VARIATIONAL MEASURE

BY
MAURICE SION(Y)

Introduction. The concept of a set which is »-measurable for all » in some
class M of measures is possibly due to J. D. Tamarkin, who communicated
some of his ideas to A. P. Morse around 1936. It is the latter, however, who
first studied such sets extensively and, in a Real Variables course at the Uni-
versity of California, Berkeley, had them play a role in measure theory tradi-
tionally assumed by Borel sets.

Let 9, be the set of outer measures » on the real line such that open sets
are y-measurable. A. P. Morse suggested to the author the problem of deter-
mining if a set, which is »-measurable for all » in 91y, is mapped into a similar
set by a continuous function of bounded variation. It is while attempting to
solve this problem that the writer was led to introduce a measure in the
domain of a function, which is related to a given measure in the range and
gives some indication of the extent to which the function fluctuates. This we
have called variational measure, and in this paper we study some of its prop-
erties. As an application of the theory we have developed here, we get condi-
tions on the function f and class M of measures in order that f map a set,
which is y-measurable for all » in M, into a set of the same kind.

The problem suggested by A. P. Morse, however, remains open.

The approach to measure theory in this paper is that of C. Carathéodory
and we refer the reader to [3] and [7] for the general background material.

1. Notation.

1.1. Ex( - - - ) will denote the set of all x such that ( - - -).

1.2. {x} will denote the set consisting of the point x only.

1.3. sF=UACF A.

1.4. F is disjointed if and only if AEF, BEF, A>B imply AB=0.

1.5. dmn f and rng f will denote respectively the domain and range of f.

1.6. +fA =Ey(y=f(x) for some xEA4).

1.7. *fA =Ex(f(x) =y for some yEA4).

1.8. When dealing with set functions », we shall use the notation .v4 to
stand for v(4).

1.9. w will denote the set of all non-negative integers.

1.10. A non-negative integer is the set of all non-negative integers preced-
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ing it, that is: if nE€w then mEn if and only if mEw and m <n. Thus, the
number 0 is also the empty set.

2. Fundamental definitions.

2.1. A measure v on 4 is a function on the family of all subsets of 4 to the
non-negative real numbers such that .»0 =0 and if B is a sequence of subsets
of A, CCUnEw B,, then

WS I nEw .vB,
2.2. B is v-measurable if and only if for every T&dmn »,
T = w(TB) + .»(T — B).

2.3. v is an outer measure if and only if » is a measure and for every
B&dmn » there is a B’ such that BC B’, B’ is v-measurable, and .»B= .yB’.
2.4. Given a family F of sets, we define:

®(F) = EP (P CF, P is finite, P is disjointed, ¢P = oF).

2.5. P'’isarefinement of P if and only if for every o’ € P’ there is an a EP
such that &’ Ca, and ¢P =0 P’.

2.6. If F is such that for every P’ and P" in ®(F) there is a P in ®(F)
which is a refinement of both, if for every A EF, there is a PE®(F) with
AEP, if f is a function on ¢F, and if v is a measure on rng f, we define the
variational measure V(F, f, ») to be the function u on the subsets of ¢ F such
that for every ACoF:

WA = sup a € P .nf(da).
PEQEF)

If the variables F, f, v do not satisfy the above conditions, we define V(F, f,»)
to be the function u such that .u0=0 and .ud = » for 0#ACoF.
3. General properties of variational measure.

3.1. THEOREM. V(F, f, v) is a measure.

Proof. Let u= V(F, f, »), B a sequence of subsets of ¢F, A=UnCw B,
P& ®(F). Then if v is a measure:

Ya € P .vaf(de)
=YaEP WnEwsf(Bua) S 2a€EP I nE w.rf(Bu)
=YnEw 2 aE P .vaf(Bua) S 2.0 € w .uB..
Hence:
pd = Zn € w .uB,.
All the other conditions are easily checked.

3.2. LEMMA. If P’ is a refinement of P, P is disjointed, f is a function on
oP, v a measure on rng f, ACoP, then:
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Y a € P .vf(da) £ Yo' € P’ .nf(Ad).
3.3. THEOREM. If u=V(F, f,v), AEF, then A is u-measurable.

Proof. Let .uT < ». Then .u(TA)< ® and .u(T'—4) < . Given €>0,
in view of the condition on F (2.6) and Lemma 3.2, we can choose PE®(F)
such that

(1) for every aEP, if ad 0, then aCA4,

(2) .w(TA)E D aEP .nf(TAa)+e,

3) .w(T—A4)S D a€EP nf(T—A)a)+e
Let

P, =Ea(a &€ P and a C 4),
P, = Ea(a € P and ad = 0).
Notice that P=P;\UP,, and:
w(TA) + .u(T— 4) £ X a € Py .vaf(TAa) + Xa € Py .vaf (T — A)a) + 2¢
= Y2 a € Py .vuf(Ta) + 2 a € Py .vaf(Ta) + 2¢
=2 a€ P .vf(Td) + 2¢ < .uT + 2e.
Letting €—0, since u is a measure, we see that
uT = . w(TA) + .u(T — A).
If .uT = o, the above equality is trivial.
3.4. LEMMA. If u=V(F, f, v), .vafA is a real number, and .vy=0, then
wafAd S A
4. Properties of V(F, f, v) when » is an outer measure.

