
VARIATIONAL MEASURE

BY
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Introduction. The concept of a set which is ^-measurable for all v in some

class M of measures is possibly due to J. D. Tamarkin, who communicated

some of his ideas to A. P. Morse around 1936. It is the latter, however, who

first studied such sets extensively and, in a Real Variables course at the Uni-

versity of California, Berkeley, had them play a role in measure theory tradi-

tionally assumed by Borel sets.

Let SJRo be the set of outer measures v on the real line such that open sets

are p-measurable. A. P. Morse suggested to the author the problem of deter-

mining if a set, which is v-measurable for all v in 3TC0, is mapped into a similar

set by a continuous function of bounded variation. It is while attempting to

solve this problem that the writer was led to introduce a measure in the

domain of a function, which is related to a given measure in the range and

gives some indication of the extent to which the function fluctuates. This we

have called variational measure, and in this paper we study some of its prop-

erties. As an application of the theory we have developed here, we get condi-

tions on the function / and class M of measures in order that / map a set,

which is ^-measurable for all v in M, into a set of the same kind.

The problem suggested by A. P. Morse, however, remains open.

The approach to measure theory in this paper is that of C. Caratheodory

and we refer the reader to [3] and [7] for the general background material.

1. Notation.

1.1. Ex( • • • ) will denote the set of all x such that (•••)•
1.2. {x} will denote the set consisting of the point x only.

1.3. <tF=\JAEFA.
I A. F is disjointed if and only if AEF, BEF, Aj±B imply AB =0.
1.5. dmn/ and rng/ will denote respectively the domain and range of/.

1.6. *fA =Ey(y=f(x) ior some xEA).
1.7. *fA =Ex(/(x)=y for some yEA).

1.8. When dealing with set functions v, we shall use the notation ,vA to

stand for v(A).

1.9. w will denote the set of all non-negative integers.

1.10. A non-negative integer is the set of all non-negative integers preced-
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ing it, that is: if n£co then wi£n if and only if m£co and m<n. Thus, the

number 0 is also the empty set.

2. Fundamental definitions.

2.1. A measure v on A is a function on the family of all subsets of A to the

non-negative real numbers such that .v0 = 0 and if B is a sequence of subsets

of A, CCUw£co5„, then

.vC =: E«£ « "Bn.

2.2. B is v-measurable if and only if for every F£dmn v,

.vT = .v(TB) + .V(T - B).

2.3. v is an outer measure if and only if v is a measure and for every

5£dmn v there is a 5' such that BCB', B' is ^-measurable, and .vB= .vB'.

2.4. Given a family F of sets, we define:

<P(F) = EP(P CF, P is finite, P is disjointed, crP = aF).

2.5. P' is a refinement of P if and only if for every a'EP' there is an aEP

such that a'Cot, and aP = aP'.

2.6. If F is such that for every P' and P" in <P(F) there is a P in (P(F)

which is a refinement of both, if for every AEF, there is a P£(P(F) with

.4 £P, if / is a function on aF, and if y is a measure on rng /, we define the

variational measure V(F, f, v) to be the function p on the subsets of aF such

that for every A C<rF:

.pA =    sup    Ea G -P -y*f(Aa).

If the variables F, /, p do not satisfy the above conditions, we define V(F, f, v)

to be the function p such that ./u0 = 0 and .pA = oo for O^ACaF.

3. General properties of variational measure.

3.1. Theorem. V(F,f, v) is a measure.

Proof. Let p = V(F, f, v), B a sequence of subsets of aF, A =Uw£co B„,

P£(P(F). Then if v is a measure:

Y.otEP -v*f(Aa)

= E« G P -"Un £ co */(£„«) g&GP   E«6« .«-*/(£»«)

= E« £ «   HotEP .v*f(Bna) ̂ E« £ " •/**-
Hence:

• M ^ Ew G w -M^n.

All the other conditions are easily checked.

3.2. Lemma. // P' is a refinement of P, P is disjointed, f is a function on

aP, v a measure on rng /, A C<rP, then:
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X« & P .y*f(Aot) S £«' E P' .v*f(Aa').

3.3. Theorem. If ix= V(F,f, v), AEF, then A is u-measurable.

Proof. Let .uT<<x>. Then .p(F.4)<°o and .fi(T—A) < oo. Given e>0,

in view of the condition on F (2.6) and Lemma 3.2, we can choose PG<P(F)

such that

(1) for every aEP, H otA 5*0, then aEA,

(2) .n(TA)^Y<xEP .v*f(TAa)+e,
(3) .n(T-A)^Y<x&P .v*f((T-A)a)+e.

Let

Pi = Ea (a E P and a C A),

P2 = Ea (a G P and a4 = 0).

Notice that P = Pi<JP2, and:

.A*(7M) + .^(F- ,4) Si I> G Pi ••'♦/(F^a) + £a G P2 .v*/((F - ^)a) + 2e

= Z« G Pi .^*/(Fa) + £a G P2 .v*f(Ta) + 2i

= Y<*€P .v*f(Tot) + 2« g .uT + 2«.

Letting e—»0, since n is a measure, we see that

.UT = .m(F^) + .u(T - A).

If .pF= oo, the above equality is trivial.

3.4. Lemma. If u= V(F,f, v), .v+fA is a real number, and .j,o = 0, then

• v*fA ̂  .nA.

