c, a, and

/3(f) such that, if e^€i,

.(2.12) \v(z)\   ^-— (zonanyy*).

This inequality implies in particular that any radius drawn to a point

of yk can intersect yk in only one point. Any radius ending at a boundary

point of T which is on \z\ =1 has again only one point in common with the

boundary. Thus Y is star-shaped with respect to z = 0.

(b) Let F(D=arg [^'(D/W)] for 0<|r| <L 7(0) =0. Then

(2.13) |F(D|  ^t/2   for    lf|  < 1.
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F(f) has, therefore, radial boundary values ip(<j>) almost everywhere on

| f | = 1. On arcs of | f | =1 which correspond to the (open) 7* by means of the

transformation z = h(£), \p((p) is continuous and, by (2.12),

1 r T OL

\m\ =---.

If e<* is an interior point of an arc which is mapped by h(£) onto an arc of

s=l, then ip(<j>) =0. At every point Zo = h(ei*°) oi the boundary y of T, with

80| = 1, a chord z0z of 7 forms an angle x(%o, z) with the tangent line to the

unit circle at s0 such that lim sup*,*0|x(3o, z)\ ^ir/2—a/2. Hence, for |f| =1,

fo = e'*°,

I       I" A(f) - *(fo)     f   11      t       a
lim sup   arg-S-,
r-ro I    L   r-fo    *(r)JI    2    2

and this holds also as f—»f0 from |f| <1, as is seen by use of the Poisson

integral. But, if 4/(<pa) exists,

f AGtfo) - *(fo)     P^   "I      ,. pfoA'(pfo)       ,.   .
lun arS    —',-777- 77TT    = lun ar8     7/ bN     = Mo),
p-,1        L      (p - l)fo       A(pfo) J       p-1 A(pfo)

and thus |^(cp0)| tkir/2—a/2. Hence, wherever if/(<p) is defined,

Because of (2.13), F(f) may be represented by the Poisson integral in | f| <1

with the boundary values 4>(<p) and hence

\V(t)\   =J~J> ^r  |f|   <1.

By a lemma of Zygmund [15] we have, therefore, for f =pe'*,

aw A r -^ \  } =\-    ,       0 < P ̂  1,
11     A(f)|    ) Lcos <?(t/2 - a/2) J

for any a>0 such that q(ir/2—a/2) <ir/2.

(c) Let z = r(8)eie be a point on the boundary of T. The arc w=f(peu),

r(8) ^p g 1, has the length

X. =   f     I /'(peiS) I cfp ̂ (1 - r(fl))   Inf    I f'(pe«) \ .
J r(0) 0SP<1

Because of the hypothesis (iii) of §1 we have by Lemma 2, \e = 2e and, there-

fore,
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1 - r(8) = 2 eg(8),        g(d) =   Sup •
oSIp<i  |/ (pel9) |

By a theorem of Hardy and Littlewood [3], there exists a constant Lp, which

depends only on p, such that

®lP{gi8)} g£,3tt,{    /     ,} =7,TVP,

and TV,, depends only on p, d, D, c, and Bit) by [12]. We have, therefore,

97cP{l — ri8)} = 2mp{g(8)} = 2€7PTVP.

Since G lies exterior to \w\ =d,we have by Lemma 1, r(8) ^D/d and thus

, ,        1 - '(»)      7>
logr(fl)     = ——- = - (1 - r(8)).

r(8) d

We have, therefore,

mp{log r(6)} ^—LpNp2e.
d

The relation r($)eie = h(ei*) defines 6 as a monotone and continuous function

of cp, 8 = 8((p), and because of (2.8), 6((p) is even absolutely continuous. Hence

j— J     |logr(0)|'o>l

71   f2"-, .   /cWY'V^V1'2    ) 1/p

-fc/. |l0S'wl'U) u) *}
/" 1       /.2x ^0 N    l/2„    /  1        /.2T       ^     -I    1/Jp

<   i— I logr(0)  2"— cfc&V        <— -}      .
~    (2x J o d<t>      j (2x J o     cW/dcij

It is easily seen that d6/d(p^cos (x/2 —a/2) | h'(ei*)/h(ei*) | almost every-

where, and hence, by (2.8), for 3 = 1,

IW   j    " sin2 (a/2)

Thus we have, for f = «**,

I        A(f)  ) 7)
9»Jlog —  \ =4.     . 72p7V2g,

( f     ) rf sin2 (a/2)

and by the well known theorem of M. Riesz on conjugate functions [5]

ajUlog-^   = (1 + ^p)   ...,._, L2pNtp = Hpe
(.        f   ; a sin2 (a/2)
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where Ap depends only on p. Hence

fA(f) )
mJ-^— - IV  ^ Hpe

which implies (2.9).

