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1. Introduction. Many practical heat conduction questions lead to prob-

lems not conveniently solvable by classical methods, such as separation of

variables techniques or the use of Green's functions. As a result, quite a num-

ber of procedures for obtaining approximate solutions have been proposed.

It is the objective of this paper to introduce a new finite difference method

applicable directly to unsteady-state (parabolic) problems in either two or

three space variables and indirectly as an iteration technique to steady-state

(elliptic) problems using the time step as a parameter.

The procedure to be discussed is an implicit method that, for the purpose

of calculation, can be factored into a multi-stage process to step ahead one

time increment in such a manner that the solution of the linear equations

arising in each stage is very easy. The difference system in the parabolic

case will be shown to be stable; consequently, under sufficient hypotheses

on the initial and boundary conditions, the solution of the difference equation

converges in the mean to that of the heat flow equation. For the elliptic prob-

lems, convergence of the iteration will be demonstrated for several types of

parameter sequences, and efficient choices of the sequence will be discussed.

Other implicit difference systems have been discussed previously [2; 7],

along with their relation to explicit equations. The alternating-direction

implicit method described in [2; 7] is perhaps the most similar to the present

scheme. In the two space variable case, the alternating-direction method is

probably slightly superior to the procedure to be treated; however, it is not

known whether it may be extended to more than two dimensions.

Part I. Unsteady-state problems

2. Differential and difference systems. We shall treat the first boundary

value problem for the heat flow equation in a finite cylinder: (x, y)CD,

0^-t^T, in the two space variable case; (x, y, z)CD, O^t^T, in the three-

dimensional case. The set D will be assumed to be closed and connected, to

have a nonvoid interior, and to have a sufficiently regular boundary in a

sense defined below. The following typical notation will be convenient:
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f(iAx,jAy, kAz, nAl) = fijkn,
(2.1) 2 2

Axfijkn   =   (fi+l,i,k,n  —   2/,-,-it„ + fi-l.j.k,n)/(Ax)   .

The subscript k will be suppressed if z is not considered.

It will be convenient to discuss the two-dimensional case first. The

boundary value problem then is:

d2u      d2u      du
(a) 7^+71 =17' (*. 50G#,O = <= T,

dx2      3y2       dt

(2.2)
(b) u(x, y, 0) = f(x, y), (x, y) d R,

(c) u(x, y, t) = g(x, y, t), (x, y) d S, 0 = t = T,

where R is nonvoid, open, and connected, S is its boundary, and D—RVJS.

Let D*=DX[0, T]; i.e., the set of all (x, y, t) such that (x, y)G7> and

O^t^T. We shall consider the following finite difference analogue of (2.2):

*
,   .        2     * ,2 Wi, ,-,„+!  —   Wi,,-,„
(a) A,i»i,j.»+i + Avw,-,,-,„ =->

At

((iAx, jAy) dR\0 ^ nAt ^ T)
*

rn  i\ ,u\   a2 a2 i    Wi-''n+1 ~  w'.'.»+i
(2.3) (b) Avwitj,„+i = AvWi,j,n -\->

At

(c) w,-,,-,o = M,-,,-,0 ((iAx,jAy) d R1),

(d) Wi,,-,„+i = w,-,,-,n+i = m,-,,-,„+i ((iAxJAy) GS',0 g «A< ̂ T).

R1 is the set of lattice points (iAx,jAy) in R and S1 is the set of (iAx,jAy) not

in R such that at least one of the points ((*± l)Ax, jAy), (iAx, (j+ l)Ay), or

((i± l)Ax, (j± l)Ay) is in R. The value u]J<n+x is to be taken as the value of

g(x, y, nAt) at the nearest point on Sto the point of S1. It might seem plausible

to use the intermediate solution w*jt„+i for the solution at (w + l)A/; however,

this is easily seen to be unstable [2]. Consequently, some "correcting" process

must be attached, and we shall see that (2.3b) is adequate. No physical

significance should be attached to w*jin+i; it should be considered only as a

first estimate.

For the purpose of computation, equation (2.3) is well adapted; as the

linear equations give rise to a Jacobi matrix, simple direct methods for the

solution of linear equations of this type exist. In fact, Gaussian elimination

works very well [l ]. However, in the theoretical analysis to follow a different

form is preferable. Eliminating w*jt„+i from (2.3a) by means of (2.3b),

2 2 wi,l,n+l   —   wi.i,n 2     2 .

(2.4) AxWi,i,n+i + AvWi,,-,n+i =-h AtAxAy(wi,i,n+i — w,-,-„)
At

((iAx, jAy) d R1, 0 g nAt =: 7).
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Equation (2.4) is quite similar to the backwards difference equation [2] in

that only a term of small magnitude is added. It may also be noted from

(2.4) that, while (2.3) appears unsymmetric in x and y, it actually is sym-

metric.