4.1. LEMMA. If f is a function on oF, v is an outer measure on rng f,
P&®(F), ACBCoF, .vafB< o, then

Y@ € P .vf(Ada) — .vafAd S D a € P .vaf(Ba) — .vafB.

Proof. Let A*=,fA, B*=,fB, A’ be a v-measurable set such that 4*C A4’
and .vA*= .v4’. Since .vB*=.v4A*+ .v(B*—A'), we need only show:

Y a € P .nf(da) + .v(B* — A") £ Da € P.vuf(Ba).

We use induction. If P has only one element, the statement reduces to
VofA+ .v(B*—A’) £ .»fB and hence is trivially true. Assume then that the
inequality holds whenever P has n elements, and suppose that P has n41
elements: ay, - - -, a,. Let

A = Uk € nuf(Aos), As* = of(Aan), Bi* = Uk € n of(Bar), Bi* = 4f(Bay).
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Note that: A*=A4*UA* and B*=B*\UBs*. Next choose v-measurable sets
A{ and A suchthat: A*CA! CA’, vA¥= vA] , AXCA{ CA', vA*= .vAS.
Note that: B*—A’'C(Bf—A{)JU(B#—A44) and .vAX+ .v(B¥—A4{)
= .vBs*. We then have:
>a € P .uf(da) + .v(B* — 4')
S S EE n vaf(Adar) + vAF + v(B* — A!) + v(B* — A7)
< Sk E n .vaf(Bax) + .vBs = Ya € P .vaf(Ba).

4.2. THEOREM. If u=V(F, f, v), v is an outer measure, P is a sequence of
elements in ®(F) such that

lim Za € P, .vaf(Ba) = .uB < »,

then, for any ACB
lim > o € P, .vaf(da) = .ud.

n—o

Proof. Let A CB. Given >0, let 2¢=0 and choose N so that whenever
N <n€w we have

B < X a € P, .vaf(Ba) + e
Take QE®(F), a refinement of P,, such that
A < Y a € Q vaf(da) + e
For each a © P, let S,=Ed'(o/ €Q and &’ Ca). Then, using 4.1:
A — D a € P, vaf(4a)
< D€ Q mf(da) — 2 a € P, .vaf(da) + €
= D a € P 2o € Sa maf(Ad) — vaf(Ax)] + €
< Y a€ P Xd €S, vaf(Ba') — .vaf(Ba)] + ¢
< Y a€EQ nf(Ba) — X a € P, .vxf(Ba) + € < 2¢ = 4.

4.3. LEMMA. If PE®(F), f is a function on oF, v an outer measure on
rng f, BCoF, then there exists a CCB such that:

Pxf(Ba) = v4f(Ca) + waf((B — C)a)
for each aEP and
3 @ € P wyf(Ca) = v4fC = v4fB.

Proof. Denote the elements of P by ay, - * +, as1. Let B =4«f(Bow).
Choose v-measurable sets By such that:

BX*C B!, .wB¥*= wB{, WkcrB*X= JWkEr Bl forrecn+ 1.
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We define
C*= B and C*= B*- Ui kB!
We then let
Cr = Ba*fCi* and C = Uk € nC,.
We note first that the Ci* are disjoint, +fCi = C¢*, and Cay = C. Also:
Ci*+f((B — C)ax) = 0 so that +f((B — C)ax) = BfUi € k B{.
Because of the »-measurability of the B/, we conclude
wB¥F = wCF 4+ vaf(B — C)a).
On the other hand we easily check by induction on m that:
JUEE mCy =Zk€m.ka = WUk E m B* formEn+ 1.
4.4. THEOREM. If u=V(F, f, v), v is an outer measure, .uB < o, then there
exists an A CB such that:
wA = .vxfA = .vafB.

Proof. Let P be a sequence of elements in ®(F) such that, for each n€w,
P, is a refinement of P, and

.uB < X a € P, .vaf(Ba) + 27"
By 4.3, we can choose a sequence C such that, for all n€Ew, Coy 1 CC,CB and

Y 2 € Py .vaf(Caa) = .v4fCn = .vaf(B),
Vaf(Caa) = vaf(Crpr) + .vaf((Cr — Cry1)a) for a € Py
Let A =NnEw C, and complete the proof in § steps.
1 .ud =(by 4.2) =lim,., > aEP, .nf(Ada) <lim, .. D aEP, .f(Cat)
= .vsfB
.;f ZaEP,.+1 3f(Coax) — EaGP,. af (Cat) £277.
Proof. For aEP,, let S,=Ea’ (&' EP,41 and &’ Ce). Then, using 4.1:
Y a € P Yo €Sy .v4f(Craa’) — .v4f(Cac)]
< Ya€E P2 ESa .vaf (Baa') — .vaf(Ba)]
= > a € Ppy1 .vaf(Ba) — D a € P, .vaf(Ba) < 2-".
3 waf(Ca—Capr) 277
Proof.
I4f(Ca = Cat1) S 2@ € Poy1.94f((Cn — Cryr)e)
= Y2 € Ppy1 v4f(Ca) — 2@ € Poy1 .v4f(Crpr)
= D0 € Pry1.94f(Cact) — 2 € Py .v4f(Cra) < 277,
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4 4(Cam Cos) S Hf(Cam Cost) 27752741
Proof. Let S =Eo’ (& EPpym and o’ Ca). Then
2 € Puym .¥4f((Cn — Cny1)a)
=Y € P, T €5 vaf((Co — Cop)) < (by 4.1)
Za € Po[.vaf((Ch — Cryr)a) + Za' - S;m) vaf(Ba') — .vaf(Ba)]
V4f(Ca = Cag1) + 22 € Paym v4f(Ba) — 2a € P, .v4f(Be)
S vaf(Ca — Cayr) + 277,