4. Properties of V(F,f, v) when v is an outer measure.

4.1. Lemma. If f is a function on <tF, v is an outer measure on rng /,

PE<P(F), A CBC<rF, .v*fB < oo , then

Y«eP .»*f(Aa) - .v*fA ̂  £a G P .v*f(Ba) - .v*fB.

Proof. Let.4*=*/.4, B*=+fB, A' be a ^-measurable set such that .4*C-4'
and .vA*= .vA'. Since ,vB*= .vA* + .v(B* — A'), we need only show:

Y<* £ P .r*f(Aa) + .v(B* - A') ̂ J>G P.^f(Ba).

We use induction. If P has only one element, the statement reduces to

.v*fA + .v(B*—A') ^ .v*fB and hence is trivially true. Assume then that the

inequality holds whenever P has n elements, and suppose that P has m + 1

elements: a0, • • • , <*„. Let

A? =VkEn *f(Aak), At* = *f(Aan), Bi* = U* G « */(£«*), B2* = ♦/(£«„).
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Note that: A*=Ax*\JA2* and B* = Bx*VJB2*. Next choose ^-measurable sets

Ai and Al suchthat:Ax*CAi CA', .vAx* = .vAi,A2*CAl CA', .vA2*= .vA{.
Note   that:   B*-A'C(Bx*-Ai)\J(B2*-Ai)   and    .vA2*+.v(B2*-Al)

= .vB*. We then have:

E«GP .v*f(Aa) + .v(B* - A')

= EA £ n .v*f(Aak) + .»A2* + .v(Bx* - Ai) + .v(B2* - Ai)

^ Ea £ » .»•/(««*) + ."£2* = E« e ^ .*•/(&*).

4.2. Theorem. If p= V(F, f,v),v is an outer measure, P is a sequence of

elements in (P(F) such that

lim   E« G Fn .v*f(Ba) =  .p.B < oo,
n—.«

then, for any A £5

lim  E« G Pn .^/(yla) =  .jt^.
n—.«

Proof. Let ACB. Given S>0, let 2e = 5 and choose N so that whenever

JV<«£« we have

./*B < E«GPn .v*f(Ba) + c.

Take Q£(P(F), a refinement of P„, such that

• M < Y,a E Q .v*f(Aa) + e.

For each a£Pn, let Sa = Ea'(a'EQ and a'£a). Then, using 4.1:

.nA - I«GP„ .v*/(^«)

< E« G Q -v*f(Aa) - E« G P„ .i>/(4a) + e

= E« G Pn[ E«' £ Sa .v*f(Aa') - .vf(Aa)] + e

=£ E« G P„[ E«' G Sa .v*f(Ba') - .v*f(Ba)} + e

= E« G 0 .v*f(Ba) - E« G F„ .»»/(B«) + « < 2e = 5.

4.3. Lemma. // P£(P(F), f is a function on aF, v an outer measure on

rng/, BCaF, then there exists a CCB such that:

.v*f(Ba) = .Vtf(Ca) + .y^f((B - Qa)

/or eacA aEP and

T,«€P .y*f(Ca) = .v*fC = .VtfB.

Proof. Denote the elements of P by a0, ■ • ■ , an-x- Let Bk*=*f(Bak).

Choose ^-measurable sets Bk such that:

Bk* C Bi,  .vBk* = .vBi,  .kUA £ r Bk* = .?UA £ r £*'      for r £ n + 1.
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We define

Co* = Bo*   and   Ck* = Bk* - Ui G k Bi.

We then let

Ck = Bak*fCk*   and   C = UkEnCk-

We note first that the Ck* are disjoint, */C* = Ck*, and Cak = Ck- Also:

Ck**f((B - C)ak) = 0 so that */((£ - CK) = JJ»*U» G * 5/.

Because of the j'-measurability of the Bi, we conclude

.vBk*= .vC,*+ .v*f((B - C)ak).

On the other hand we easily check by induction on m that:

.vlikEm Ck* = Y^ E m .vCk* = -v\)k Em Bk* for m E n + 1.

4.4. Theorem. If u= V(F,f, v), v is an outer measure, .uB < oo, then there

exists an A EB such that:

.\xA = .e*/4 = .v+fB.

Proof. Let P be a sequence of elements in (P(F) such that, for each ngu,

P„+i is a refinement of P„ and

.»B <Y<*£Pn -y*f(Ba) + 2—.

By 4.3, we can choose a sequence C such that, for all mGw, Cn+iEC„EB and

Ya E Pn .v*f(Cna) = .v*/Cn = .**/(£),

.v*f(Cna) =  .v*f(Cn+ia) + .v*/((C» - CB+i)a) for a G Fn+i.

Let A =n«G« C„ and complete the proof in 5 steps.

.1   .M^=(by4.2)=lim„.„ Y<xEPn -v*f(Aa) glim,..,, I>GPn .v*f(Cna)
= -v*fB

.2   I>GP„+, .P*/(C„a)-2>GP7l .^/(C„a)=2-».
Proof. For aEPn, let 5a = £a' (a'GPn+i and a'Eot). Then, using 4.1:

Y « g p„[ Y<*' g 5. .y*y-(c-««') - .v*/(c.o)]

= E« G Pn[ Ea' G S« .*./ (Baa') - .v*f(Ba)]

= E« G P»+i .v*/(fia) - E« e -Pn .**/(*«) g 2—.

.3  .^/(C„-Cn+i) = 2-".
Proof.