3. Proof of Theorem I, Part (1). We assume first that t^eu the bound

of Lemma 3. Suppose G, T, and A(f) have the same meaning as in Lemma 3.

Then g(f) =/(A(f)) maps |f| <1 onto G such that g(0)=0, g'(0)>0. If the
boundary of G is given by the equation r=r(8), and if arg A(e'*) =0(<f>), we

have, for f = «**,

3W, {g(f) - /(f)} =  j— J     | /(r(t?)ei9) - /(««) | "ctyl

+ 5mP{/(e'»W) -/(**+)}  =7! + 72.

By Hypothesis (iii) and Lemma 2, 7i^2e.

To estimate 72 we write s'(0 = |/'(e'')| and obtain

(3.1) 72=£  j-J      j J        s'(0*   d>j     .

Since (l/2ic)J'lir(0(<l>)-<p)d<p = arg h'(0)=0 there exists a value a, 0^a^27r,

such that 0(a)— a = 0. Using the periodicity of the integrand we may replace

the limits 0 and 2t in (3.1) by a and 27r+a. By Holder's inequality:

f  }       n. 2x+a I /» 0(tf) -v    1/p

U-=  \^\ ^777-7 (s'(t))*dt\e(<t>) - <p\H<p\
\lir J a 0(d>) — <p J $ )

/  l       n 2ir+o -j    1/p

where

F(<t>) =     Sup- f   [s'(t)]'dt

(note that a^</>, #(</>) ̂27t+a). Applying the inequality of Schwarz we obtain

72 g fflI[F(4>)})li*mtp[o(4>) - </,}.

By a theorem of Hardy and Littlewood [3], see also [16, p. 244]:

[S^lX*)}]1'" =§ 2(21'«)[Stt»{(*'W)*}]1/* = 2(2i/2)Ar2p

by [12]. Hence, by Lemma 3, (2.9), and Lemma 1,

72 S 2(21i2)NirM2v{6(4>) - <j>} ̂ TV,

where Dp depends only on p, d, D, c, a, fi, and p\. We have thus
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(3-2) ®lP{f-g} = Mp'e

where Mp depends only on these seven parameters. This inequality was

proved under the assumption egti. However, if e>ei we write Tlp{f—g}

^2D^(2D/ex)t and thus (3.2) is true for all «>0.

Using Remark 1 on the condition (v) of §1 and applying an analogous

argument to/i(z) and g(z) we obtain (f =«'*)

(3.3) SR„{/i(r)-g(r)} =m;'(,

where Mp depends on the same parameters as Mp . The conclusion (1.2)

follows now by combination of (3.2) and (3.3).

4. Proof of Theorem I, Part (2). Again, it is sufficient to prove the con-

clusion assuming e^e2, where e2 depends only on p, d, D, c, a, and the func-

tions B and Bx. For if e>«2 we have by [12, p. 254],

. .       2BV 2BV r ,      2B„
W,{f -fl)Z TT^to = ~ h + J9W] = ~ iv + B*i*)).

|8(«2) 8(e2) 8(et)

(We may assume T17p = l.)

In accordance with (2.1) we have

arg//(«'•) - arg/V") = rx[sx(8)] - r[s(8)].

By hypothesis (v) of §1 there exists for every sx(6) a value a = s(dx) such that

\f(em) —fx(ei$) | ge and, for a suitable branch of r(a),

(4.1) \u[sx(8)] - r(a)\   g q.

We may choose cr so that |s(0)—cr| 3=7/2. Then, for a suitable integer &,

which may depend on 8,

| r(<r) - t[*(*)] + 2*x |   = 0( | <r - 5(0) | ) g fi(c \ f(e^) - f(e<°) \ ),

by hypothesis (ii). Since \f(eiSl)-f(eiB)\ £«+|/i(«")-/(«") I.

(4.2) | r(<r) - r[s(8)] + 2kir\   = 8(c[t +  |/i(ei9) - f(eiS) \ }).

Hence

(4.3) | arg/i' (««) - arg/'(e''9) + 2kir\   = r, + 0(c[« +  | /i(ei8) - /(ei9) | ]).

We maintain now that k = 0, if e is sufficiently small. We show first that k is

independent of 6. By [ll, Theorem VIII], there exists a constant m, which

depends only on d, D, c and the functions /3, Bi such that

I fi(eie) ~ f(ei6) |   = m^1'2).