The corresponding difference equation for the three-dimensional prob-

lem, involving two intermediate solutions, is

*
2     *                               2                            2                        Wi,j,k,n+1  —   Wijkn

(a)   AxWi,,;k,n+l + AyWiikn +  AzW,jkn =  -"-'
At

** *
2     ** 2 Wi,j,k,n+1  —   Wi,j,k,n+1

(h)   AvWi,j,k,n+l   =   AyWijkn   -\-—-—-'
At

((iAx, /Ay, kAz) G 2c1, 0 ^ nAt ^ T),

(2.5) **
2                                    2                        Wi,j,k,n+1 —   Wi,i,k,n+1

(C)   AzWi,j,k.n+l =  AzWijkn -\->
At

(d) Wi,j,k,o = Ui, j,k, o ((iAx, j Ay, kAz) C 2c1),
* ** i

\.e)    W,,j,k,n+1  =   Wi,i,k,n+1  =   Wi,j,k,n+1 =  Ui,j,k,n+1

((iAx,jAy, kAz) CS1).

Again eliminating the intermediate values,

2 2 2

AxWi, j,k,n+l + AyWi,j,k,n+l + &zWi,,;k.n+l

, . Wi,],k,n+1  —   Wi,j,k,n ,22 22 22

(2.6) =-h At(AxAv + AVA, + A,AI)(w,-,,-,t,n+1 - w,-,tn)
At

2    2    2    2

—   (At) AxAyAz(Wi,j,k,n+l —  Wijkn)

((iAx, jAy, kAz) G 2c1, 0 ^ nAt ^ 7).

We may now turn to the analysis of the truncation error arising from the

use of (2.3) or (2.5). First, a discussion of (2.3) will be given for R a rectangle,

which will be taken as a square for arithmetical convenience; then R will be

allowed to become more general. The three-dimensional case follows; con-

cluding this part will be a treatment of variable time steps for g=0 on 5.

The proofs will be carried out in greater detail in the two-dimensional case

in order to simplify some of the arithmetical details, even though the three-

dimensional problem is more interesting.

3. Error analysis for R a square. Let R he the region 0<x<l, 0<y<l,

and let

(3.1) Ax = Ay = — •
N
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It is our object to establish the convergence of wijn to u(x, y, t) by use of the

results of [3], which are based on the concept of a stability analysis. Stability

analyses were first described in [9], although the problem of convergence was

not treated at length. Essentially, the method consists of combining a time-

wise superposition principle with the separation of variables technique to

determine the growth of the elementary truncation errors caused by replacing

derivatives by differences introduced at each grid point. As the points of S'

fall in S, the truncation error vanishes on the boundary; consequently, the

stability analysis is performed on the system:

t 2 Vi,j,n+1  —  !>,-,,-, n 2     2

Ax».\,\n+1 + AyVi,j,n+l   =-h  AtAxAy(Vi,iln+l  ~  »i.,\»)
At

(3.2) (i,j=l,---,N-l),

Vi,j,0 arbitrary (i, j = 1, • • • , N — 1),

»,■.,-,„ = 0 (t, j = 0 or TV).

The eigenfunctions of (3.2) are of the form

(3.3) »,-,-„ = pn sin nrpXi sin irqy,-,       p, q = 1, • • • , N — 1,

where Xi=iAx, y3-=jAy. It is readily seen that

Pn+1

Pn
(3 4)

1 + X2 sin2 (irp/2N) sin2 (irq/2N)

" 1 + X(sin2 (*p/2N) + sin2 (vq/2N)) + X2 sin2 (irq/2N) sin2 (xq/2N) '

where

4A* 4A*
(3.5) X = -=-
V (Ax)2 (Ay)2

Therefore, for any A/>0, 0gpn+i/p„<l, and by definition (2.3) is stable.

Theorem 1. For R a square, the difference equation (2.3) is stable.

To complete the convergence argument for this case, it is only necessary

to establish the magnitude of the elementary truncation errors. Assume

that/(x, y) and g(x, y, t) are of such a nature that uxxxx, uyyyy, uit, and uxxvv

exist and are bounded in D*. Then it is well known [2] that

2 2 Wi,i,n+l —  Uijn 2

(3.6) AxUi,j,n+i + A„M,-,,-,n+i-— = 0((Ax)  + At).
At

Moreover,
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2     2

(3.7) AlAxAy(ui,j,n+i — unn) = O(Al).

Consequently,

2                                  2                             Mi,j,n+1 —  Uijn 2     2

Axre,-,,,n+l + AyUi,j,n+i-A/AxA„(«i,j,n+l  —  Uijn)
(3.8) At

= 0((Ax)2 + At).

Hence, in the notation of [3], the elementary truncation error hij„ is

(3.9) hun = 0((AxY + (Ax)2At).