Using 4.2 and letting m— « we have the desired conclusion.
.5 vfB=.pA.

Proof. .ud = .uC,— Zme M(Crim— Crpms1) = .vafB— Zm CEw2—n—mtl
g .V*fB — 22,
Letting n— » and using Step 1, we have the desired result.

fIA

4.5. THEOREM. If u=V(F, f, v), v is an outer measure, A is v-measurable,
then *fA is u-measurable.

Proof. Let .uT < . Choose a sequence P of elements in ®(F) such that
uT=lim,., > aEP, .»f(Ta). Letting B="*fA4, we see by 4.2 that:
u(TB) + (T — B) = lim X a € Pu[.v4f(TBa) + .v4f((T — B)a))

n—o

= lim ) a € P, .vaf(Ta) = .uT.

n—o

The next to last equality is due to the v-measurability of 4 =4fB and the
fact that +f(TBa) CA and «f ((T—B)a) Caf(Ta) —A.

4.6. THEOREM. If u=V(F, f, v), v is an outer measure, .ud = .v4afA < o,
+«fA is v-measurable, a © F, then +f(Aca) is v-measurable.

Proof. Choose a v-measurable set B such that:
+f(Aa) C B C +f4 and .vyf(da) = .vB.

Since .pA = .v4fA, we must have: .vefd = .v4f(Aa)+ .v4f(4 —a). Since B is
v-measurable, we also have:

vaf(A — a) = v(xf(A — @) B) + .v(xf(4 — @) — B),
vafA= vB+ v(xfA — B) = .nf(da) + .v(+fA — B).
Now, f(4 —a) —B =4fA —B. Hence, comparing the two expressions above
for .vafA, we conclude that .»(«f(4 —a)B)=0 and hence .v(B—4f(4a))
< .v(sf(A —a)B) =0.

5. Properties of V(F, f, v) when F is fine.
5.1. DEFINITION. P is a mesh of F if and only if P is a sequence of elements
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in ®(F) such that: P, is a refinement of P, and, for every x&oF, yCoF,
x 7y, there exists an # Cw, aEP,, BEPa, af=0 such that xCa and yEL.

5.2. DEFINITION. F is fine if and only if: F#0; for every A &€ F there is a
PE®(F) with AEP; for every P’ and P” in ®(F) there is a mesh P of F such
that for every nE€w, P, is a refinement of both P’ and P”.

5.3. DEFINITION. N(f, 4, y) denotes the number of points in A*f{y} if
this set is finite and « otherwise.

5.4. DEFINITION. Cr(4,.y) is 1 if yEA and 0 otherwise.

5.5. LEMMA. If f is a function on oF, P is a mesh of F, then
N(f, A, y) = Sép Za € P, C"(#f(Aa)v y)f

Proof. Clearly, for every nCw:
Za E Pn Cr(,.f(Aa), y) = N(fv Av y)'

Let m<N(f, 4, y), mEw. Take m distinct points xy, - - -, Xy in 4 with
f(x:) =y. Then choose #Ew such that no « in P, contains more than one of
these points. We must therefore have

m < Y a € P, Cr(sf(4a), ).
5.6. THEOREM. If u= V(F, f, v), F is fine, «f (Ax) is v-measurable for every
aEF, then .ud = [N(f, A, y)dvy.
Proof. Let P be a mesh of F such that
pA = lim Y a € P, .nf(4a).

n—s0

Since +f(Aa) is v-measurable for every a & P,, we see from 5.5 that N(f, 4, y)
is »-measurable in y and:

w4 = lim X a € P, | Cr(sf(4a), y)dvy

n—r0

= | lim Y a € P, Cr(sf(da), y)dvy = f N(f, 4, y)dvy.

n—ro0

5.7. COROLLARY. If u=V(F, f, v), F is fine, v is an outer measure, .nA
= .vafA < , «fA is v-measurable, then N(f, A, y) <1 for v-almost all y.

Proof. Follows immediately from 4.6 and 5.6.

5.8. THEOREM. If u=V(F, f, v), F is fine, v is an outer measure, .uA
= .vafA < 0, ofA is v-measurable, then A is u-measurable.

Proof. Let P be a mesh of F. For each n€w and aEP,, let C.=a*fuf(4da)
and D,=UaEP, C..
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Since «f(4«) is v-measurable, then by 3.3 and 4.5 we see that the C, and
hence D, are u-measurable. Also: D,a = C,, «f(Dn) =+f(Ae), and 4 CD..