Hence we can determine an e2>0 which depends only on the just mentioned

parameters such that, for e^e2, the right-hand side of (4.2) does not exceed

x/2. Now, t[s(8) ] is a continuous function of 6; r(a), considered as a function
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of 0, may possibly not be continuous, but, because of the continuity of

n [si(8) ] and of (4.1), there exists an w>0 such that the oscillation of r(cr) in

any sub-interval of O^0^27r of length ^w is less than 2t)+a^ir—a. Hence,

there exists an o>i>0 such that the oscillation of t(<x) —t[s(8)] in any interval

of length ^o>i is less than ir. If, for some 8, k changed as 8 varied from 8 to

0+A0(|A0| ^coi), the left-hand side of (4.2) would change by an amount

whose modulus is >ir, which contradicts the fact that it is and must remain

^7r/2. By employing a partition of [0, 27r] with norm ^coi, we see that k is

constant for all 8, 0^8^2ir.

We apply now the maximum and minimum principles to 2irk+arg f{ (z)

— arg f'(z). Because of (4.3) and of our choice ege2 we have, for 8 = 0,

II TT 3
2irk     = r\ ^ — < — ir,11 2        2

which implies k = 0.

We obtain now from (4.3) with k=0

WlP{argfi'(e<°) - arg/'(*«)}  g n + Wlp{fj(c[e +  |/i(e*>) - f(e«) \ })}

and if fi is replaced by the convex majorant fi*, we have, using (1.2)

2Rp{arg//(e«) ~ arg/'(ei9)} ^ r, + fi*(ce + Mpce) gi, + fJ*(2cMpe).

Hence, by the theorem of M. Riesz on conjugate functions [5],

2R,{log//(*«) - log/'(*«)} g (1 +AP)(V + 0*(2cMP*))
(4.4)

+    log -   .
f'(0)

Noting that/i (0) ̂ d,f'(0)^d, we obtain by (1.2)

I log// (0) - log/'(0) |   g—\f{ (0) - f'(0) |   g — MPt
d d

(4-5)
Mp

^—f}*(2cMpe),
dko

where k0 =/3(e2)/e2(6). Since

|/'-/i'|   =£(|/'|   +  |/i' |)| log/'-log// |

we obtain by use of the inequalities of Schwarz and Minkowski

mP{f -n\* [aK„{/i'} + m2p{f} ]au2p{iog/' - log//}.

By [12, p. 254], and by (4.4) and (4.5) we have finally

_ mp{f - f{} g K,(n + fi*(2cMpe)).

(6) Since 0*(t) is convex from above we have, for 0<f g«2, /3*(e)/e§/S*(e2)/e2&£(e)A.
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II. Uniform estimates

5. An estimate for the difference of the mapping functions. We retain

the notations of §1 and derive here estimates for

u =  Sup  | f(z) - fx(z) |     and    p' =  Sup  | f'(z) -  \f{ (z) \ .
MSl MSl

An immediate bound for p is obtained from (1.2) by use of the Fejer-

Riesz inequality (see [l, Satz II]). We shall prove here yet another result.

Let, for OO,

( r' 8ix)       r> /3i(«)    )
w(t) = Max <  I    -dx,    I    - dx> .

(Jo       X J o        X )

Then we have the following

Theorem II. Suppose that C and G satisfy the hypotheses (i), (ii), (iii) and

(iv). Suppose furthermore that w(t) < oo for finite t. Then there exists a constant

M which depends only on d, D, c and B(t) and Bi(t) such that p, ;S Tl7e log 1/e.

The proof is modeled after that of Theorem VIII of [ll]. Since co(t) < oo

there exist two constants ai, a2 which depend only on the parameters named

above such that(7), for \z\ =T, |z0| =1,

ax\z — zo\   =   | f(z) — f(z0) |   ^ a21 z — zo | .

If these inequalities are used in place of (6.2) of [ll], the proof on pp. 354-

355 yields the conclusion of the theorem.

6. Estimates for p'. We turn now to the consideration of p' and derive

first a general result from which simpler statements may be obtained by

choosing special forms for the parameters which characterize the geometrical

configuration.

Theorem III. Suppose that C and G satisfy hypotheses (i)-(v) of §1 and

that co(t) < oo for t < oo . Let

(6.1) X = Max { \f'(z)\ ,  \fi(z)\ }.
UiSl

(A bound for X exists which depends only on d, D, c and the functions (3 awcT |3i(8)).

Then, for every 5, 0<S<x,

(6.2) p! = — I co(2X5) + {v + 8(c[t + p])}l- + logj)^ + j

provided /3(c[e+p]) ^x/2. 7w particular, 5 may be chosen as a function of e.

(7) This follows from [9, p. 440] and Lemma 10 of that paper on p. 376.