Thus, by Theorem 1 of [3],

(3.10) \\uijn ~ Wijn\\  =Ol- + (As)2 J

uniformly in n, where

( \ N-l \   1/2

(3.11) \\uijn —   Wij,\\   =     \—-     X      \uijn   —   Wijn\2\ .
{N-l i,i=i )

Moreover, by Theorem 2 of [3], if wiin is extended by trilinear interpolation

to all of D*,

(3.12) if   | u(x, y,t)\   - w(x, y, t) \2dv\ " = 0 (-^- + (Ax)2 + (A/)2Y

Theorem 2. If, for a square region, the initial and boundary values of

(2.2) are such that the solution of (2.2) possesses uxxxx, uxxyy, uyyyy, and utt as

bounded derivatives in D*, then the solution of (2.3) converges in the mean to

that of (2.2) with errors given by (3.10) or (3.12) as Ax and At decrease to zero

with (Ax)4 = o(At).

This completes the discussion of the rectangular region.

4. Generalization. We shall extend the above results to nonrectangular

regions in two steps. First, we shall consider domains such that for some

sequence with {Ax„} with Ax„=Ay0—>0 as a—->=o the corresponding 57 is con-

tained in 5 for each a. Then, more complex boundaries will be treated.

In the first case the stability of the following difference system must be

determined:

2 2 1>i,i.n+l — Vjjn 2    2

AxVi,j,n+l + AyVi,j,n+l =-1 AtAxAy(Vi,j,n+l  —   Vijn)
At

4.1
((*-Ax,iAy)G2c'),

»,-.,.n+i = 0 ((iAx, jAy, C S')).



426 JIM DOUGLAS, JR. AND H. H. RACHFORD, JR. [July

Corresponding to (3.3), the eigenfunctions may be assumed to be of the

form:

(4-2) !),-,,-,„   =   Pn<Pij.

Then, if

n   i\ Pn+1
(4.3) -= M,

Pn.

A2x<Pij + A%i - —— (<pu + (At)\Wy<Pij) = 0 ((tAx, jAy) d R'),
(4.4) p.At

(t>n = 0 ((iAx,jAy)dS).

For stability, it is necessary that |p| =T. In particular, if

p.- 1
(4.5) v = --,

p.At

it is sufficient to show that v ̂ 0.

To facilitate the use of a number of theorems in [6], matrix notation will

be introduced. Let A be a matrix corresponding to the operator A^+A2, and B

one corresponding to Ai^A2. Then,

(4.6) A(j> - v(l + (At)2B)<j> = 0.

Consequently,

iM,*)
(4.7) v =->

(<P,<p) + (At)2(B<b,<p)

where

(4.8) i*>M=-TT ^ *"*«•

N being the number of points in R'. The demonstration can be completed by

showing that (.4cp, cp) <0 and (5<p, <p) >0 for any vector cp^O.

Lemma 1. The matrices A and B are symmetric.

Proof. The symmetry of A(=77) is demonstrated in [6, p. 204]. That of

B follows from the fact that 5 = (.£-677)/(Ax)2(Ay)2 in Milne's notation

and the symmetry of K and 77 [6, p. 212].

Lemma 2. For rectangular regions, (A(j>, <p)<0 awd (Sep, cp)>0 for all

(p^Q.

Proof. For rectangular regions, the eigenfunctions for A and B can be

taken as cppa = sin irpx/a sin irqy/b, p = i, • ■ ■ , N—1 (NAx = a), q = l, • • ■ ,
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M—l (MAx = b), where a and b are lengths of the sides of the rectangle. The

corresponding eigenvalues Xi and X2 of A and B (A<j>pq+\i<j>pq = 0, B<pp„

+\i/pPa = 0) are

4     |~ irpAx xoAx 1
Xi = -   sin2 ■-h sin2-   ,

(Ax)2L 2a 26   J
(4.9)

16 TpAx irqAx
X2 =-sin2-sin2-•

(Ax)4 2a 26

The lemma follows immediately from the expansion of <f> in terms of {<ppq}.

Theorem 3. Let D be a domain such that there exists Ax>0 such that S' is

contained in 5. Then, difference equation (2.3) is stable for this choice of Ax.

Proof. Let 7?** be the least rectangular lattice of mesh widths Ax con-

taining the points of R' and 5'. Then, the least X corresponding to A applied

to D** is positive and the greatest of 25 on D** is negative. By [6, Theorem

3, p. 164], we may remove the points of D** exterior to R'^JS' one by one

without altering this property. Thus, v<0 for any eigenvalue of (4.6).

Theorem 4. The conclusions of Theorem 2 hold for a region D such that

there exists a sequence {Ax0}, Axa—»0, for which 52 C5 and the remaining

hypotheses of Theorem 2 hold.