Let B=NnEw D,. Then B is uy-measurable, 4 CB, and for each a EP,:
+f (Aa) Caf (Ba) Caf (Dnat) =4f(Aea). Thus, by 5.5 and 5.7, N(f, B, y)
=N(f, 4, y) =1 for v-almost all y. Hence N(f, B—A4, y) =0 for v-almost all y,
so that .v«f(B—A4)=0. Therefore .u(B—A4) =0 and 4 is uy-measurable.

REMARK. We are unable to prove, in general, that u= V(F, f, v) is an outer
measure when F is fine and v is an outer measure. Since we are interested in
the converse of Theorem 5.8, we use the same conditions to prove both re-
sults. It may be of interest to note, however, that the two are not naturally
related. For example, if F is the family of all intervals on the real line and »
is an outer measure, then u is also an outer measure. On the other hand, it is
quite clear that the converse of 5.8 is not true for all functions f and all outer
measures » on rng f.

6. Properties of V(F, f, v) when oF is a topological space. Throughout
this section we assume a fixed topology for ¢F. All the topological concepts
refer to this topology.

6.1. DEFINITION. For P a mesh of F, we denote by Sq(P) the set of se-
quences a such that 0 #an 1 Can EP,, for every nCw.

6.2. DEFINITION. P is a topological mesk of F if and only if: P is a mesh
of F; for every x&cF and neighborhood U of «x, there is an n&€w and a &P,
such that x€aCU.

6.3. DEFINITION. F is almost complete if and only if: F is fine; there exists
a topological mesh P of F; Ea (¢ESq(P), NnEw a,=0) is countable for all
topological meshes P of F.

6.4. DEFINITION. M (F, f) =Ev (v is an outer measure on rng f; dmn fCo F;
+fa is v-measurable for all e € F; *f {y} is closed for v-almost all y).

6.5. LEMMA. If P is a mesh of F, for every nCw:0%A4,.1CA.C0F, then
for some a ©Sq(P) and every nCw:A,a, 0.

Proof. We define a by recursion. Since P, is finite and 0P, =0F for every
nEw, we can choose ayE P, so that apd ;70 for an infinite number of, and
hence all, kEw. Having chosen a, so that a,4;7#0 for all kCw, we take
Qi1 EPryy 50 that a1 Can and a1 4,50 for all kCw.

6.6. LEMMA. If F is almost complete, ACF, P is a topological mesh of F,
and S=Ea (aESq(P); Aa,#0 for all n€Ew; NnCw (Aa,)=0), then S is
countable.

Proof. Let A EQE®(F) and choose P’ a mesh of F such that, for every
nCw, P, is a refinement of both Q and P,. Let 8'=Ea’ (&' €Sq(P’); Ay #0
for all n€w; NnEw (Aa,’)=0). Since, for as €EP,, Aas #0 implies Ao,
=a,, we see that S’ is countable. By 6.5, for each a €S there exists o’ €S’
such that a,/ @, 0 and hence a,/ Ca, for all nE&w. This means that for two
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different ’s in S, the corresponding o’s in §’ are also different. Thus S is also
countable.

6.7. LEMMA. If BCsfa, A =a*fB, &' Ca, then sf(Aa’) =4fAsfa’ = Bafa!'.

6.8. LEMMA. If F has a topological mesh P, vEM(F, f), u=V(F, f, »),
xCaF, then {x} is u-measurable and «f {x} is v-measurable.

Proof. Choose a sequence a so that for every n€w, a,EP, and {x}
=NnE€w a,. By 3.3 the @, are p-measurable and hence {x} is u-measurable.
Let A =Nn&w sfan. Then A is v-measurable. Let y=f(x) and A*=Ez(z€A4
and *f{z} is closed). We note that: .»(4 —A4*)=0; if 2EA4%*, then x is in the
closure of *f{z}, hence x&€*f{z} and y =2. Thus, if .»{y} =0, then {y} =4*
and in either case {y} is »-measurable.

6.9. LEMMA. If P is a mesh of F, aESq(P), lim,., > o/ EP, .nf(Ad)
< o,y is an outer measure, and .y {y} =0 for all yExfA, then lim, .., .vsf(Aa)
= 0.

Proof. Let B=n&w a,. Then B contains at most one point and .»4f(4 B)
=0. Since sf(da,) =UECw +f(Aa,—aq.41) Isf(AB), we must have
lim wef(Aan — antr) = vif(day)

k—
for all nEw. Now, given ¢>0 we can choose 7 so large that for all 2€w:
af(Adan — angr) + vaf(Aonsr) £ vaf(day) + e

Hence: limy. .¥af(A@nir) S vaf(Aas) —limg.e vaf(Aa,—agpi) +€=¢. Since
€ is arbitrary we have the desired conclusion.

6.10. THEOREM. If F is almost complete, yEW(F, f), u=V(F, f,v), Pisa
topological mesh of F, then for any A CoF there is a u-measurable A’ such that
ACA’, xfA’ is v-measurable, and

A = pd’ = lim X a € P, .vnf(4a).