(s) The existence of such a bound follows from [10, p. 440]; see also [10, p. 327].
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Proof. Let log f'(z) and log// (z) denote the branches of the logarithms

which are real at 8 = 0. These are single-valued and continuous in \z\ gl. Let

A(e, t) = arg/'(e"""") - arg /'(e»<»-»)

and let -4i(0, t) denote the same expression formed for/i(8). Then

,      f'(e«) |//(e")|
log-   — log  -

/'(0) *l/i'(0)  I
1   rT t

= — I    [A(0, t) - Ai(0, 0] cot - dt
2t J o 2

1   rs t 1   r6 t
= — |    (A(0, 0 + 20 cot — dt-I    (Ai(6, t) + 20 cot - dt

2ir J o 2 2ir«/ o 2

+ — f   M(0, 0 - -4i(», 0] cot— dt = h - I2 + 78.
2w J s 2

By (2.1), (2.2), and (6.1),

| A(0, t) + 211   g j8( | s(0 + 0 - s(6 - t) | ) g 0(2X0

and therefore

, 1   r8 0(2X0 1
|/i|   ^-1    -—^-0,(2X60.

lit J o     v^ ""

Similarly

.        1
|72|   g—<o(2X5).

IT

To estimate 73 we apply (4.3), noting that fi(c[e+p]) gir/2 and hence

& = 0, and obtain

| A(e, t) - Ai(e, o | g 2(v + 0(c[e + p.]).

Hence

|/s|   = 2(v + B(c[e + p])) — f ' —= — [„ +fi(c[e + p])] log—■
IT  J l t IT S

Thus we obtain

|log/'(e'9) -log/i'(e«)|

g   | log \f(e") |   - log |//(e«) |  |   + | arg/'(««) - arg/^e") |

g — co(2X5) + — (, + /3(c[e + „])) log— + t, + p(c[t + p]) +   log^4  •
•r ir 5 //(0)
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Here | log (f'(0)/fi (0)) | =>/c7 Finally, using the inequality

| f'(z) - fi (z)\   £ X | log f'(z) - log fi (z) |

where X is defined by (6.1), we obtain (6.2).

As an example of a simple result which follows from (6.2) we state

Theorem IV. If C and G satisfy hypotheses (i)-(v) and if B(t)=Ht,
Bi(f) =Hxty, 0<y=T, v = q^, where 77, 77i, y, and q are constants, then

(6.3) p =: Me   and   p' =■ Ke log —
6

where M and K depend only on d, D, c, 77, 77, y, and q.

Proof. From (1.3) we obtain by the Fejer-Riesz inequality, for p = 2,

P = xX2(tj + 8*(2cM te)) = vK2(qe + H2cM2e) = Me,

since 8(t) =Ht may be taken as 8*(t).

Next we note that it is sufficient to prove the inequality concerning p'

under the assumption €^x/277c(l+Tl7) =eo; this insures that/3(e[e+p]) ^x/2

for 6^€0. If €>«o, then p'^2Xoe/eo, where Xo is an upper bound for X (see

(6.1)) and depends only on the seven constants named in the theorem.

Choosing 8 = e1/7 we obtain from (6.2) (assuming y77=77i)

2XT Hx r ,  /x x \~|       p x
p' = —   -(2\ye + (qe + Hc[e + Me])(— + log-—)    + — = 7T« log —.

x L 7 \2 f"VJ        a e

7. Derivatives of the inverse functions. In order to state our next result

it will be convenient to assume that C and G are represented in parametric

form by the equations

(-7.1) w = w(t)    and    w = wx(t), 0 ^ t ^ 1,

respectively; w(t), wx(t) have the period 1 and w'(t) and wi (t) have bounded

difference quotients; thus w"(t) and wi' (t) exist almost everywhere in [0, l]

and

(7.2) | w"(t)\   = k, | wi'(t)\   = k

where k is a constant. We assume furthermore that

(7.3) | w'(t) | = b > 0, | u»i'(0 | ^ * > 0,

and that for some e>0 and some p> 1

(7.4) <mp{w"(t) - wi'(t)} = e    and     | u>(0) - wx(0) |   = e.

Theorem V. Suppose C and G satisfy hypotheses (i) and (ii) 0/ §1 awcf. are

represented by the functions (7.1) m% /Ae properties (7.2), (7.3), (7.4). Ze/
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<t>(w) and <pi(w) be the inverse functions of f(z) andfi(z), respectively. Then there

exists a constant N which depends only on d, D, c, b, k and p such that

(7.5) Sup   | *'(»(/)) - *i'(wi(fl) |   g Ne.

Before passing on to the proof we mention several consequences of the

above hypotheses.

1. Since f\(w'(t)—wi(t))dt = 0 there exist values t0 and h, 0g/0, h^l,

such that Re [w'(ta)-wi (to)]=0 and Im [w'(h)-wi (h)]=0. Since, for

Ogfgl,

Re [«r*(0 - w{(t)] =  f'Re [w"(Q - Wi"(©]#,
J h

Im [w'(t) - wi(t)} =  f'lm [w"(Q - wi'(Q]di,

(7.6) | w'(t) - w[(t) |   g 2mp{w" - w{' } g 2e.