We are now ready to study the case when 5' does not lie in 5. A number

of assumptions will be required in the argument below. Let the solution

u(x, y, t) of (2.2) be continuable as a solution of uxx+uvv = ut into a domain

EX [0, T], where RKJS is contained in the interior of E, with bounded first

derivatives in EX [0, 7"]. Further, let {Axa} be a null sequence and let Sa'

he the lattice boundary corresponding to Ax„. Let 5„ be an analytic closed

arc passing through the points of Sa' and remaining within a distance 2Ax„ of

5, and denote by Ra the open set interior to 5„. We may assume that Ra

contains R. Let g0(x, y, t) be an analytic function on 5„X [0, T] interpolating

the values u'i,j,n+\ defined in §1. Complete the definition of the initial function

fa(x, y) in the region between 5 and 5a so that the solution k(o)(x, y, t) of the

problem:

d2uM      d2uM      duM
—-+—- = —~> (x,y)CRa,0^t^T,

dx2 dy2 dt
(4.10) y

«<•>(*, y, 0) = /„(*, y), (x, y) G Ra,

««■>(«, y, t) = ga(x, y, I), (x, y)CSa, 0 ^ t ^ T,

exists. Moreover, let/0(x, y) vary by 0(Axo) at most from/(£, r/), where (£, v)

is the nearest point on 5 to (x, y), in the band between 5 and Sa. Assume that

the Sa,fa(x, y), and ga(x, y, t) can be and are chosen such that u{a) can be
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continued to E X [0, T] with uniformly bounded first derivatives.

Lemma 3. For (x, y, /)G7^X[0, T], u(x, y, t)-uw(x, y, t)=0(Axa).

Proof. From the construction of/„(x, y) and ga(x, y, t) and the continua-

tion assumption on w(x, y, t) and m(o)(x, y, t), it follows that u(x, y, t)

— m(o)(x, y, t) =0(Axa) on the base and boundary of RaX [0, T]. Application

of the maximum principle for parabolic equations (i.e., the solution in the

interior of the region is not greater than the maximum of the initial and

boundary data) completes the proof.

Lemma 4. For each (p, q, r), there exists a constant M>0 such that, for a

sufficiently large,

Qv+Q+ruM

-   < M,        (x, y, t)dRaX [0, 7].
dxpdy"dtr

Proof. For a sufficiently large, the distance between the boundary of E

and S0 is greater than some positive constant. The lemma then follows easily

from the Green's function quadrature representation of w(o).

Lemma 5. ||«W(*. y, t) -»W(x, y, *)|Ui(b.) =0((Axa)VA/o + (Axa)2 + (Axo)2).

Proof. This follows from Lemma 4 and Theorem 4.

Theorem 5. ||m(x, y, t)-w<-a)(x, y, /)||jr2(iJ) = 0((Axa)4/A<a+Axo+(A/o)2).

Proof. ||m(x, y, t)-w^(x, y, t)\\L,(B)^\\u-u^\\L^R) + \\u^-w^Wl^r)

S||«-«w|Uw+ll«w-wwlUc*>-
5. Three-dimensional regions. Consider first the unit cube 0<x<l,

0<y<l, 0<z<l, and let Ax=Ay =Az = 1/7V. Then, the error equation be-

comes :

.2 2 2 . »i,,-,*,n+l — Vijkn

(Ax + Ay + Az)Vi,j,k.n+l =  -
At
2     2 2      2 2     2

+ At(AxAv + A„AZ + AzAx)(vi,i,k, n+i — ».-j*n)

(5.1) 2      2    2
—   (At)AxAyAz(Vi,,i,k,n+l  —  Vijkn)

(i,j,k=l,---,N- 1),

Vijko arbitrary (i, j, k = 1, ■ ■ • , N — 1),

Vi,j,k,n+i = 0 (*,/, k = 0 or N).

Assuming

(5.2) Vijkn = pn sin rpx sin irqy sin 7rrz ip, q, r = 1, • • • ,   Ar — 1)

then
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—= [l +X2(sin2 (wp/2N) sin2 (rq/2N) -fsin2 (*q/2N) sin* (rr/2N) +sin2 (irr/2N) sin*(irp/2N)

+X' sin2 (wp/2N) sin2 {wq/2N) sin2 (™-/2iV)][l+X(sin2 (7rj/2iV)+sinJ(^/2iV)

-fsin2 (xr/2iV))+X2(sin2 (*p/2N) sin8 (rq/2N) +sitf(Tq/2N)sin*(irr/2N)

-fsin2 (*r/2#)  sin2  (*p/2N) f X3 sin2 (jrp/2N) sin2  (xg/2iV)sin2 (jrr/2^)]"1

Thus, (2.5) is stable for any positive time step for a cubic region. It is easy

to show that the operators A|A^+A^+A2A^ and Ai^AjA* are symmetric;

consequently, stability holds in general.

Theorem 6. Difference equation (2.5) is stable.

The obvious analogues of Theorems 2, 4, and 5 can be demonstrated

exactly as before and will be omitted.