■ v*f(Cn — Cn+i) ̂  E« G Pn+l-V*f((C» — C„+i)a)

=   Ya G -Pn+1   •»'*/(Cna)  —   E« € Pn+1   .V*/(C»+ia)

=   E« G Pn+l.V*f(Cna)   -   E« G i*.  ."*/(Cn«)   ̂    2-.
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.4    .p(Cn~Cn+x) =£ .V*f(Cn-Cn+l)+2-«£2-»+K
Proof. Let 5im,=Ea' (a'£P„+n, and «'£«). Then

E<* £  Pn+m   -V*f((Cn  ~  Cn+l)a)

= E« G Pn   E«' G 5l"' .v,/UC - C„+,)a') = (by 4.1)

=    E« G  Fn[.^/((C„   - Cn+i)0)  +   E«' G Sa"'     .»/(£«')   -    . X*/(£a) ]

=  .v*/(C„ - C„+i) + E« G P,+m .v*f(Ba) - E« G Fn .»<*/(5a)

g .,*/(C„-C„+i) + 2-».

Using 4.2 and letting m—>oo we have the desired conclusion.

.5  .v*fB=.pA.

Proof. .Mi4 = .mC„- E^£co ./u(C„+m-C„+m+i) ̂  .v*fB- &&2-"-"'+'

£.j»«/B-2-»+*.
Letting «—*oo and using Step 1, we have the desired result.

4.5. Theorem. If p= V(F,f, v), v is an outer measure, A is v-measurable,

then *fA is p-measurable.

Proof. Let .pT< 00. Choose a sequence P of elements in (P(F) such that

./iF = lim„.«, E«GPn .v*f(Ta). Letting B = *fA, we see by 4.2 that:

.u(TB) + .M(F - B) = lim  E<* G Pn[.v*f(TBa) + .^*/((F - £)a)]
n—>«o

= lim  E« G P„ .v*f(Ta) = .p.T.
n-»«

The next to last equality is due to the immeasurability of A =*fB and the

fact that *f(TBa)CA and *f((T-B)a)C*f(Ta) -A.

4.6. Theorem. If p= V(F, f, v), v is an outer measure, .pA = .v+fA < 00,

nfA is v-measurable, aEF, then *f(Aa) is v-measurable.

Proof. Choose a p-measurable set B such that:

*f(Aa) CBC*fA and  .v*f(Aa) = .vB.

Since .pA = .v*fA, we must have: .v+fA = .v*f(Aa)+.v*f(A —a). Since B is

^-measurable, we also have:

.v+f(A -a)=  .v(*f(A - a)B) + .v(*f(A -a) - B),

.vnfA = .vB+ .v(*fA - B) = .v*f(Aa) + .v(*fA - B).

Now, *f(A — a)— B=*fA — B. Hence, comparing the two expressions above

for .v+fA, we conclude that .v(+f(A — a)B) =0 and hence .v(B— *f(Aa))

^.v(4(A-a)B)=0.
5. Properties of V(F,f, v) when F is fine.
5.1. Definition. P is a mesh of F if and only if P is a sequence of elements
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in <?(F) such that: P„+i is a refinement of P„ and, for every xE<rF, yE<rF,

xjty, there exists an mGw, aG?», j8GP», aB = 0 such that xG« and yEB.

5.2. Definition. F is fine if and only if: Ft^O; for every A EF there is a

PG(P(F) with A EP; ior every P' and P" in <P(F) there is a mesh P of F such

that for every »£w, P„ is a refinement of both P' and P".

5.3. Definition. N(f, A, y) denotes the number of points in .<4*/{y} if

this set is finite and oo otherwise.

5.4. Definition. Cr(A,.y) is 1 if yG-4 and 0 otherwise.

5.5. Lemma. Tff is a function on aF, P is a mesh of F, then

N(f, A, y) = sup E« G Pn Cr(*f(Aa), y).
n£«

Proof. Clearly, for every n£u:

E« G Pn Cr(*f(Aa), y) ^ N(f, A, y).

Let m^N(f, A, y), mE&. Take m distinct points x\, • • • , xm in A with

f(Xi) =y. Then choose «£w such that no a in P„ contains more than one of

these points. We must therefore have

mS Y«£PnCr(*f(Aa),y).

5.6. Theorem. If h= V(F,f, v), F is fine, *f(Aa) is v-measurable for every

aEF, then .\iA =fN(f, A, y)dvy.

Proof. Let P be a mesh of F such that

.nA = lim  Y<*£ Pn -v*f(Aa).
n-»«

Since *f(Aa) is ^-measurable for every aEPn, we see from 5.5 that N(f, A, y)

is jz-measurable in y and:

.uA = lim  E«GPn fcr(*f(Aa), y)dvy

=   f  lim  E« G Pn Cr(+f(Aa), y)dvy =   f N(f,A,y)dvy.

5.7. Corollary. If h= V(F, f, v), F is fine, v is an outer measure, .pA

= .vmfA < oo, „fA is v-measurable, then N(f, A, y) ^ 1 for v-almost all y.

Proof. Follows immediately from 4.6 and 5.6.

5.8. Theorem. If p= V(F, f, v), F is fine, v is an outer measure, .\iA

= .v*fA< oo, ^fA is v-measurable, then A is n-measurable.

Proof. Let P be a mesh of F. For each mGw and aEPn, let Ca = ot*f*f(Aa)

and Dn = UaEPn Ca.
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Since *f(Aa) is v-measurable, then by 3.3 and 4.5 we see that the Ca and

hence Dn are /x-measurable. Also: Dna=Ca, *f(Dna)=+f(Aa), and ACDn.