2. From the second inequality in (7.4) and from (7.6)

(7.7) j w(t) - wi(t)\   g 3e.

3. Let r(0 denote the tangent angle to C at the point w(t). Then k(i)

= dr/dt = lm [w"/w'] for almost all t. If ti(0> *i(0 have the analogous mean-

ing for G,

2»,{«(/) - Ki(t)} g — mp{w" - wi'} + —mp{w' - wi }
b b2

(7.8)
b + 2k

g-«■
b2

Furthermore,   \r(ti)—T(ti)\ ^(k/b)\ti — ti\   and  we may take fi(s) = (k/b2)s

and similarly fii(s) = (k/b2)s.

Since flw'(t)dt=flw{ (t)dt = 0, it follows from (7.2) that

(7.9) | w'(t)\   g 2k, | wi(t)\   g 2k.

8. Proof of Theorem V. (a) An integral representation for

log \<t>'(w(t))/<pi(wi(l))\.

We have by an integration by parts

log | /'(*«•) |   = — [arg f'(e<°) - arg /'(««•) ] cot —— d$ + log/'(0)
27T J 80_x 2

= - - I -^-log   sin —— a* + log/'(0).
ir J e0-T cw 2
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The function 0(0= arg (p(w(t)) is (strictly) monotone and continuously

differentiable. Let t(8) denote its inverse function. If to=t(d0)

1       /» tx a _ a   I

log | <p'(w(to)) |-I     (K(t)t'(8) - 1) log  sin —- U + log 0'(O)
x ^ o 2     1

l   r' 0(0 - e(to) 2  r* t
= — I    k(1) log  sin- dt-I      log   sin — dt

TT  J o 2 IT  J o 2

+ log <p'(0).

Similarly, if 6x(t) =arg cpi(wi(0), we have

i i        1   C1 8i(t) - 8i(tQ)
log | <pi (wi(to)) I   = — |    ki(/) log   sin- dt

x J o 2

1   Cr t
-I      log sin — dt + log cp/ (0).

x 7 o 2

Hence

d,'(w(to)) d>'(0)        If .   e(t)-Bi(to)    ,t
log ^ ^ " log^7nT= ~~ I ^k(/) " Ki(/)j log sin—;— dt

<pi (wx(lo)) (pi (0)        x J o 2

1    T * sin ((0(/) - 0(/„))/2)
H-I    «i(0 log  - dt

x7„ B   sin((0i(O -8i(t0))/2)

= 7i + 72.

(b) Estimate of L. The hypotheses (i), (ii) of §1, (7.3), (7.9) and the fact
that B(s) =8i(s) =ks/b2 insure the existence of two positive constants, oi, a2,

which depend only on d, D, c, b, and k such that

dd                             d8i
(8.1) ai =■ — ^ a2,        ai g - ^ a2.

dt dt

By Holder's inequality, (7.8), and (8.1) (l/p + l/q = l)

i r c\ i   T't r1!        ew -^o)ii« tm| 7i |   = —    J    | k(0 - «i(0 NH       J    j log sin-1| dt\

lrr'i    I    8-8o\\qdt   ~i"« 6 + 2k
(8-2) =7U_Jl0glsin-^ll Jede\  -I2-'

(b + 2k)eV2    f*| x II"    I1'3
_ -   —  I       log   sin —     ^        = -^o*-

irb2      L ai J o   I 2 11       J

(c) Estimate of I2. We divide the interval into two parts. For some 5,
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0<5gl, which will be specified below, let Eo= [0, l]r\[ta-8, ta + 8] and Et
the remainder of [0, 1 ]. Let

sin (0(0 - 0(h)) / 2 sin (0(0 - 0(*o))/2 - sin (6i(t) - 0i(to))/2
7 = log -   = log  1 -1-

6  sin (0i(O - 0,(/o))/2 sin (0i(O - 0i(A>))/2

= log | 1 + «| ,

where

2 sin (0(0 - 0(h) - [0i(O - 0i(<o)]/4) 0(0 - 0(h) + 0i(O - 0i(h)
u =-cos-■

sin (0t(O - 0i(h))/2) 4

By applying the (generalized) mean value theorem to the first factor we find, if

oa2gir/2, and t0-o^t^t0 + S,

l«l  =-^r |0'(?)-0i'«)|, |*-*.|  <«.
Vi (.5)

Hence we have, for ta — 8^t^ta + S, if j'^0

21/2

(8.3) \j\   = - Max   | 0'(O - 0/ (0 | •
ai   ogisi

If 7<0, we consider — 7 = log (1+u') and find in the same manner

■l«'l =-— \0'(k) -8i(i)\, U-/d| <*,
0 (?)

and thus (8.3) holds also in this case.