6. Variable time steps. The boundary conditions for many practical heat

flow problems lead to solutions which approach a steady-state condition at

late time. As the derivatives of the solution usually decay exponentially with

time, it seems reasonable that the time step can be increased. Let/,-,/,„ denote

f(iAx, jAy, tn), where ta = 0, t„= 5Zt-o A&. The truncation error equation for

the two-dimensional case can be written as follows:

ik2   ,   «2i                 e,-,,-,„+i — e,-,„      .2   2. .
(Ax + Ay)ei,j,n+i-AtnAxAy(ei,j,„+i — e{jn)

Atn

1   /d*u       d*u\ 1   d2U
(6.1) =—(-H-)(Ax2)-|--Atn

12V0X4       dyV 2    dt2

2     2

—  AxAy(Ui,j,n+i  —   Uijn)Atn.

Assume that, for some o>0,

d4« 3% d2U 2     2 -tin
(6.2) -,    ■-,    ■-,        AxAy(ui,j,n+i — Uijn) = 0(e      .)

dx*      dy*       dt2

Then, in the terminology of [3],

(6.3) ll*,^! = 0(((Ax)* + (Ax)2Aln)e-^).

Moreover, it is readily seen by the methods of [4] that

(6.4) IM = o(x;||a<,*||Y
\ k-0 /

Let the time step grow linearly with the time [4]:

A'»
(6.5) .^—^a+ptn.

(Ax)2
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It is easy to see that

(6.6) tn = ^ [(1 + P(Ax)2)» - 1]
P

and

(6.7) At„ = a(Ax)2(l + /3(Ax)2)".

From [4] and by a similar computation,

oo

X>*„e-{'» = 0(1),

00

£ e-"» = 0((Ax)-2).
n—0

Consequently,

(6.9) ll**,! = 0((Ax)2).

Theorem 7. If (6.2) is valid, then the solution of (2.3) with time steps given

by (5.5) converges in the mean to that of (2.2) with the error being 0((Ax)2).

Obviously, the analogous theorem in the three-dimensional case is valid.

This completes the discussion of the unsteady-state problems.

Part II. Steady-state problems

7. Iteration method. The Dirichlet problem for Poisson's equation

d2u      d2u
(7.,) ^+V=/(^)' (")€*

»(*. y) = g(x, y), ix, y) dS,

or

d2u      d2u      d2u
-1-1-= fix, y, z), ix, y, z) G R,

(7.2) 5x2      dy2      dz2      J      '

u(x, y, z) = g(x, y, z), (x, y, z) G S,

will be studied. As for the heat flow equation, the differential equation will be

replaced by a finite difference equation. However, there will be a fundamental

difference in outlook between the two types of problems. In the unsteady-

state case, the principal question was that of convergence of the solution of a

proposed difference equation to that of the differential equation. For the

steady-state problem with boundary data liable to arise from physical prob-

lems, well known difference formulae exist for its numerical solution giving



1956] HEAT CONDUCTION PROBLEMS 431

any desired accuracy; however, the difference equation to be treated leads to

a large system of linear equations to be solved. Thus, the major problem in

this case is the actual evaluation of the numerical solution, having chosen

the net size in advance.

Let us discuss first the two-dimensional case. The following difference

analogue of (7.1) will be studied:

Axwn + AyWu = /,-,-, (iAx, jAy) d R',

wa = un, (iAx, jAy) G S'.

Numerous proofs (a bibliography is given in [6]) have been given showing

that Uij converges to the solution u(x, y) under quite general boundary

conditions. It is assumed that here f(x, y) and g(x, y) are sufficiently well

behaved and Ax is fixed small enough so that Wy approximates u(x, y) to the

required accuracy.

The solution of the linear equations (7.3) may be accomplished by either

some direct method or an iterative procedure. Experience has shown that

direct methods such as elimination are quite lengthy, whereas several itera-

tive methods have proved capable of reducing the total calculation by large

factor. Many of these procedures are easily seen to be closely related to

methods for solving the unsteady-state problem [5]. It is the object of this

chapter to adapt difference equation (2.3) to the iterative solution of (7.3),

and similarly for (2.5) for the three-dimensional problem.

Let wfj be an arbitrary mesh function agreeing with m(x, y) on the

boundary of the region. Then, let, for w2i0,

(n+l/2) (n)

2      (n+l/2) 2     (n) Wij —   Wij

AxWij        + AyWij   =-\-fij, (iAx,jAy)dR,
an

(n+l) (n+l/2)

ti    A\ A2       (n+1) A2       (n)      I       Wii ~   Wi' /-A -A     ^   ,-    T,,
(7.4) AyWij       = AyWu   +■-, (iAx, jAy) G R ,

an

Wi"   = un, (iAx, jAy) d S',

where the parameter sequence {an} will be chosen later.