Let B = [)nEo} D„. Then B is /u-measurable, AEB, and for each a£P„:

*f(Aa)C*f(Ba)C*f(Dna)=*f(Aa). Thus, by 5.5 and 5.7, N(f, B, y)
= N(f, A, y) g 1 for v-almost all y. Hence N(f, B—A,y)=0for v-almost all y,

so that .v*f(B— A) =0. Therefore .p(B—A)=0 and A is /tt-measurable

Remark. We are unable to prove, in general, that p = V(F,f, v) is an outer

measure when F is fine and v is an outer measure. Since we are interested in

the converse of Theorem 5.8, we use the same conditions to prove both re-

sults. It may be of interest to note, however, that the two are not naturally

related. For example, if F is the family of all intervals on the real line and v

is an outer measure, then p is also an outer measure. On the other hand, it is

quite clear that the converse of 5.8 is not true for all functions/ and all outer

measures v on rng /.

6. Properties of V(F, f, v) when aF is a topological space. Throughout

this section we assume a fixed topology for trF. All the topological concepts

refer to this topology.

6.1. Definition. For P a mesh of F, we denote by Sq(P) the set of se-

quences a such that 0?*a:„+i£a:„£P„, for every w£co.

6.2. Definition. P is a topological mesh of F if and only if: P is a mesh

of F; for every x£crF and neighborhood U of x, there is an w£o> and aEPn

such that xEotC U.
6.3. Definition. F is almost complete if and only if: F is fine; there exists

a topological mesh P of F; Et* (aESq(P), f)nEo) an = 0) is countable for all

topological meshes P of F.
6.4. Definition. 9TC(F,/) = Ev (vis an outer measure on rng/; dmn fC<rF;

*/a is p-measurable for all aEF; *f{y} is closed for v-almost all y).

6.5. LeMma. // P is a mesh of F, for every «£co:0^^4„+i£4„£trF, then

for some aESq(P) and every nE<>>'.Anan9£0.

Proof. We define a by recursion. Since P„ is finite and crPn = aF for every

ra£co, we can choose «o£Po so that aoA/c^O for an infinite number of, and

hence all, A£w. Having chosen an so that anAk9*0 for all A£co, we take

a»+i£Pn+i so that a„+iC«n and an+xAk9*0 for all &£co.

6.6. Lemma. // F is almost complete, AEF, P is a topological mesh of F,

and S = Ea (aESq(P); Aan9*0 for all n£co; D«£w (Aan)=0), then S is

countable.

Proof. Let A EQE<P(F) and choose P' a mesh of F such that, for every

n£co, P„' is a refinement of both Q and P„. Let S' = Ea' (a'ESq(P'); Aan' 9*0

for all w£co; ftnEw (Aai)=0). Since, for ai £Pn', Aan' 9*0 implies Aai

= «„', we see that 5' is countable. By 6.5, for each a£5 there exists a'ES'

such that an'a„5^0 and hence ai C«n for all «£w. This means that for two
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different a's in S, the corresponding a"s in S' are also different. Thus 5 is also

countable.

6.7. Lemma. If BE*fa, A =a*fB, a'Ea, then *f(Aa') = *fA*fa' = B*fa''.

6.8. Lemma. // F has a topological mesh P, j>G9TC(F, /), p= V(F, f, v),

xEaF, then {x} is ^-measurable and */{x} is v-measurable.

Proof. Choose a sequence a so that for every mGw. «»GP» and {x}

= n«Gw ctn. By 3.3 the an are p-measurable and hence {x} is p-measurable.

Let A =H«Gw */«»• Then A is p-measurable. Let y=f(x) and .4* = Ez(zG-<4

and */{z} is closed). We note that: .v(A —A*) =0; if zG-4*, then x is in the

closure of */{z}, hence xE*f{z} and y = z. Thus, if .v{y} ?^0, then {y} =A*

and in either case {y} is p-measurable.

6.9. Lemma. // P *s a mes/f of F, aESq(P), lim^^ E«'GP» -v*f(Aa')
<«>, vis an outer measure, and .v{y} =0 for ally E*jA, then lim„_M .v*f(Aan)

= 0.

Proof. Let B = H«Gw a„. Then B contains at most one point and .v*f(AB)

= 0. Since *f(Aa„) = U&Gw */(<4a„ — a„+*)VJ*/(ylB), we must have

lim .v„.f(Aan — a„+k) = .v*f(Aan)
jt—.»

for all mGw. Now, given et>0 we can choose n so large that for all £G«:

.v*f(Aan — an+k) + .v*f(Aan+k) ^ .v*f(Aan) + e.

Hence: lim*^ .v*f(Aan+k)^ .v*f(Aan)—limk~«, .v*f(Aan—an+k) + i = e. Since

e is arbitrary we have the desired conclusion.

6.10. Theorem. If F is almost complete, vE$(l(F,f), p= V(F,f, v), P is a
topological mesh of F, then for any A EaF there is a ^-measurable A' such that

AEA', *fA' is v-measurable, and

.IxA = .fiA' = lim   Y<*£ Pn .v*f(A'a).
n—.oo

Proof. If lim,,^, Ya^Pn .v*f(Aa)=<», take A'=oF. Otherwise, set

.4i = Ex (xG^4 and .v*f{x} >0). Then Ai is countable and, by 6.8, *fAi is
y-measurable. Thus we need only prove the theorem for A2=A— Au We

define the sets B™, C™, Dn by recursion on n. For aGPo, let Pi0) be c-meas-

urable, */(^2a)CPi0)C*/a, and .vtf(Anx) = .vB™. Then we set

C«0) = a *fBil)    and   D0 = Ua G Fo ci".