For tCEi

\u\   ^~{\ 0(0 - 0i(O |   + I 0i(h) ~ 0(to) | }
2a

wherea = Min {\Oi(to + o)-0i(to)\, \0i(h) -0i(k-5)\ } ̂ 8au Hence

| u |   g — Max   | 0(0 ~ 0i(O | •
5ai   ogfgi

To estimate the last expression we write 0=0(0, 0i=0i(t) and note that

| w(t) - wi(t) |   =  | f(ei9) - fi(e^) |   ^  | f(eiB) - f(e^) \ - \ f(e"A - /i(ei9') | .

Hence,

| /(««) - /(*») |   g   | w(t) - wi(t) | + |/(««i) - A(e«0 |

g 3e + Afe = (3 + ikf>

by (7.7) and Theorem IV. 217 depends only on d, D, c, k, b. Since by (8.1)



318 S. E. WARSCHAWSKI [July

ca2 ,                         ,        ca2
I ea - eih |   = | jreiD) _ y(e*»i) |   = - (3 + M)e

b b

we have, if |0 — 6i\ gx,

i 2   , .        2ca2
(8.4) [ 0(0 - 0i(O |   g — | ei9 - «">1   =-(3 + 7W>.

x xo

Now, 0(0 and 0i(O are determined only up to an additive multiple of 2x. We

choose the branch of 6(t) arbitrarily, say, such that 6(0) is the principal value,

and then take 0i(O) such that |0(O)-0i(O)| gx. Then (8.4) holds for 0 = 0.

If we keep e<€0 = (x2/4)((a2c/6)(3 + Tl7))-1, then the right-hand side of (8.4)

is gx/2 and (8.4) holds, by continuity, for these branches for Og/gl. Thus

we have on Ex

,    , x    2a2c Bi
| «I   =-(3 + M)e = — e,

5ai    x6 5

and, if j = 0,

(8.5) |i|   = (7V5)e, tdEi.

The same inequality holds also when/<0.

Thus we obtain from (8.3) and (8.5)

21'2 .   fo+5. Bi   r1
\lt\  g- Max   | 0'(O - 0i (0|| I «i(0 | dt + — e\     \ Kl(t) \ dt

ai  og(£i J t„-s o    Jo

2(21l2)   kS , . k   Bi
= —- — Max   | 0'(O - 0i (0 I   +-«•

ai       b ogigi b    S

Combining the estimates of 7i and 72 we find, noting that

<p'(0)        M
log-   = — e,

d>i(0) d

,     I  (p'(w(t))
Max  logL//   fM
OglSl \(p((Wi(t))

(8.6) /         kBi     M\         2(2!'2)   k .
g(50 + — + —)« + --^--5 Max   |0'(O -0i'(O|-

\ bS        d / ai       b     ogigi

(d)  Completion of the proof. By (7.9) and (8.1), (7.3), (7.6)

| 0'(O - Oi (t) |  = | | d>'(w(t)) |  -  Ui' (wi(t)) | | | w'(t) |

+ Ui'(Wi(0)| Mo -wi(t)\
=   I U'(w(0)|  -  Ui'(wi(0)| | 2k + (2a2/b)e.
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Let

a =   Max   |  | <t>'(w(t)) |   -   | 4>i (wi(t)) |  I .
ogisi

Then we obtain from (8.6) by use of the inequality

I a - b ]   g Max (a, b) | log a - log b I (for a, b > 0)

and of (8.1) and (7.3)

a2T/ k   Bi      M\ 2(21'2)    k    / 2a2  \1

(8.7)      „s t[(b. + t 7 + 7). + ___^w + t.)].

Now we specify the value of 5 so that (4(21/2)A2a2/ai62)5^1/2; thus let

/     x 0162     \
5 = Minll,-, -I.

\    2a2    8(2!/2) k*aj

Thus solving (8.7) for a, we find

(8.8) o-^ B3t.

where B3 depends only on d, D, c, b, k, and p.

To complete the proof we need yet an estimate for \eiy — eiyi\ where

7 = arg <f>'(w(t)), 7i = arg <p[(wi(t)). Since 7 ~7i = Ti(t) -r(t) +0(0 -0i(O

(mod 2ir) we have

11 , w' wi
j eiy - ein J    =    j eir - girl |    _|_   | gi9 _ gi» |    ^       -    _   -     _|_   U _ flj I

I w' I       I w/ I

, . /    1 1    \       , ,4 2ca2
= \w - wi\ (-r-rr + r-7T)+ \e -ei\=— e + — (s + M)e

\ I w I        I wi {/ b irb

by (7.3), (7.6), and (8.4). Thus (7.5) follows by a combination of (8.8) with

this last inequality.