The equations in this form are, as in the parabolic case, suitable for the

numerical calculation but not amenable to the mathematical analysis. Ob-

viously, the intermediate values w{"+1/2) can be eliminated with the resulting

equation being

(n+l) (n)

2      (n+l) 2     (n+l) Wij —Wij 2     2        (n+l) (n).     ,      .

AxWij      + AyWij      =-h a„AxA„(w,-,-      - w{j) + fa,

(7-5)
(iAx, jAy) d R',

wa = u^, (iAx, jAy) G S'.
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It will again be convenient to treat the case of a rectangular domain first

and then generalize to more complex regions. The three-dimensional problem

follows.

8. Convergence of the iteration for rectangular domain. Let

ro   1\ (n) <n)
(8.1) Vij    =  Wij — Wij   .

Then, the residual error v\f alter n iterations satisfies the difference equation

(n+1) (n)

2    (n+1) 2   (n+1) »ij ~  Vij 2     2      (n+1) (n)

Axvu      + AyVn      =-1- anAxA y(Vij      — vn ),
an

(8.2)
(iAx, jAy) C R',

Vi"   = 0, (iAx, jAy) C S'.

Let

4a„

(8-3) X" " Ta^I(Ax)2

and

1 + X* sin  irp/2N sin  irq/2N

~ 1 + X„(sin2 Trp/2N + sin2 irq/2N) + X2, sin2 irp/2N sin2 x?/2.V'

As v\f can be expanded in a double Fourier series,

N—1
fo   r\ (n) V^       (n>     • ^        •
(8.5) va   =   2-4 cpa sin Trpx sin irqy.

p, 8—1

From (3.4)

(8.6) Va      =   2-1 Cj,8pp<1(X„) sin xpx sin xay.
p,a=-i

Hence,

(8.7) Vii  =   X)  c<pq ( II PixAfc) ) sin *px sin xay.

Restrict the sequence {a„} to be made up of numbers which are positive

or purely imaginary and which, moreover, satisfy

(8.8) 0 < Mi < | o.|   < M2 < oo, n^O,

for some arbitrary constants 2kfi and M2. It is apparent from (8.4) that there

exists e>0 such that

(8.9) | ppg(\n) |   < 1 - «,        1 = P, q = N - 1, n ^ 0.
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Therefore,

(8-10)       IICII ={   E   lCp°:\2Il\PM\>Yl2<(l-e)n\\vt?l
\  p,q—l k—0 /

The following theorem has been proved:

Theorem 8. If {a„} is any sequence consisting only of positive and pure

imaginary numbers which are bounded in modulus away from zero and infinity,

then w\f as defined by (7.4) converges to the solution w^ of (7.3).

Convergence has been proved for a rather wide class of sequences {an}.

However, the rate of convergence is not independent of the choice of these

iteration constants; the next three sections of this chapter will be devoted to

determining efficient choices for planar domains of this sequence to minimize

the total calculation effort to reduce the residual to a preassigned level of

smallness.

9. Real sequences, square domain. The simplest approach is to set up a

finite sequence of constants each reducing one particular term in the expan-

sion (8.5) of the residual as much as possible, and then repeat this sequence

until the error is damped out. Consider the function

1 + X2£t/
(9.1) p = p(\)=-!-,

"      "w      1 + X($ + v) + X2£„

where £ = sin2 xp/22V and t} =sin2 irq/2N are held fixed. Then,

dp £ + 77
(9.2) — =--:-   (x*{,,_i).

dk      [1 + X(f + t?) + X2£t,]2

Hence, the minimum value of p occurs when

(9.3) X = -,
(ft;)1'2

and this value is

1

(9"4) *"" = 1 + tt + t,)/2(^)1/2 "

Moreover, it is easy to see that

1
(9.5) maxpmin = —

{.i 2

and that whenever £ = »/ the value one-half is assumed by prai„.

Thus, if
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,      N X„„(Ax)2 1
(9.6) apq =--——;-——-— i p,q=l,---,N-l,p^q,

4 AN2 sin irp/2N sin irq/2N

and the iteration proceeds through these N(N—l)/2 steps with constants

{apq}, then the modulus of each coefficient in the error is reduced to a value

not larger than one half of its initial value. The one half is too conservative,

as this takes into account the effect of only one iteration on each term. Con-

sider an iteration using an iteration parameter corresponding to a principal

diagonal term as it affects an off-diagonal term having one index equal to that

of the diagonal index. Let

1
(9.7) Xp, =-

sin2 (irp/2N)

Then,

(9.8) ppq(\pp) = 1/2.

Hence, if only the JV— 1 iterations corresponding to Xn, X22, • • • , Xw-i,ar-i

are taken, the magnitude of each error component is at least halved. Further

grouping of terms can also lead to a reduction in work. The following lemma

is helpful.

Lemma 6. If X is a positive number,

(9.9) Ppq(\)2 g p„(X)p„(X).