Using 6.7, for aGP»+i, let P-iB+1) be y-measurable, „f(A2a)EB^+1)E*f(Dna),

and .v*f(A2a) = .^Pi"+1), then we set:



214 MAURICE SION [September

Ca       = a *fBa and   Dn+x = Ua £ Pn+i C„

Finally, let i4' = fl«£co D„. Clearly, A2CA', A' is ^-measurable since the

Can) are /u-measurable by 3.3 and 4.5, and for w£a> and aEPn'-

.v*f(A2a) £  .v*f(A'a) =  .v*f(Dna) =  .vB?'-  .vf(A«x).

Now, we wish to show that */(.4'/3) is v-measurable for any /3£F and ./t.<42

= .M'. Tothisend, weletP' = nw£w*/(-Cn|3),P*=Ey (?££' and */{y} is

closed), and, for aESq(P), Ga = Ey (yEB* and, for n£co, /3F>„a„ *f{y} 9*0),

and complete the proof in 7 steps.

Par/ 1. B' is v-measurable, .v(P' — B*) =K), and P* is v-measurable.

Proof. v£3H(F,/) and */(F>„/3) is v-measurable.

Part 2. B* = Ut*£5g(P) G„.
Proof. Clearly G„£P* for all aGS2(P). If yEB*, then Z?.0*/{y} j*0 for

all «£co and hence by 6.5 there is an tx£.Sc7(P) such that /3D„a„ *f{y} 9*0,

i.e., yEGa.

Part 3. If aESq(P) and fl«£« (/3aB)^0, then G„0/C4'/3).
Proof. Let x£n«£« (/3«n) and yEGa. Then a; is in the closure of */{y}>

hence xE*f{y}. Since Dnan *f{y}?*0 we have a„ */{y} CC™£F>„. Thus

*£!>„ for all «£co and therefore xEA'r3*f{y}, so that yE*f(A'P).
Part 4. Ea (a£5g(P); G«?*0; [>£« (j3a„)=0) is countable.

Proof. Follows immediately from 6.6.

Part 5. .vGa = 0 for all aESq(P).

Proof. GaC*f(Dna„) for all «£co, and hence by 6.9

■ vGa ^ lim   .v*f(Dnan) = lim   .v*f(A2a„) = 0.
n—*» n—»oo

Par/ 6. .v(B*-*/(^'/3)) =0 and */(yl'/3) is v-measurable.

Proof. Clearly *f(A'P)CB*V(B'-B*). Let 5 be the countable set of

Part 4. Then, in view of Parts 2 and 3:

B* - *f(A'p) C \JaESGa

and by Part 5:

.v(B* - *f(A'p)) = E« G S .vGa = 0.

Part 7. .pA2= .pA' = limn^ E«GPn .v*f(A'a).
Proof. By 5.5 and 5.6 we have:

.pA2 = .M' =  f W(/, 4', v)^y = lim  E« G P„ .v*f(A'a)
J n-.«

= lim Ea G Pn .v*/(^2a) ^ .pA2.
H—»00

6.11. Corollary. // Fis almost complete, v£3TC(F,/), tt= V(F,f, v), then

pt is an outer measure.
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6.12. Theorem. If F is almost complete, vESK(F, /), p= V(F, /, v), .pA

= . v*fA < oo, then A is ^-measurable if and only if *fA is v-measurable.

Proof. // A is fi-measurable, by 6.10 we can take A' ^-measurable so that:

AEA', .fiA' = uA and *fA' is v-measurable. Since A is n-measurable:

.v(*fA' - *fA) ̂  .v*f(A' - A) < .n(A' - A) = .»A' - .uA = 0.

The converse is given by 5.8.

6.13. Theorem. // F is almost complete, vE$K(F,f), p= V(F,f, v), A is

H-measurable and, for some BEA, .v*fB= .v*fA and .p5<oo, then *fA is

v-measurable.

Proof. By 4.4 choose CEB so that .pC= .v*fC= .v*fA. By 6.10, let C be
p-measurable, CEC, .uC= .pC= .v*fC, and */C is v-measurable. Then:

.v(*fC - *fA) = .v*f(C -A)Z .n(C -A)= .&' - .u(CA)

= .yC' - .riC = 0.

Thus */C*/4 is v-measurable and .v(*fC'*fA) ̂  .v*/C = .v*fA so that */^4 is
also v-measurable.

6.14. Corollary. // F is almost complete, vG3TC(F,/), p= V(F,f, v), A is

H-measurable, and for every BEA with .pB>0 there is a CEB with 0<.pC

< oo, then *fA is v-measurable.

6.15. Remark. In view of 6.14 above, we next turn our attention to sets

which have no subset of finite positive variational measure, and see what

conditions this imposes on / and v.

7. Sets having no subsets of finite positive variational measure. Through-

out this section we assume that F is almost complete, vG3TC(F,/), p = V(F,f, v),

FC<rF, 0< .v*/F< oo, and, for every T'ET, if .yiT'< oo, then .pF' = 0.