We have proved the theorem under the assumption that e5Se0. If «>«o, we

may take N = 2oi/be0.

9. Corollaries of Theorem V. We first apply this theorem to derive an

estimate for p', which, due to a stronger hypothesis, is better as to the order

of e than (6.3).

Corollary 1. Suppose C and G satisfy the hypotheses of Theorem V and

that, in addition, for 0 ̂  t ̂  1,

fs1 1 dx
(9.1) I     \w"(t+x) - w"(t)\ — ^v(5), 0 <5 g 1,  limv(S) = 0.

J 0 X J_K)

Then there exists a constant A which depends only on d, D, c, b, k, p and the

"modulus of convergence" v(S) such that
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(°-2) p' = Sup  |/'(«) -//(f) |   =/!«.
I»IS1

Proof. There exists a constant m which depends only on d, D, c, b, k and

the function v(S) such that for w', w" on C (see [10, p. 326])

(9.3) | cb'(w') - <p'(w") |   = tn | w' - w" | .

Now, if z=4>(w(t)) =<pi(wi(ti)), we have, by (8.1) and (7.3),

I /'(f) - // W I   =   -77^7- ~    ,/,,,,    g ^ Ui' (^i)) - t>'(w(t)) I ,
4>'(w(t))     <j>i (wx(tx))       a\

g (-)   { I *i'(wi(*i)) - «'(w«i)) I   + I d>'(w(tx)) - *'(w(0) I }•

Thus, by (7.5) and (9.3),

| f'(z) - fi (z) |   = (-) {Ne + m \ w(lx) - w(t) \ }

"(7) ^ + m ' /(2) _/l(Z)'   +3C]'

by (7.7). By Theorem IV,  |/(z)—/i(z)| gAfe and so we may take A=N

+mM+3.
A simple consequence of (9.2) is the following.

Corollary 2. Suppose G denotes the region common to the interiors of C

and G which contains the origin. Under the hypotheses of Corollary 1,

Sup  I <p'(w) - 4>((w) I   g A'e,

where A' depends only on the same parameters as A.

The proof is obtained by an argument similar to that used above.

10. Hadamard's variation formula for the Green's function. To illustrate

some of the uses of our results we outline a short proof of this formula which

permits one to estimate the error obtained by neglect of the higher order

terms(9)- We shall apply Theorem V and prove it for contours with bounded

curvature. This smoothness assumption may be further relaxed—at the ex-

(9) In this connection see also a derivation of Julia's variational formula for the logarithm

of the mapping function recently given by R. Gamier [2], which utilizes a theorem of W. Seidel

[6]. Julia's formula may be derived from that of Hadamard. Gamier does not give an explicit

appraisal of the error term; such an estimate can however be obtained in a manner similar to

the one described here.



1956] DISTORTION IN CONFORMAL MAPPING 321

pense of the order of magnitude of the error estimate—if some of the other

of our results are used instead.

Suppose C and G are given by the equations (7.1) and that Wi(0 =w(t)

+ieeir<-°v(t), when t(0 is the tangent angle to C at w(t) and v(t) is a function

such that Ofiv(t)^l, v'(t) has bounded difference quotients, and 50cp{ (eiTv)"}

^1 for some ^>1(10). Suppose furthermore, that w(t) satisfies (7.2) and (7.3).

For sufficiently small e, G is a closed Jordan curve obtained from C by dis-

placement along the interior normals and G is not exterior to G Let Wo be a

point in the interior of G- If « is sufficiently small, it is easily verified that C

and G satisfy the hypothesis of Theorem V with w0 taken as the origin.

Let, for f in the interior of G, G(w, f) and Gx(w, f) be the Green's functions

of the interiors of C and G, respectively. Then

f G(w, S)dGi(w, wo)   .       .
G(w0, f) - Gi(w0, f) = -   I    —-\dw\

J c,     2tt on

1   r1 dGi(wi(t), wo) , ,
= -— I   g(Wi(o, r) —^—- I w (o | *.

2tJo on

Since G(w, w0) =log |<p(w)|  we have by Theorem V

dG(w(l), w0)       dGi(wi(l), Wo) ,  , , ,  ,
(10.1)    — —^-—^-   =   |  | 4>'(w(t)) [   - | <p{(wi(t) |  |   =g Ne.

dn dn

Furthermore, since G(w(t), f) =0,

rdG(w(t),t) i
G(Wl(t),t) =G(wi(t),ft -G(w(t),$) =1 J + o(l)\ev(t)

by [6, p. 226] or [10, Theorem III*]. From the condition that |w"(0| =k it

follows more precisely(n) that |o(l)|^7Ce log (1/e). Finally, | wi (t) \

= | w'(t) I +0(e). Hence we obtain Hadamard's formula

1    r1   BG(w(t),?) dG(w(t), wo)
G(ivo, f) - Gi(w0, r) =- - ——-eo(t) \w'(t) \dt + o(t)

2w J o dn dn

1    r    6G(w,{) dG(w, wo)
=-I-Sn \ dw |   + o(e)

2-k J c dn dn

10) The normalizations v&\ and 2K„{ (eirv)"\ gl are, of course, unessential.