Proof. Let

(9.10) £„ = sin2— •
2N

Then,

2   ^ l + 2X1^. + X*fU'«

PPQ     (1 + X?p)2(l + X£8)2

(9.H) 1 + X'tt* + iq) + X4&*        -„ „
=- as 2£p£, =: %p + £„,

(1 + x*p)2(i + xig2

= pPPpqq- q.e.d.

An immediate corollary of this lemma is the following: if there exists a

sequence {X*}f of real numbers such that, for each p, there corresponds at

least one k such that ppp(Xjt) ̂  1/2 + c, then after the M iterations correspond-

ing to {Xt} each error component will have been reduced by a factor of

1 /2 + e at least, as
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(9.12)      n pp*(a*)2 = n PPp(*k) n p«.(x») = (in + «)*•
k—l k—1 k-1

As a consequence of this result, the study will be limited to obtaining se-

quences such as these. Let

(9.13) Xt=l/u», k = 1, 2, • •• , M,

and

(9.14) z = Uvk.

Then,

1 + z2
(9-15) pPp(\k) =       ,        •

(1 + z)2

If Ppp(Xj,) ̂1/2 + e, then it is easy to see that

1 + 2e - (8*)1'2 1 + 2e + (8*)1'2
(9.16) —-K-^^z^—-- •

1 - 2e 1 - 2a

If the 77* are chosen so that

l + 2e+(8e)1'2 l + 2e-(8e)1'2

(9.i7) —1-2,   ,4~—rr*—**»•

and

(9.18) "1 = fl'

»/4f  ^   1, 71jf_l   <   1,

then for each p there is either one or two values of k, l^k^M, such that

Ppp(X*)^1/2 + £. Solving (9.17) and (9.18) for ij*,

/l + 2e+ (Se)1'^-1

<'•'» "-(, + ii-w) fc        »-«•■•■•*

The number 217 may be found as below:

1 + 2« - (8e)1'2 x
(If - 2) log-—— < - log sin2-

l + 2e+(8e)1'2 22V
(9.20)

1 + 2e + (8a)1'2
£ (M - 1) log- •

1 + 2e - (86)1'2

Thus, for large TV,

(9.2,) tf_2'°g(2AW_
log ((1 + 2< + (8.)"V(1 + 2< - (8.)""))
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It will be informative to compute the total amount of computation neces-

sary to complete the solution to a desired degree of error reduction and then

to determine the optimum choice of e.

Using the Gaussian elimination method to solve the equations of (7.4), it

takes 20(iV—l)2 calculations to complete one iteration. Thus, to reduce the

error components to 1/2 + e of their original magnitudes,

2N   I       1 + 2e + (86)1'2

,9.22) 40(JV-1)Mog--/^i + 2<_(8()i)!

calculations are required. If it is desired that the reduction be exp (-Q), then

the total work will be

2N   / 1 + 2e + (8c)1'2
(9.23) IF = - 40Q(N - l)2 log — / log (1/2 + e) log ——-—- •

ir   I 1 + 2e — (at)lli

W is minimized as a function of € for e about 0.18, and this minimum work

is about

2N
(9.24) Wmln = 31Q(N - l)2 log-

IT

This is superior to the "modified Liebmann" method (over-relaxation)

[5; 8], which is 0(Nl), but slightly inferior to the alternating-direction im-

plicit method [7], which is of the same order as this procedure with a smaller

constant than 37.

10. Imaginary sequences, square domain. A sequence of purely imaginary

numbers can be determined such that an exact solution of (7.3) is obtained

after a finite number of iterations. Let

(10.1) \pq =-,   p, q = 1, • • • ,N- 1.
sin (tP/2N) sin (irq/2N)

Then,

(10.2) Pvii^pq)   =   Pqpi^Pl)   =   0,

and, consequently, after iterating with the (N—l)N/2 different values of

\pq all error components will have been eliminated. Note, however, that this

requires 0(N*) calculations, which is considerably more than that necessary

to obtain a good approximation to the solution by iteration using a real

sequence or, as to be shown below, an imaginary sequence.

Lemma 6 fails to hold for other than real X; the following lemma will

replace it and can be demonstrated simply.

Lemma 7. If (1 +e)-1 = sin2 (irp/2N) sin2 (trq/2N)/sin4 (irk/2N) = (1 -«)-»,

then |pp,(X**)| =■«.
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This lemma again allows us to choose a sequence of iteration parameters

corresponding to diagonal elements. Again the number of iterations in one

cycle is O(log N). The minimum work can be computed to be about

22V
(10.3) Wmin = 102Q(N - l)2 log-

x

As this is inferior to the result with real sequences, imaginary sequences pro-

vide only another essentially impractical direct method of solving exactly

the Laplace difference equation.

