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Introduction. Let 4> be a field of characteristic p>0. The Witt algebra

over <1> is a Lie algebra with basis eo, ei, ■ ■ ■ , ep-i and relations e, o cy

= (j—i)ei+j, where i+j is to be calculated modulo p. H. Zassenhaus [5, p. 47]

generalized the Witt algebra to algebras with basis {ea}, where a runs over

a subgroup of the additive group of the ground field "£, and with the relations

ea o ep= (fj — a)ea+p. Another generalization was obtained by N. Jacobson

[3]. In his investigations Witt [l ] used implicitly the fact that the Witt

algebra is the derivation algebra of the group algebra of a cyclic group of

order p. In the paper cited above, Jacobson proved that the derivation alge-

bra of the group algebra of an elementary p-group, by which we shall mean

throughout this paper an abelian group of the type (p, p, ■ ■ - , p), is simple

if the order of the group is greater than 2.

Recently, I. Kaplansky [4, p. 471 ] gave an ingenious generalization of the

Witt algebra, which includes the generalizations obtained by Zassenhaus

and Jacobson. Let 7= \i,j, • • ■ } be a set of indices, and ® a total(2) addi-

tive group of functionals on 7 with values in the ground field <I>. Kaplansky

considers the Lie algebra 2 over $ with basis {(i, a)}, where iEI, &E®, and

the multiplication

(0.0.1) (i, a) O (j, t) = r(i)(j, a + r) - a(j)(i, a + r).

It appears that 2 is simple except when 7 consists of a single element and 4>

is of characteristic 2. Zassenhaus' algebra is the case when 7 consists of a

single element, while Jacobson's is the case where ® consists of all functionals

with values in the prime field of <!>. We shall call the above algebra 2 a gen-

eralized Witt algebra. In order that 2 he finite dimensional it is necessary and
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sufficient that both I and @ be finite. If ® is finite, then <1> must be of char-

acteristic p>0, and © is an elementary p-group.

Let now 31 be a commutative associative algebra over <I>. A subalgebra 8

of the derivation algebra of 21 will be called regular if fDE2 for every /£2l

and DE2. For a regular subalgebra 2, if there exist Dx, ■ ■ ■ , DmE2 such that

every DE2 is expressed uniquely as D=fxDx+ ■ ■ ■ +fmDm, where /,£2l,

then 2 will be said to be defined by the system (Dx, ■ ■ ■ , Dm) and denoted

by the notation 8(21; Dlt ■ ■ ■ , Dm). It is shown in §2 that any generalized

Witt algebra can be written in the form 8(21; Dx, ■ • • , Dm), where 21 is the

group algebra of an elementary p-group. The object of this paper is to study

the family $ of Lie algebras of characteristic p which can be written in the

form 8(21; Dx, ■ ■ ■ , Dm), with main emphasis on simple algebras. Our prin-

cipal results are as follows: If 21 is a field then all algebras in § are simple ex-

cept when p = 2, m = l (Theorem 5.1). If 4> is algebraically closed then any

simple algebra in g is a generalized Witt algebra (Theorem 6.10). A simpler

form of the generalized Witt algebra is given in Theorem 9.3. By using this

form, the problem of whether or not every generalized Witt algebra can be

defined over GF(p) is partly solved, and it is shown that some new finite

simple Lie rings are contained in %. A subfamily %' of 3, consisting for the

most part of nonsimple algebras, has an interesting property: every algebra

in %' has the same ideal theory as that of a commutative associative algebra

(see §11). In the last section, we extend Jacobson's results on automorphisms

of his algebras to the case of generalized Witt algebras, and show that m is an

invariant of the algebra 8 = 8(21; Dlt ■ ■ ■ , Dm) if 8 is normal simple.

All algebras considered in this paper are finite-dimensional, unless the

contrary is specified.

1. The algebra 8(21; Dx • ■ • , Dm). Throughout this paper, $ will denote

a field of characteristic p>0, 21 a commutative associative algebra over <]?,

with a unit element, and 33(21) the derivation algebra (over <£) of 21. The

multiplication in 35(31) will be denoted by o, i.e., Dx o D2 = DxD2 — D2DX.