(") Consider F(z)=log |/'(z)| +i arg/'(z) where/(z) maps \z\ <1 onto the interior of C

such that/(0) =f,/'(0) >0 and arg/'(0) =0. Let xp(w) denote the inverse of/(z). Because of the

hypothesis [to"(2)| g&, Im[F(z)] satisfies a Lipschitz condition, and it follows then from a well

known theorem of Privaloff [16, p. 157] that, for |zi| = |z;| =1, | F(z2) — F(zi)| gAf|z2 —Zj|

• |log |z2—Zi| |, where JWis a constant. The use of the Phragmen-Lindelof theorem shows then

the validity of this inequality when |zi| =1 and [22! gl. From this result one infers in turn

that \^'(w)—^'(wo)\ £Mi\w—wt\ | log \w—w0\ |, for too £C, wCl(C). This, together with the

fact that |^(too) — <P(w)\ g Af2|a)0—a>|, proves our statement. If C is contained in the ring

ig \w — f I g£>, then an examination of the steps of this proof shows that the constants M, Mu

M? depend only on d, D, c, k and the lower bound 6 for \w'(t) | in (7.3).
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where bn = tv(t) and \o(e)\ ^Kxe2 log (1/e). If the condition (9.1) is added to

the hypotheses on w(t), then \o(e)\ ^K2e2 as may be seen by use of [10,

Theorem III] applied for w = 2.

The fact that the constants TV in (10.1) and TI7, T17i, T172 in(u) depend only

on the parameters named above shows that K and Kx may be determined uni-

formly for all f awo* w0 in any fixed closed domain contained in the interior of C.

The same holds also for K2.

It is not essential that G be in the interior of C or that the "displacement"

be taken in the direction of the normal. A slight modification of the above

argument provides a proof of the Hadamard formula for the general case.

References

1. L. Fejer and F. Riesz, Uber einige funktionentheoretische Ungleichungen, Math. Zeit.

vol. 11 (1921) pp. 305-314.
2. Rene Gamier, Sur la variation de la reprisentation conforme d'un domaine variable,

Rendiconti di Matematica e delle sue applicazioni (V) vol. 14 (1954) pp. 258-267.

3. G. H. Hardy and J. E. Littlewood, A maximal theorem with function-theoretic applica-

tions, Acta Math. vol. 54 (1930) pp. 81-116.
4. Fulton Koehler, A note on neighboring Jordan curves, to appear in American Mathe-

matical Monthly.

5. M. Riesz, Sur les fonctions conjuguies, Math. Zeit. vol. 27 (1927) pp. 218-244.

6. W. Seidel, Uber die Randerzuordnung bei konformen Abbildungen, Math. Ann. vol. 104

(1931) pp. 182-243.
7. B. von Kerekjarto, Vorlesungen uber Topologie, Berlin, Springer, 1923.

8. S. E. Warschawski, Uber einige Konvergenzsatze aus der Theorie der konformen Abbildung,

Nachrichten von der Gesellschaft der Wissenschaften, Gottingen, Math. Phys. Klasse, 1930, pp.

344-369.
9. -, Uber das Randverhalten der Ableitung der Abbildungsfunktion bei konformer Ab-

bildung, Math. Zeit. vol. 35 (1932) pp. 321-456.
10. -, On the higher derivatives at the boundary in conformal mapping, Trans. Amer.

Math. Soc. vol. 38 (1935) pp. 310-340.
11. -, On the degree of variation in conformal mapping of variable regions, Trans.

Amer. Math. Soc. vol. 69 (1950) pp. 335-356.
12.-On conformal mapping of regions bounded by smooth curves, Proc. Amer. Math.

Soc. vol. 2 (1951) pp. 254-261.
13. -, On conformal mapping of variable regions, National Bureau of Standards Ap-

plied Mathematics Series, vol. 18, 1952, pp. 175-187.
14. -, On mean convergence in conformal mapping, Archiv der Mathematik vol. 6

(1955) pp. 102-114.
15. A. Zygmund, Sur les fonctions conjugutes, Fund. Math. vol. 13 (1929) pp. 284-303.

16. -, Trigonometrical series, Warsaw, 1935.

University of Minnesota,

Minneapolis, Minn.