11. General region for two-dimensional problem. As we are treating only

the solution of the linear equations, the assignment of the boundary values

for the difference equation plays no role in our discussion. Also, only real

parameter sequences will be considered.

Let the region be contained in a rectangle of side lengths 2ViAx and N2Ax,

2Vi^2V2. Then, one admissible choice for the parameter sequence is that

sequence developed for iterating on the square of side length NiAx. By the

inclusion theorem [6, Theorem 3, p. 164] on eigenvalues used in the proof of

Theorem 3, it is obvious that the coefficient of each eigenvector in the general

case is reduced as before. Consequently,

22V
(11.1) Wmin =2 370^1 - 1)(/V2 - 1) log-

X

In fact, if 5 is the number of interior points in the lattice,

22V
(11.2) JFmin ̂  37Qs log-

X

While undoubtedly the parameter sequence chosen above js not the most

efficient, it may not be worth the effort in a practical problem to obtain a

better one.

12. Three-dimensional problem. The iterative analogue of (2.5) is the

following:

(n+l/3) (n)

2      (n+l/3) 2      (n) 2      („) Wi.i.k ~   Wi,j,k

AxWi,j,k       + AvWi,j,k + AzWi,j,k  =-h /,-,*,
an

(n+2/3) (n+l/3)

2     (n+2/3) 2     (n) Wi.j.k        ~   Wi,j,k
AyWi.j.k     = AvWi,j,k-\-(iAx, j Ax, kAx) G R,

an

(12.1)                                                                         („+l)               (n+2/3)
2                             2     (n)              Wi.i.k     ~   Wj,j,k

KWi.j.k =  AzWi,j,k -\-;
an

(n+l/S) (n+2/3) (n+1)

Wi,j,k     = Wi,j,k     = Wi,j,k   = Ui,j,k (iAx, jAx, kAx) CS.
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As in the two-dimensional problem, it is sufficient to discuss the case of a

unit cubic region only. Let

(12.2) ,„«->-W' + i-+t-)-

(1 + X|,)(l + X{,)(1 + Xfc)

It is easy to see that for p=q = r

(12.3) minpPJ)p(X) = p(l/2£p) = 5/9.
x>o

It is again possible to group the eigenfunctions so as to reduce'the number of

iterations necessary. Consider X* = l/2^t* and let a =£„/£**, & = £«/£**> and

c =£r/£**. Then ppflr(X) becomes

1 a+b+ c
(12.4) f(a,b,c) = l-

2 (1 + a/2)(l + b/2)(l + c/2)

Let (a, b, c) satisfy any of the following relations:

(a)    a^a^B, 0 = b = 8, 0 = c = 8,

(12.5) (b)    0 :g a =: /3,          a ^ b g /S, 0 ^ c = /3,

(c)    0 g a = /3,          0^o^/3, ugcgft

where 0<a<l, 8>1. Then the maximum of/(a, o, c) in this range is either

f(a, 0, 0) orf(8, 8, 8). For greatest efficiency these values should be the same;

in this case

24/3

(i2.6) (2 +by- m

/(«, 0, 0) = f(8, 8,8) = 1 - 12/3(2 + p)-.

li a cycle of iterations is made using the sequence {X*} corresponding to

(12.7) £= (a/8)"= [24{(2 + 0)'- 12/3}"1]*,       k = 0, • • • , M,

where &_i>sin2 *-/2iV, &^sin2 ir/2N, then each (£p, ^, |r) satisfies (12.5)

for at least one iteration in the cycle. Thus, the magnitude of the coefficient

of each eigenfunction is reduced by a factor of f(B, 8, B) at least.

To determine the work required to reduce the error by exp ( — (?), it is

necessary to obtain the number of calculations per iteration, the number of

iterations in a cycle, and the number of cycles used. If the method of [l] is

used again, 31 (N — 1)8 operations are required per iteration. The number of

iterations per cycle is about

nt     2N   i      (2 +BY-128
2 log-/ log-—->

IT    I £4
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and the number of cycles is about

QI - log (1 - 12/3(2 + j8)-»).

Thus, the total number W ol calculations is

27V   / (2 + |3)3 - 12/3
(12.8) IF = 12Q(N - l)Mog-/ - log (1 - 12/5(2 + 0)-») log-—-.

x  / 24

IF is minimized as a function of /8 for /3 around four. For this choice of fi,

22V
(12.9) Wmin = 127Q(7V - l)3 log-

X

The application of the method to general regions is exactly as for the two-

dimensional case. Again letting R be contained in a cube of length TViAx on a

side and letting 5 be the number of interior lattice points,

27V,
(12.10) Wmbl = 127Qs log-

X

As the best possible order of IF is 0(NS), this method is quite satisfactory

on this point. The successive over-relaxation method [8] requires 0 (TV4) cal-

culations and is, consequently, not as efficient for large TV. Undoubtedly,

there exist yet undiscovered procedures that can improve on the coefficient

127.
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