Suppose there exist derivations Dx, • • ■ , Dm of 21 such that

m

(1.0.1) DiODj= Y^iikDk
k-l

for i, j = l, ■ ■ ■ , m, where OytGSl. Then the set 8(21; Du • ■ • , Dm) of all

derivations of 21 of the form /iA+ ■ ■ ■ +fn>Dm, where /,£2l, forms a sub-

algebra of 35(21). More generally, the set of all derivations of 21 of the form

fxDx+ ■ ■ ■ +fmDm, where/,• runs over an ideal £) of 21, forms a subalgebra

of 35(21). For,

m

fiDiOgjDj = fi(Digi)Di - g](Djfi)Di + Y figja<ikDk,
k-x
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where all the coefficients of the right-hand side belong to O. In the following

we shall restrict the algebras 8(21; Du ■ ■ ■ , Dm) by imposing the condition:

(1.0.2) fiDi + ■ ■ ■ + fmDm = 0 implies /, =   •••=/„ = 0.

The number m will be called the D-dimension of 8(21; Di, ■ ■ ■ , 77>m).

Because of the condition (1.0.2) there exists a one-one correspondence

flDl +   •   •  •   + fmDm <-» (/l,  •  ■  •   , fm)

between the elements of 8(21; D\, ■ • ■ , Dm) and the set of all vectors

(fu • • • , fm), where /, runs over 21. If we identify fiDt+ ■ • ■ +fmDm with

(fu • ■ ■ ,fm) then

«(/i. ■ ■ ■ ,fm) = (afi, ■ ■ • , ocfm) ior aE $•

(1.0.3) (fl,  ■■■   ,fm)   +   (gl,   ■   ■   ■   , gm)   =   (fl +  gl,   ■   ■  ■   , fm +  gm),

(fu   ■   ■   •   , fm) O (gl,   ■   ■   ■   ,  gm)   =   (ki,   •   •   •   ,   km),

where

hi=Y (f,(D.gi) - g.(D,fi)) + Y /.**».«•
s u ,t

Suppose that the derivations 77>i, ■ ■ • , Dm are commutative, i.e., Di o 7?y = 0

for all i, j, not necessarily satisfying (1.0.2). Then, conversely, we may define

a Lie algebra 2* over $ by starting with the set 2* of all vectors (/i, • • • ,fm)

and defining scalar multiplication, addition, and multiplication according to

(1.0.3) where we put atjk = 0 for all i, j, k. 2* is in general different from

8(21; Di, ■ ■ ■ , Dm). But it is easily seen that the set 3 of all vectors

(/ii ' * ' > fm) satisfying Yf>Di = 0 forms an ideal of 8* and that 8*/3
= 8(21; 77)i, ■ • • , Dm). Since we are mainly interested in simple algebras, we

prefer to work with 8(21; Di, ■ ■ ■ , Dm) rather than 8*. In what follows we

study the properties of the algebras 8(21; Du ■ • ■ , Dm), always assuming

(1.0.2).
2. Generalized Witt algebras. We show that any generalized Witt algebra

8 can be written in the form 8(21; 77>i, • • • , Dm). Let 8 be defined with respect

to a finite set I = {1, • ■ • , m} of indices and a finite total(2) additive group

® of functionals on I with values in$. Let ®={u„,ur, ■ ■ ■ } be a multiplica-

tive group isomorphic to ® via the correspondence m„<->o\ For each iES we

define the mapping 0,-: ®—><$ by 6i(uc) =a(i). Then 0i, • ■ ■ , 6m are homo-

morphisms of ® into the additive group of $ such that

(2.0.1) 6i(uc) =   • • • = em(u,) = 0 implies u„ = 1.

The fact that ® is total can be expressed as follows:
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(2.0.2)    axdx + • • • + am6m = 0, with at E $, implies ax = • • • = am = 0.

Now let 21 be the group algebra of ® over <1>, and define the linear mapping

Di of 21 into itself by DiU„ = Bi(ut)u„. Then Di is a derivation of 21, since

Di(uauT) = Di(u„+r) = Bi(u,+t)ua+T

= 6i(ui)uauT + Bi(ur)u,uT

= (Diui)ur + uG(DiUr).