Proof. If lim,., > aEP, .nf(da)= o, take A’=¢F. Otherwise, set
A,=Ex (x€A and .wf{x} >0). Then A, is countable and, by 6.8, «f4, is
v-measurable. Thus we need only prove the theorem for 4,=4 —A4,. We

define the sets B, C&, D, by recursion on n. For aEP,, let B® be y-meas-
urable, +f(4:0) CBL Cafa, and .v4f(Ase) = .vBL. Then we set

Ca’ =a*fB. and Dy=Ua € P,C.".

Using 6.7, for « € Pay1, let BT be v-measurable, 4f(4:a) CBE? Caf (Do),
and .v«f(420) = .»B&Y, then we set:
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e = a*BIY and Dppr = Ua € Pop Cat0.
Finally, let A’=NMnEw D,. Clearly, 4,CA’, A’ is p-measurable since the
C® are u-measurable by 3.3 and 4.5, and for #E€w and a EP,:

vaf(d2a) S vaf(A'a) £ .vaf(Dac) = vBy = .vaf(A2a).
Now, we wish to show that «f(4’B) is v-measurable for any BEF and .ud,
=.pA’. To this end, we let B’ =NnCw +f(D.8), B*=Ey (yEB’ and *f{y} is
closed), and, for aESq(P), G.=Ey (yEB* and, for nCw, BD.a, *f{y} #0),
and complete the proof in 7 steps.

Part 1. B’ is y-measurable, .v(B’—B*) =0, and B* is v-measurable.

Proof. vEM(F, f) and «f(D,B) is v-measurable.

Part 2. B*=Ua&Sq(P) G..

Proof. Clearly G,CB* for all aE€Sq(P). If yEB*, then D,8* {y} 0 for
all #E€w and hence by 6.5 there is an aE.Sq(P) such that BD.a. *f{y} =0,
i.e., yEG,.

Part 3. If a€Sq(P) and NnEw (Ba.) #0, then G.Caf(4'B).

Proof. Let x€ENnEw (Ba,) and yEG,. Then « is in the closure of *f{y},
hence xE*f{y}. Since D.a. *f{y}#0 we have a, *f{y} CCPCD,. Thus
xED, for all nE€w and therefore xEA'B*f{y}, so that yE4f(4'B).

Part 4. Ea (¢ ESq(P); Ga#0; NnEw (Ba,) =0) is countable.

Proof. Follows immediately from 6.6.

Part 5. .vG,=0 for all aESq(P).

Proof. Go Caf(Daas) for all nE€w, and hence by 6.9

AGa S lim .vaf(Ductn) = lim .vaf(Ascs) = O.

n—wo n—roo

Part 6. .v(B*—4f(A’8)) =0 and «f(A4’B) is v-measurable.
Proof. Clearly 4f(4’8) CB*\U(B’—B*). Let S be the countable set of
Part 4. Then, in view of Parts 2 and 3:

B* — +f(A4'8) C Ua € SG,
and by Part §:
W(B* — 4f(4'8)) £ Da ES 4G, = 0.

Part 7. .pAs= pA’ =lim,., 2 aEP, .nf(4'a).
Proof. By 5.5 and 5.6 we‘have:

WAz < pd’ =qu, A’, y)dvy = lim Y a € P, .vaf(4d'a)

n— o

=lim > a € P, .mf(4:a) < .uds.

n—0

6.11. COROLLARY. If F is almost complete, vEM(F, f), u= V(F, f, v), then
M 1S an outer measure.
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6.12. THEOREM. If F is almost complete, vEM(F, f), u=V(F, f, v), .ud
= .vfA < o, then A is u-measurable if and only if +fA is v-measurable.

Proof. If A is u-measurable, by 6.10 we can take A’ u-measurable so that:
ACA’, .uA’'=pA and +fA’ is v-measurable. Since A is u-measurable:

V(afA' — 2fA) £ vaf(4' — A) = w(Ad' — 4) = .ud' — ud = 0.
The converse is given by 5.8.

6.13. THEOREM. If F is almost complete, vEIM(F, f), u=V(F, f,v), 4 is
u-measurable and, for some BCA, .vafB= .1ufA and .uB < o, then 4fA is
v-measurable.

Proof. By 4.4 choose CCB so that .uC = .1fC=.vsfA. By 6.10, let C’ be
w-measurable, CCC’, .uC= .uC’ = .vsfC’, and +fC’ is v-measurable. Then:

VfC' — ofA) £ vaf(C' — A) £ .u(C' — A) = .uC’' — .u(C'4)
< uwC'— .uC=0.

Thus #fC’sfA is v-measurable and .v(xfC'sfA) = .vafC= .v4fA so that «f4 is

also »-measurable.

6.14. COROLLARY. If F is almost complete, vEM(F, f), u= V(F, f, v), 4 is
u-measurable, and for every BC A with .uB>0 there is a CCB with 0<.uC
< o, then +fA is v-measurable.

6.15. REMARK. In view of 6.14 above, we next turn our attention to sets
which have no subset of finite positive variational measure, and see what
conditions this imposes on f and ».

7. Sets having no subsets of finite positive variational measure. Through-
out this section we assume that F is almost complete,y EW(F, f),u= V(F, f,v),
TCoF,0< .mfT <, and, for every T"CT, if .uT'< o, then .uT’=0.