Our aim is to show that / and v must satisfy the conditions stated in

Theorems 7.3 and 7.4. To this end, we let P be a topological mesh of F such

that: P0= {oF} and, for each mG« and aEPn, there are at most two sets

j3i, B2 in Pn+i with SAJBtEot. This is no added restriction on aF since, starting

with any topological mesh P' of F, we can define a P with the above property

by regrouping the elements in UmGw Pn • We choose such a P only to simplify

the formulas involved in the construction of certain sets.

7.1. Lemma. There exist two sets A and B such that:

(1) AB = 0 and A, B are ^-measurable.

(2) ^f A = */B cmo" *fA is v-measurable.

(3) .vmf(T-(AKJB))=0.
(4) .v*f(Aa) = .v*f(TAa) and .v*f(Ba) = .v*f(TBa) for aEPu
(5) For any V, |>GPi .v*f(T'Aa) = .v*f(T'A) and YaEPi.v*f(T'Ba)

= .v*f(T'B).
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(6) If A*f{y} 9*0, then for some A£w:a£P,, aA*f{y} 9*0 imply a*f{y]

CA; and a£P*, aB*f{y} 9*0 imply a*f{y] £P.

Proof. Let M* be v-measurable, */F£M*, .v*/F= .vM*. We shall define

the sets Ma, for aEPn, An*, Bn* by recursion on n. For aEPo let Ma = M*,

Ao* = 0, P0* = 0. Next, if a'£P„, let a and 8 be in P„+i with aVJBCa'. We

choose Ma and M, v-measurable and such that

*f(Ta - UA £ n + 1 (Ak*\J Bk*)) £ Ma £ (3fa- - UA £ » + 1 *fAk*)*fa,

»/(F/3 - UA £ « + 1 (AfKJBj*)) £ M3 £ (Ia, - UA £ » + 1 *fA?)*fp,

.»*/(Fa - UA £ « + 1 (4»*U £„*)) = .*,

.v*/(F/3 - UA £ ra + 1 (Ak* U Bk*)) = .VM,.

Then we set

4„+i = a*f(M.M„),       Bn+l = B*f(MaM,) if a/3 = 0

and An\\ = B„i\ = 0ifa=r3 = a'.

Finally, we let

A*n+x = Ua' £ PnAlXl, B^+x = U a' £ PnF„+l.

yl = Ura £ co ,4n*, £ = Ura £ co Pn*.

Now, we observe the following facts.

(a) */^„*=*/P„*forall«£co.

(b) 4„*UA£« (Ak*yJBk*)=B*UkEn (Ak*\JBk*)=A*B* =0 for all ra£co.

(c) A*, B* are /x-measurable and *fAn* is v-measurable for all «£co.

(d) *f(An*a) *f(A*B)=*f(Bn*a) *f(B*B)=0 for all «£co and a, BEPn,
at3 = 0.

Proof. It is trivially true for n = 0. So, let 1 =w£co. In view of the choice

of P, we can find a', B'EPk and 7£P*_i, for some A^ra, such that aCa',

PCS', a'B'=0, a'\JB'Cy- If k=n, then a'=a, B' = B and the statement is

clearlv true. If kEn, then*f(B*a)VJ*f(A*a)CMaCMa,-*fAi1') = Ma'-M,>,

*f(B*0)V*f(A *B)CM,CM,..
(e) .v*/(F^n*«) = .v*f(A*a) and .v*f(TB*a) = .v*/(Pn*«) for «£co, aEPj,

jEn + 1.
Proof. Clearly true for » = 0. In view of (c) and (d) we may assume

n = m + l, a'EPm, «£Pm+i, PEPm+u aB = 0, and aVJ/3£tx'. Suppose -4*,+i«

= At+\ = a*f(MaM,). Let Fi= Ta-UA£w + l (Ak*\JBk*). Then:

.v*/F, = .v(*fTiM0) + .v(*/Fi - M,) = .^/(F^nUia) + .v(*/Fi - M,),

.vMa  =    .v(MaM,)  +   .v(Ma  ~   M,).

Since *fTiCMa and .v*/Fi = .vAfa, we must have:
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.v^TAl+ia) = .v(MaM») = .vf(Al+ia).

Similarly for the other equality.

(f) .v*f(Aa) = .v*f(TAa) and .v*/(Ba) = .v*f(TBa) for aEPu
Proof. Since the sets #fA„* are v-measurable and disjoint, -4o* = Bo* = 0, we

get from (e):

.v*f(Aa) = Y"£" -v*f(An*a) = Y^&^ .v*f(TA*a) = .v*f(TAa) ior a E Pu

(g) If T' = T-OkEn + l (Ak*\JBk*), then .v*/F' = Y<*£Pn -v*f(T'a).
Proof. It is clearly true for m = 0. So let 1 ^mGco, aB = 0, a, 8EPn- Then

for some k^n, a', 8'EPk, yEPk-i we must have aEa', BEB', a'B' = 0,

a'KJB'Ey- Then: *f(T'a)E*f(T'a')EMa.-Mf>. and *f(T'B)E*f(T'B')EM^.
Since Ma- and Ms> are v-measurable we have the desired result.

(h)   .v*f(T-(A\JB))=0.
Proof. Let T' = T-(A\JB). Then by part (g) and 6.10 we see that

.pF' = .v*/F' < oo. Hence, v*/F' = 0.