It is clear that (1.0.1) is satisfied for Dx, ■ ■ ■ , Dm, since Di o Dj = 0 for all i

and/. We will show that (1.0.2) is also satisfied. Let/iT>i+ • • • +fmDm = 0,

with/j£2I. Then we have Y>f$i(u<>) =0 for all u„. Letf,= Y* oti(r)uT. Then

we have Y* cti(r)Bi(uc)=0 for all r and cr. From (2.0.2) it follows that

ai(r) =0 for all * and r. Thus/i= • • • =fm = 0. Therefore we can define the

algebra 8(21; A, • • • , Dm). The set {m„TJ>,}, where *'£I, crG®, is a basis of

this algebra, and we have

u,Di o urDj = u„(Diut)Dj — ur(D{ut)Di

= r(i)ua+TDj - o-(j)ua+TD,.

Comparing the above with (0.0.1), we see easily that the given generalized

Witt algebra is isomorphic with 8(21; Du • • ■ , Dm). We note that (2.0.1) is

equivalent to the following property of Dx, ■ ■ ■ , Dm:

(2.0.3) Dxf =■■■= Dmf = 0 implies / E $.

Conversely, for any elementary p-group ©, if there exist homomorphisms

0i, • • • , 0m of ® into the additive group of $ such that (2.0.1) and (2.0.2)

hold, then we can construct a generalized Witt algebra by the above method.

Suppose now that homomorphisms di, • • • ,9m satisfy (2.0.1) and (2.0.2).

Let the order of ® be pn, and let Xi, • • • , x„ be a set of independent generators

of ©. We sett?i(x>) =a,jE^- Then (2.0.1) and (2.0.2) are respectively equiva-

lent to the following conditions:

If kx, • • • , kn are integers such that

n

(2.0.4)     Y <*iikj = 0, * = 1, • • • , m,
i-l

then &i = • • • = k„ = 0 (mod p), and

(2.0.5)    The rank of the matrix (a,-,),        i = 1, • • • , m, j = 1, • • • , n, is m.

Thus a generalized Witt algebra whose dimension is mpn is completely char-

acterized by mn elements a,jE^ satisfying (2.0.4) and (2.0.5). From (2.0.5)

it follows immediately that m^n. If m = l then (2.0.4) implies that $ is of

rank ^ra over GF(p). Therefore if m = l, and $ = GF(p) then ra = 1, so that
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the only generalized Witt algebra of 77)-dimension 1 over GF(p) is the Writt

algebra.

3. Reduction of the algebras 8(21; Dx, ■ • ■ , Dm) to orthogonal form. In

this section, we show that any simple algebra of the form 8(21; 77>i, • • • , 77>m)

can be written as 8(21; 77>i , ■ • • , D'm), where D' o Dj =0 for all i, j.

An ordered set (T>i, • • • , Dm) of derivations of a commutative associative

algebra 21 will be called a system of derivations of 21 or simply a system if it

satisfies (1.0.1) and (1.0.2). We shall say that the algebra 8(21; Du ■ • • , Dm)

is defined by the system (Di, ■ ■ ■ , Dm). A system (Di, ■ ■ • , Dm) will be called

orthogonal ii 7D,-oZ>y = 0 for all i, j, that is, if in (1.0.1) a,y* = 0 for all i, j, k,

orthonormal if there exist m elements /<£2l such that 7)t/y = 5<y (Kronecker

delta). An orthonormal system is always orthogonal. Two systems

(Du ■ • • , Dm) and (DI, • • ■ , D'm) of 21 will be called equivalent if there exist

c»v£2l such that
Di = Y diDi (i = 1, • • • . m)

i

and such that det (e,y) is a unit of 21. (Du • ■ • , Dm) and (D{, • • • , D'm) are

equivalent if and only if 8(21; Du ■ ■ ■ , Dm) =8(21; D{, ■ • • , D'm) as sets.

Lemma 3.1. A system (Du ■ • ■ , Dm) of derivations of 21 is equivalent to an

orthonormal system if and only if there exist fi, ■ ■ ■ ,/m£2l such that det (Difj)

is a unit in 21.

Proof. Suppose that (Z>i, • • • , Dm) is equivalent to an orthonormal sys-

tem (D{, ■ ■ ■ , D'm) and let Z>,= Yi c,ijDj , Z>,/y = 5,y, where det (c,y) is a unit

in 21. Then we have 77>^y = c,y. Thus det (Z>/y) is a unit in 21.