Our aim is to show that f and » must satisfy the conditions stated in
Theorems 7.3 and 7.4. To this end, we let P be a topological mesh of F such
that: Py= {aF } and, for each #€w and aEP,, there are at most two sets
B1, B2 in Pty with 8,\UB:Ce. This is no added restriction on o F since, starting
with any topological mesh P’ of F, we can define a P with the above property
by regrouping the elements in Un Ew P,/ . We choose such a P only to simplify
the formulas involved in the construction of certain sets.

7.1. LEMMA. There exist two sets A and B such that:

(1) AB=0 and A, B are u-measurable.

(2) +fA =4f B and «fA is v-measurable.

3) .nf(T—(AUB)) =0.

4) vf(Aa) = .nf(TAa) and .vsf(Ba) = .vsf(TBa) for a € P;.

(5) For any T', 2 a€P: .uf(T'Aa) = .vaf(T'A) and I aEPy.vf(T'Ba)
= .nf(T'B).
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(6) If A*f{y} =0, then for some kCw:aC Py, ad*f{y} #0 imply a*f{y}
CA; and aC Py, aB*f{y} #0 imply a*f{y} CB.

Proof. Let M* be v-measurable, «fTC M*, .vsf T = .vM*. We shall define
the sets M,, for a EP,, A.*, B, by recursion on n. For a &P, let M,= M*,
A& =0, B*=0. Next, if o/ EP,, let @ and B8 be in P,,; with «\UBCa’. We
choose M, and Mg v-measurable and such that

Wf(Ta—UkEn+1AFXIBMN)C M. C (Mo — Uk E 1+ 1 4 fAi¥)sfe,
f(TB—UREn+1(AFUB¥) C Mg C (Mo — Uk € n+ 1 +fA4:¥)4f8,
vaf(Ta — Uk En+ 1 (43FY B}) = wM,,
vaf(TB —UEEn+ 1(AFY B}) = vM,.

Then we set
A = a*f(MMp),  Basi = B4(M.Mp) if o = 0
and A::i)l =B::i)1 =0 if o =B =a’.
Finally, we let

An=Ud € Pudnil,  Baw=Ud € P,Burs.

A=UncwdX B =Un € w B*

Now, we observe the following facts.

(a) «fA¥=+fB.* for all nCw.

(b) AXUkEn (AXIB*) =BXUkEn (AFUBX) =AYB.¥=0 for all nCw.

(c) A.*, B, are u-measurable and 4fA4,* is »-measurable for all n€w.

(d) #f(Axa) «f(AXB) =+f (Bra) +f(B*B) =0 for all n€w and a, FEP,,
a3 =0.

Proof. It is trivially true for n=0. So, let 1 E#n€w. In view of the choice
of P, we can find o', B'EP; and yEP;_,, for some k=n, such that aCd/,
BCH, o/ =0, &/\UB Cy. If k=n, then o’ =a, f'=B and the statement is
clearly true. If ECn, then 4f (B.*a) Usf (A *a) CM.C Mo —xfAY = Mo — My,
+f (Ba*B) \Unf (A*B) C Mg C Mp.

(e) .vf(TAFa)= .vf(AFa) and .vaf(TBra) = .vaf(Bira) for nEw, a EP;,
jEn+1.

Proof. Clearly true for n=0. In view of (c) and (d) we may assume
n=m+1, &/ EPpn, ¢EPpy1, BEPns1, af=0, and a\UBCc'. Suppose 4,
=AE) =a*f(M.Mp). Let Ty=Ta—UkEm+1 (4*UB¥). Then:

ofTy = VfTiMp) + v(ofTs — Mp) = vaf(TAmpre) + .v(xfT1 — Mp),
wMa = v(M.Mg) + v(M, — Mp).

Since «fT1C M, and .»4fT1= .v M., we must have:



1956] VARIATIONAL MEASURE 217

af(TAmpia) = (MoMp) = 3f(Ampra).

Similarly for the other equality.

(f) .vaf(Aa) = .vaf(TAa) and .vaf(Ba) = .vf(TBa) for a&Ps.

Proof. Since the sets 4f4 * are v-measurable and disjoint, 4¢*=B¢* =0, we
get from (e):

wf(da) = Y n € w .uaf(A¥a) = 2 n € w .vaf(TA¥e) = .v4f(TAa) fora € Pi.

(g) If T'=T—UkEn+1 (AFUB¥), then .vufT' = D aEP, .vaf(T"a).

Proof. It is cleafly true for =0. So let 1 S#nCw, af =0, o, BEP,.. Then
for some k<n, o, B'EP:, YEP;_, we must have aCao/, BCB, a/f' =0,
a’UB' Cy. Then: «f(T"a) Caf(T"e’) C Mo — Mg and +f (T'B) Caf (T'8") C Mp-.
Since M, and My are v-measurable we have the desired result.

(h) .wmf(T—(AUB))=0. '

Proof. Let 7/=T—(4A\UB). Then by part (g) and 6.10 we see that
uT' = .nfT’' < . Hence, visf T’ =0.

(i) For any T’, 2 aEP; .vf(T'Aa) = .vaf(T'A) and Y aEP; .vaf (T'Ba)
= .nf(T'B).