(i) For any T, E«GPi .v*f(T'Aa) = .v*f(T'A) and E«GPi .v*f(T'Ba)
= .v*/(F'B).

Proof. From Part (d), it follows that

E« G Fn .v*f(T'A*a) = .v*f(T'A*).

Hence, since -4o* = -B0* = 0, we have:

E«GPi .»*f(T'Aa)

= E« G Pi   E« G w .v*f(T'A*a) = E» G <o   E« G Fi .v*f(T'An*a)

= Y"£" .v*f(T'A*) = .v*f(T'A).

Similarly for B.

(j) If v4*/{y} j^O, then for some &Gw:aGP*, «^*/{y} ^° imply a*f{y}

EA; and aEPk, aB*f{y} 7*0 imply a*f{y} EB.
Proof. If A*f{y}^0, then there is one and only one i£w such that

Ak**f{y} 5^0. Since *fAk*=*fBk*, we also have Bk* *f{y} 9^0. Now.letaGP*

and aAk* */{y}?^0. Since Ak*a = a*f*f(Ak*a), we have a*f{y} EAk*aEA.

Similarly for B.

7.2. Lemma. There exists a sequence G such that, for every mGw, Gn+i is a

refinement of Gn, Gn has 2" elements, and

(1) If A, BEGn, A 9^B, then AB=0 and A is ^-measurable.

(2) If A, BEGn, then *fA =*fB and *fA is v-measurable.

(3) .v*/(F-<xG„)=0.

(4) If A EGn, aEPn, then .v*f(Aa)= .v*f(TAa).
(5) IfAEGn,then Y«£Pn .v*f(T'Aa) = .v*f(T'A),for any T'.
(6) If A EGn and A*f{y} ^0, then for some kEw.aEPk and aA*f{y} ^0

imply a*f{y} EA.



218 MAURICE SION [September

Proof. We define G by recursion. Let M be v-measurable, *fTEM and

.v*/F= .vM. We set G0= { *fM}. For any ra£a>, if G„ is defined, A £G» and

aEPn, we define Ca(A) and C«'(i4) as follows: if .v*f(TAa)=0, let Ca(A)

= CJ(A)=0;if .v*f(TAa)>0 let Ctt(^) and CJ (A) be two sets satisfying all

the conditions of Lemma 7.1 with 'F' replaced by 'TAa' and P' replaced by

'P", where P' is the sequence defined by Pk =Ea' (a'EPn+k and a'£a), and

such that: Ca(A)\JC*'(A)CAc:. Then we set:

D(A) = Ua £ P„ CM)    and   Z)'(4) = Ua £ P„ C„'(A).

We note that, since

.v*/F = .v*f(ToGn) ^ .v*f(oGn) = .v*fA = .v*f(TA) = .v*/F,

we must have for some aEPn, .v*f(TAa)>0. Thus, D(A)9*D'(A) and they

both satisfy all conditions of 7.1 with 'Pi' replaced by 'P„+i' in (4) and (5).

Finally, to insure property (2), we note that .v*fA = .v*f(TA) = .v*f(TD(A))

= .v*f(D(A)) so that the sets

D(A) = D(A) - OB E Gn *J(*fA - *f(D(B))),

D'(A) = D'(A) -UBEGn *f(*fA - *f(D(B)))

differ from D(A) and D'(A) respectively by a set of tt-measure zero, and

*f(D(A)) =*f(D(B)) for P£G„. Therefore, we let

G„+i = \JAEGn ({15(A)} U {D'(A)})

and see that properties (1) through (6) are satisfied with '«' replaced by

'n + 1'.

7.3. Theorem. If Fis almost complete, v£3K(F,/), p= V(F,f, v), TC<rF,

0< .v*/F< oo, and, for every ACT, .pA < oo implies .pA =0, then there exists

a sequence S such that, for every «£co, Sn+i is a refinement of S„ and

(1) aSn = aSoC *fT,
(2) AESn, BESn, A9*B imply AB = 0,
(3) AES„ implies .vA = .v*/F,
(4) BCaSoand .vB9*0 imply lining, Y,AESn .v(BA)=<x>.

Proof. Let T'CF be such that *fT'=*fT and f(x) 9*f(y) whenever x£F',
yET', X9*y. Let G be a sequence satisfying the conditions in 7.2 with 'T'

replaced by 'T". Let Fo = */D«£w (T'aGn). We define 5 by setting

Sn = UA EGn {To *f(T' A)} for ra £ co

Properties (1) and (2) are clearly satisfied. Also

.v(»/r - To) ^ E« G co .v*/(F' - <rGn) = 0.

Hence:
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.v(To*f(T'A)) = .v*f(T'A) = .v*fT' ior A G G„.

Finally, if BET0 and .vB^O, let C = fl«Gw (T'oGn *fB). Then:

oo = lim   Y<*&Pn -v*f(Ca) < lim   Y<*^Pn   Y& EGn  .v*f(CAa)

= lim YA EGn .v*f(CA) = lim E^ EGn .v(*fC*f(T'A))
n—> oo n—►«

= lim YA G^n .v(B^).
n—»»

7.4. Theorem. // Fis almost complete, vG9TC(F,/), p= V(F,f, v), TEaF,

0 < .v*/F< oo , and, for every AET, ./jlA < <x> implies .uA =0, then there exists

T*, v-measurable and .vT*>0, such that, for every yET*, *f{y} is noncount-

able.