Conversely, suppose that det (Z>,/y) is a unit in 21 for some/i, ■ • • ,/m£2I.

Let (el/) he the inverse matrix of the matrix (Z>,/y). We set 7?,' = Yi ^Pi-

Then (D{, ■ ■ ■ , D'm) is equivalent to (JD\, ■ ■ ■ , Dm) and we have £)//, = 8,y,

so that (ZV, • • ■ , D'm) is orthonormal, which proves the lemma.

For a given algebra 8 = 8(21; D\, • ■ ■ , Dm) we denote by $ the set of all

elements c(E2I such that Dc = 0 tor all DE2. $ is a subalgebra of 21. S will

be called the algebra of constants of 8. Since 21 is always assumed to have a

unit element, we have cE$ if and only if 77>ic= • • • =Dmc = 0 ior some de-

fining system (Dt, • • ■ , Dm) of 8.

The following lemma is useful.

Lemma 3.2. If the algebra $ of constants has a divisor of zero, then 8(21;

Di, • • • , Dm) is not simple.

Proof. Let c£S be a divisor of zero. The set 3 of all cD, where DE2,

forms an ideal of 8. For, (cD) o D' = c(D o D')ES- If 3=0 then from (1.0.2)

it follows that c = 0, a contradiction. If 3 =21 then Di = c(fiDi+ • ■ ■ +fmDm)

for some /i, • • • , fmE%. Then again from (1.0.2) it follows that l=e/i,

which is impossible if c divides 0, and therefore 8 is not simple.
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A commutative associative algebra 21 with unit element is completely

primary if the set of all nonunits coincides with the radical of 21.

Lemma 3.3. If 8(21; Di, ■ • • , Dm) is simple then 21 is completely primary.

Proof. Since 8(21; D1} ■ • • , Dm) is simple, from (3.2) it follows that the

algebra S of constants has no divisor of zero. Since 21 is commutative and S

is finite-dimensional over the ground field, J? is a field. Let/£2I be a nonunit.

Since Difp=pf"-1Dif = 0 for all i, we have f'E®. lff"9*0 then/" is a unit in
21, and hence / is also a unit. This is a contradiction. Therefore fp = 0 for all

nonunits/. Thus 21 is completely primary.

Lemma 3.4. Let 21 be completely primary. If fi, ■ • • , /„ are such that

ffi— " " " =//» = 0 withfE^f implies f = 0, then at least onef, is a unit in 21.

Proof. Assume that all/* are nonunits. Then there exists a positive integer

k such that/*= • • • =/£ = 0, and hence

(3.4.1) ft.../: = 0

if ri+ ■ ■ • +rn^nk, where ru ■ ■ • , r„ are non-negative integers. Suppose,

therefore, that (3.4.1) holds whenever ri+ • • ■ +r„>r, a positive integer.

Letrx+ ■ ■ ■ +rn = r,f=fx1 ■ ■ -fn\Thenffx= ■ ■ • =//» = 0, and hence/ = 0.

Using complete induction with respect to r, we can conclude that (3.4.1)

holds, whenever n+ ■ • • +r„>0. In particular, fx = • ■ • =/„ = 0. Take a

nonzero /£2I. Then we have//i= • • • =ffn = 0, a contradiction. Therefore

at least one /,■ must be a unit.

We can now prove the following

Theorem 3.5. If 21 is completely primary, then any system (Dlt • • ■ , Dm)

of derivations of 21 is equivalent to an orthonormal system. In particular, any

simple algebra of the form 8(21; 7>i, • • • , Dm) is defined by an orthonormal sys-

tem.

Proof. Let «i, • • • , m„ be a basis of 21 over the ground field $. We set

Dxu^ ■ ■ ■ Dxuir

(3.5.1) /n-...v =

DTun ■ • ■ Dru,r

where l^r^m. We shall prove by using (3.4) that/tl...,m is a unit for some

choice of ix, ■ ■ ■ ,im- Suppose, therefore, that/£2l is such that//,-,...,-M = 0 for

all ix, • • • , im. If

(3-5.2) //.v-*r = 0

is true for some r, and all ix, i%, ■ • • , ir, then by expanding the determinant

/,,...,r along the rth column, we have
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(3.5.3) //,-,...,,= (fcxDx + • • • + fcrDi)UiT = 0,

where cr =/»v»'r-r Since (3.5.3) is true for all ir, we have/ci7?i+ • • • -\-fcrDr