Proof. From Part (d), it follows that

Do € P vaf(T'AXa) = vaf(T'AY).
Hence, since A¢*=B¢* =0, we have:

Yo € Py .af(T'Ac)
=YaEP TnE€w wf(T'AFa) = InEw D aE Py .vf(T'Aa)
= Y nE w nf(T'AX) = uaf(T'4).

Similarly for B.

() If A*f{y} =0, then for some kCw:a &Py, ad*f{y} 0 imply a*f{y}
CA4; and aEP;, aB*f{y} %0 imply a*f{y} CB.

Proof. If A*f{y} #0, then there is one and only one ECw such that
A *f{y} #0. Since +fA* =+fB:*, we also have Bi* *f{y} #0. Now, let a EP;
and ad* *f{y}=0. Since A*a=a*fsf(4:*a), we have a*f{y} CAFaCA.
Similarly for B.

7.2. LEMMA. There exists a sequence G such that, for every n€w, Gnt1 15 a
refinement of G,, G, has 2" elements, and

(1) If A, BEG., A#B, then AB=0 and A is y-measurable.

(2) If A, BEG,, then +fA =+fB and +«fA is v-measurable.

(3) .V*f(T—O'Gn)=0.

(4) If AEG,, aEP,, then .vif(Aa) = .vf(TAa).

(5) If ACG,, then Y aCP, .nf(T'Aa) = .vf(T'A), for any T'.

(6) If ACG, and A*f{y} =0, then for some k€w:a € Py and ad*f{y} =0
imply a*f{y} CA.
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Proof. We define G by recursion. Let M be v-measurable, +fTC M and
vofT=.vM. We set Go={*fM}. For any n€uw, if G, is defined, 4 €G, and
aEP,, we define C,(4) and CJ (A) as follows: if .vf(TAa)=0, let C.(4)
=CJ(4)=0;if .vef(TAa) >0 let C.(A4) and CJ (4) be two sets satisfying all
the conditions of Lemma 7.1 with ‘T replaced by ‘TAa’ and ‘P’ replaced by
‘P”, where P’ is the sequence defined by P/ =Eo’ (&’ €EP,4x and o’ Ce), and
such that: C,(4)UC. (4)CAc. Then we set:

D) =Ua € P,Co(4) and D'(4) = Ua € P, CI(A4).
We note that, since
vafT = vaf(ToG,) £ .vaf(0Ga) = .vafA = af(TA) = .v4fT,

we must have for some aEP,, .vuf(TAa)>0. Thus, D(4)#D’(A) and they
both satisfy all conditions of 7.1 with ‘P;’ replaced by ‘P,:’ in (4) and (5).
Finally, to insure property (2), we note that .vufA = .vaf (TA) = .vuf (TD(A4))
= .vsf(D(A4)) so that the sets

D(4) = D(A) — UB € G, */(xfA — «f(D(B))),
D'(4) = D'(A) — UB € G, */(xf4 — +f(D(B)))
differ from D(A) and D’(A) respectively by a set of u-measure zero, and
+f(D(A)) =+f(D(B)) for BEG,. Therefore, we let
Gur=U4 €6, ({DA)} VU {D'4)})
and see that properties (1) through (6) are satisfied with ‘n’ replaced by
‘n+1°.

7.3. THEOREM. If F is almost complete, vEM(F, f), u=V(F, f,v), TCoF,
0< .vafT < >, and, for every ACT, .pd < o implies .uA =0, then there exists
a sequence S such that, for every n Cw, Sni11s a refinement of S, and

(1) aSn=US0C *ny

(2) AES,, BES,, A#B imply AB=0,

(3) AES., implies .vA = .vaf T,
(4) BCoSo and .vB#0 imply lim,., ) AES, .»(B4A)=w.

Proof. Let T/ C T be such that «fT’ =4fT and f(x) #f(y) whenever x&T",
yET’, x=y. Let G be a sequence satisfying the conditions in 7.2 with ‘T’
replaced by ‘T". Let To=4fN\nEw (T'0G,.). We define S by setting

Sa=UA EG, {To+f(T" 4)} forn € w
Properties (1) and (2) are clearly satisfied. Also
VT — To) £ 2 n € w .uaf(T' — 0G,) = 0.

Hence:
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AT onf(T'A)) = .vaf(T'A) = .vaf T' for A € G,.
Finally, if BC Ty and .»B0, let C=NnEw (T'¢G. *fB). Then:
w =lim > aE P, .v4f(Ca) £ lim Y a E P, ) A EG, .v4f(CAc)

= lim >4 €EG, .»f(CA) = lim I A € G, .¥(xfCsf(T'4))

= lim Y A €S, .»(BA).

n—o

7.4. THEOREM. If F is almost complete, vEM(F, f), u=V(F, f, »), TCoF,
0< .vfT< o, and, for every ACT, .ud <  implies .uAd =0, then there exists
T*, v-measurable and .vT*>0, such that, for every yST*, *f {y} 1s noncount-
able.

Proof. Let G be a sequence satisfying 7.2 T/ =\nEw +foG,, and T*=Ey
(yET' and *f{y} is closed). Clearly T* is v-measurable and .»T*= .»T’
= .l’*fT> 0.