Proof. Let G be a sequence satisfying 7.2 F' = H«Gw *foGn, and F* = Ey

(yET' and *f{y} is closed). Clearly T* is v-measurable and .vT*=.vT'

= .v*/F>0.
Let yET* and 5 = E/1 (.4 is a sequence and ^n+iC^»GG, for all «£w).

If ^G-S, we have An *f{y} 5^0 for all »Ew, and hence by 6.5 there is an

aESq(P) such that anAn */{y}^0. By property (6) in 7.2, this means

0^an+k *f{y} EAn ior some kEu- Hence if xGD^Gw a„, then x is in the

closure of */{tv}, therefore xE*f{y} and xGH«Gw An. If BES, B^A, and
a'G>S<z(P)i ctn Bn *f{y} 5^0 for all «£w, then a'^a. Since there are a counta-

ble number of aESq(P) such that fl«Gw a» = 0, and 5 is noncountable, it

follows that S' = EA (A ES and T* = */("!« Gw -4n) is noncountable, and since

AES', BES', A^B implies ^4„Bn = 0 for some »£w, this means *f{y} is

noncountable for all yGF*.

7.5. Remark. Since F has a topological mesh, there can be at most a

countable number of disjoint neighborhoods in aF. From this it follows that

any closed subset of aF is noncountable if and only if it contains a nontrivial

perfect subset. The fact that, in 7.4, *f{y} contains a nontrivial perfect sub-

set for all yET* can also be seen directly by making a small change In the

proof.

8. Applications. In this section, we indicate some immediate consequences

of the theory developed so far when it is applied to functions on the real line.

Extensions to other spaces can easily be seen.

8.1. Definition, (a, b) = TLt (t is irrational and a(t)b).

8.2. Definition. F0 = Ea (a=(a, b) for some rational a, b with 0^a<b

£1).
8.3. Definition. 3TC0 = Ev (v is an outer measure on [0, l] and intervals

are v-measurable).

8.4. Definition. 2fHi = Ev (vG3Ho; .v[0, l]<oo; .v{y} =0 for O^ygl).

8.5. Definition. 9TC2 = Ev (vG9Tlo; there exists no sequence 5 such that,
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for ra£a>:S„+i is a refinement of Sn; a.Sn = aS0C [0, l]; AES„, BESn, A9*B

imply ^4P = 0; 0 < . vo-S0 < oo ; BE<rSQ and .vP^O imply lim,,^ ^AESn
.v(AB)= oo).

8.6. Definition. A is measurable M if and only if A is v-measurable for

all vEM.

8.7. Definition. A has absolutely M measure zero if and only if .vA =0

for all vEM.

8.8. Definition. JF(Af) =E/ (/is a function on trF0 to [0, 1 ]; */« is meas-

urable M for all aEF0; *f{y} is closed for all y£rng/ —Z where Z has ab-

solutely M measure zero).

We observe that: aFa is the set of irrationals in [0, l], and F0 is almost

complete; A is measurable 9TCo if and only if A is measurable 3TCi; if /£?r(3TCi)

and v£3Ei then v£9TC(F0,/) and p= V(F0,f, v)£3H0 (if we extend p to all of

[0, l] by setting .pA =0 for all sets A of rationals); if /£3r(9U2) and v£9TC2

then v£3TC(F0,/) and V(F0,f, v)£3U2. Then, using 6.13, 7.3 and 7.4 we con-
clude:

8.9. Theorem. ///£J(9TC2) and A is measurable 9TC2 then *fA is measurable

2fIC2.

8.10. Theorem. I//£3r(3Ui) and *f{y} is countable for y£rng f—Z, for

some Z of absolutely 9TCi measure zero, and A is measurable 9Tlo, then *fA is

measurable 31To.

8.11. Corollary. /// is continuous on the irrationals to [0, l] and A is

measurable 9TC2, then *fA is measurable 9TC2.

Proof. */a is analytic for aEF0. Thus/£3:(3Ho).

8.12. Corollary. If f is continuous on the irrationals to [0, l], *f{y} is

countable for yEmgf — Z, for some Z of absolutely 3rti measure zero, and A is

measurable 91Zo, then *fA is measurable 3H0-

8.13. Remark. A set Z of absolutely 3Ri measure zero need not be counta-

ble (see [1]).

8.14. Remark. An immediate consequence of 8.11 is that all projective

sets are measurable 9TC2. Since K. Godel has indicated (see [2]) that the exist-

ence of a projective set P2 which is not Lebesgue-measurable is consistent

with the usual axioms of set theory if the latter are consistent, it follows

that we cannot have Lebesgue measure in 3TC2. It would be interesting to show

directly that Lebesgue measure is not in 3H2, i.e., if one could produce a

sequence satisfying conditions (1) through (4) in Theorem 7.3 with v taken

to be Lebesgue measure.

On the other hand, M. Kondo (see [4]) has shown that for every projec-

tive set P2 of class 2 (see [6] for general definitions) there is a set A, whose

complement is analytic, and a function /, continuous and one-to-one on A,
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such that ^fA =P2. It is well known that/ can be extended to a Gj containing

A, with continuity preserved. Jn view of K. Godel's result mentioned above

and 8.12, it follows that such an extension cannot always assume every value

y only a countable number of times.

It may also be of interest to note that the results of this section may be

extended immediately to complete, separable metric spaces since any such

space that is also noncountable is the image within a countable set, of the set

of irrationals by a one-to-one continuous function.
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