= 0. Then from (1.0.2) we have/ci= • • • =fcr = 0, and in particular//,■,...,■,_,

= 0 for all ix, ■ • • , tr-1. Proceeding by induction with respect to r, we can

conclude that (3.5.2) holds for all r. Taking the case r = 1, we havefD1uil = 0

for all ix. Therefore/7?i = 0. Hence from (1.0.2) we have/ = 0. Therefore by

Lemma 3.4 /,-,...,■„ is a unit for some ix, • • • , im. Then from Lemma 3.1 it

follows that (Dx, • • • , Dm) is equivalent to an orthonormal system.

The second part of the theorem follows immediately from the above result

and Lemma 3.3.

4. Some lemmas. We establish here a number of results we will need

later. We assume throughout this section that (Dx, • • • , Dm) is orthonormal,

that xx, • • • , xm£2I are such that 7J>ixJ = 8ly, and that 3 is an ideal of 8 = 8(21;

Dx, • • • , Dm).

Lemma 4.1. 7/T5=/17>1+ • • • +fmDmES, then fkDES for any k.

Proof. Since Dxk =fk, we have D o (xkD) =fkDE$.

Lemma 4.2. T/7)=/iT>i+ • • • +/mT5m£3 and iffk is a uniting, then there

exists gxDx+ ■ • ■ +gmDmE3, where gk = l and where g, = 0 for any i such that

fi = 0.

Proof. Consider the element UE3, where

(xk      \ xk /xk\

7;D')°D = TtDk°D)-Dh-JD*

xk xk(Dfk)
= —(DkoD) -Dk +-r—Dk.

fk f2k

Since/A7J>£3 by Lemma 4.1, we have also F£S, where

(Xi      \ xk xk(Dkfk) /xk\
- Dk\ o (fkD) =-(DkoD)+ -±-LlD - fkDl-)Dk
Jk       ' Jk Jk ^Jv

xk                      xk(Dkfk)                    2xk(Dfk)
= -(DkoD) + -±-^D-Dk+--^—Dk.

/» fl fl
Then we have V—2UES, where

xk xk(Dkfk)
V-2U =-(DkoD)+ D + Dk.

fk fk

Setting V-2U = gxDx+ ■ ■ ■ +gmDm, we have

Xk(Dkfk)      xk(Dkfk)  ,   ,
gk=-+—-+1 = 1,

jk Jk
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and for i^k,
Xk(Dkft)       xk(Dkfk)f1

Therefore, if/, = 0 then gi = 0, completing the proof.

Lemma 4.3. 7//i, • • • , fm belong to the algebra $ of constants of 2 and are

such that fiDx+ ■ ■ ■ +fmDmE3, and if some fk is a unit, then D;£3 for all

i = l, • ■ ■ , m.

Proof. Suppose that/* is a unit. Then (/1D1 + • • • +fmDm) o ((xk/fk)Dx)

= 77>lG3 for all * = 1, ■ ■ ■ , m.

Lemma 4.4. Di£3 implies 3=8 except when p = 2, m = l.

Proof. If T>iE3 then from Lemma 4.3 it follows that 77>,£3 for

i = l, ■ ■ • , m. Take an arbitrary element fEA. Then from Dyo(/D.)

= (Dff)Di we have

(4.4.1) (Djf)DiEI for all i, j.

First we consider the case pj=2. Since Di(x\) = 2xi, from (4.4.1) we have

2xiDiE3- Since p^2, we have X;D,E3. Hence

(4.4.2) (fDi) o (xtDt) = fDi - x,(A/)A E 3-

On the other hand, since D,(x,/) =f+Xi(Dif), from (4.4.1) we have

(4.4.3) fDi + Xi(Dif)Di E 3-

From (4.4.2) and (4.4.3) we have 2/D.G3. Since pj=2 we have/D.G3. Since

/ and i are arbitrary, we have 3 = 8.

Now we consider the case p = 2, m > 1. For given i we may take j such that

jj&i. Since Di(x,xy) =Xy, from (4.4.1) we have XyZ>i£3- Then (/Dy) o (xyD,)

=/D,-xy(D,/)Dye3. However, we have Xj(Dif)Dj = Di(xjf)DJE3 from
(4.4.1). Therefore/D.G3- Since/and i are arbitrary we have 3=8, complet-

ing the proof.