Let y&T* and S=EA4 (4 is a sequence and 4,11CA4.EG, for all n€w).
If AES, we have 4, *f{y} #0 for all nCw, and hence by 6.5 there is an
aESq(P) such that a,4, *f{y} #0. By property (6) in 7.2, this means
07 anir *f{y} CA., for some kEw. Hence if xENnCw a,, then x is in the
closure of *f{y}, therefore xE*f{y} and xCNnCw A,. If BES, B#A, and
o/ €ESq(P), a.! B, *f{y} #0 for all nCw, then &’ #a. Since there are a counta-
ble number of a&Sq(P) such that N(zEw a,=0, and S is noncountable, it
follows that S’=EA (ACS and T*=,fnEw A,) is noncountable, and since
AES', BES', A=B implies A,B,=0 for some n€w, this means *f{y} is
noncountable for all y&T*.

7.5. REMARK. Since F has a topological mesh, there can be at most a
countable number of disjoint neighborhoods in ¢ F. From this it follows that
any closed subset of ¢ F is noncountable if and only if it contains a nontrivial
perfect subset. The fact that, in 7.4, *f{y} contains a nontrivial perfect sub-
set for all y&T* can also be seen directly by making a small change/in the
proof.

8. Applications. In this section we indicate some immediate consequences
of the theory developed so far when it is applied to functions on the real line.
Extensions to other spaces can easily be seen.

8.1. DEFINITION. (a, b)=Et¢ (¢ is irrational and a{¢)b).

8.2. DEFINITION. Fy=Ea (a={(a, b) for some rational a, b with 0=Za <b
<1).

8.3. DEFINITION. 9, =Ew (v is an outer measure on [0, 1] and intervals
are v-measurable).

8.4. DEFINITION. 91, =Ev (vCM,; .»[0, 1]<w; .»{y} =0 for 0sy=1).

8.5. DEFINITION. 9, =Eyr (¥ ©S9M,; there exists no sequence S such that,
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for n€w:S.41 is a refinement of S,; ¢5,=05,C[0,1]; AES,, BES,, A=B
imply AB=0; 0<.»0S;< ©; BCaS, and .»B0 imply lim,., > AES,
V(AB)= ).

8.6. DEFINITION. 4 is measurable M if and only if 4 is y-measurable for
allveM.

8.7. DEFINITION. 4 has absolutely M measure zero if and only if .v4 =0
for all v&E M.

8.8. DEFINITION. §(M) =Ef (f is a function on ¢ F, to [0, 1]; 4fa is meas-
urable M for all a€ F; *f{y] is closed for all y&Erng f—Z where Z has ab-
solutely M measure zero).

We observe that: o F, is the set of irrationals in [0, 1], and F, is almost
complete; 4 is measurable 9, if and only if 4 is measurable 9, ; if fEF(IN;)
and vEM, then vEM(F,, f) and p= V(F,, f, v) EM, (if we extend u to all of
[0, 1] by setting .ud =0 for all sets A of rationals); if fEF(IM,) and »E M,
then vEM(Fy, f) and V(F,, f, v) EM;. Then, using 6.13, 7.3 and 7.4 we con-
clude:

8.9. THEOREM. If fEF(M,) and A is measurable M, then xfA is measurable
N,

8.10. THEOREM. If f&EF(M,) and *f{y} is countable for yErng f—Z, for
some Z of absolutely I, measure zero, and A is measurable My, then sfA is
measurable M.

8.11. COROLLARY. If f is continuous on the irrationals to [0, 1] and A is
measurable Ms, then 1fA is measurable N..

Proof. «fa is analytic for a € Fy. Thus fEF(IN,).

8.12. COROLLARY. If f is continuous on the irrationals to [0, 1], *f {y} s
countable for y&rng f—Z, for some Z of absolutely M, measure zero, and A is
measurable Mo, then +fA is measurable N,.

8.13. REMARK. A set Z of absolutely 91; measure zero need not be counta-
ble (see [1]).

8.14. REMARK. An immediate consequence of 8.11 is that all projective
sets are measurable ;. Since K. Godel has indicated (see [2]) that the exist-
ence of a projective set P, which is not Lebesgue-measurable is consistent
with the usual axioms of set theory if the latter are consistent, it follows
that we cannot have Lebesgue measure in 9M,. It would be interesting to show
directly that Lebesgue measure is not in 9, i.e., if one could produce a
sequence satisfying conditions (1) through (4) in Theorem 7.3 with » taken
to be Lebesgue measure.

On the other hand, M. Kondé (see [4]) has shown that for every projec-
tive set P, of class 2 (see [6] for general definitions) there is a set 4, whose
complement is analytic, and a function f, continuous and one-to-one on 4,
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such that «f4 = P,. It is well known that f can be extended to a G; containing
A, with continuity preserved. In view of K. Gédel’s result mentioned above
and 8.12, it follows that such an extension cannot always assume every value
y only a countable number of times.

It may also be of interest to note that the results of this section may be
extended immediately to complete, separable metric spaces since any such
space that is also noncountable is the image within a countable set, of the set
of irrationals by a one-to-one continuous function. 4
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