5. Derivations of a field. A subalgebra 8 of the derivation algebra SD(2I)

of 21 will be called regular if/D£8 for every/G2I and D£8. 33(21) itself is a

regular subalgebra of 3)(2I). If 21 is itself a field, any regular subalgebra 8 of

SD(2I) may be considered as a vector space over the field 21, since if D, D'£8,

then/D+/'D'G8,where/,/'G2I. Take a basis Du ■ ■ ■ , Dm of 8 over 21. Then

it is easily seen that Du • • • , Dm satisfy (1.0.1) and (1.0.2). Therefore, if 21

is a field, any regular subalgebra of 7D(2t) is of the type 8(21; Dlf • ■ • , Dm),

and we call m the D-dimension of the regular subalgebra 8.

Theorem 5.1. Let 21 be afield over 4>. Then any regular subalgebra 2 of the

derivation algebra of 21 over $ is simple except when p = 2, m = l, where m is the

D-dimension of 2.
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Proof. 8 can be written in the form 8(21; Dx, ■ • • , 7>m). By Theorem 3.5 we

may assume that (Dlt ■ ■ ■ , Dm) is orthonormal.

Let 3 be a nonzero ideal of 8 and fxDx+ • • ■ +fmDm be a nonzero element

in 3 such that the number of nonzero/< is as small as possible. If fk9*0 then

by Lemma 4.2 3 contains an element gi7>i+ • • • -\-gmDm such that gk = l and

such that gi = 0 whenever/t = 0, so we may assume at the outset that/* = l

for some k. Since 3 is an ideal, we have D{ o (fxDx+ ■ • • +fmDm) = (Dtfi)Dx

+ • • • +(D,fm)DmE3 for i = l, ■ ■ ■ , m. Since/* = 1, the number of nonzero

coefficients in (Dtfi)Dx+ ■ ■ ■ +(D(fm)Dm is less than that of /iZ?i+ • • •

+fmDm. Therefore DJj = 0 for all i,j, and hence we have/i, ■ • • ,/m£S, the

algebra of constants of 8. Since St is a subfield of 21, from Lemma 4.3 we have

T>;<E3 for * = 1, • • • , m, and 3 = 8 from Lemma 4.4. Therefore 8 is simple.

The method used in the proof of Theorem 5.1 can also be applied to the

case of a field of characteristic 0, if we start with an orthonormal system. For

example, consider the field $(xi, • • • , xm) of rational functions in m variables

Xx, • ■ ■ , xm over a field <£ of characteristic 0, and let 21 be a finite-dimensional

extension field of 3>(xi, • • ■ , xm). Then 21 is an infinite-dimensional algebra

over <£. It is well known that there exist derivations d/dxx, ■ ■ ■ , d/dxm of 21

over <i> such that (c3/t5x,)x3 = 5,j, and that every derivation D of 21 written is

uniquely in the form

D = /,-+ ■••+/«-f    where   fx, • • • ,/. E 21.
dxi dxm

In other words, the derivation algebra 35(21) of 21 over $ can be written as

35(21) =8(21; d/dxx, • ■ • , d/dxm). The above method enables us to prove that

35(21) is an infinite-dimensional simple Lie algebra of characteristic z"ero.

If we consider the polynomial domain 2l=<l>[xi, • ■ • , xm], instead of

<t>(xi, ■ • • , xm), as an algebra over <1>, then again we may prove that 35(21) is

simple.

The above two classes of infinite-dimensional simple Lie algebras, together

with the infinite-dimensional algebras constructed by Kaplansky's method,

may be regarded as analogues of the Witt algebra in the case of characteris-

tic 0.

6. Simple algebras when $ is algebraically closed. The main result of this

section is that if the ground field <£ is algebraically closed then any simple

algebra of the form 8(21; Dx, ■ • • , Dm) is a generalized Witt algebra.

Lemma 6.1. Suppose that 8 = 8(21; Dx, ■■ ■ , Dm) is simple. 7//G21 is such

that Dif = \,f, \iE$,for all i, thenf = 0 or f is a unit in 21.

Proof. If/ is as above, the set 3 of all elements of the form fD, where

DE2, is an ideal of 8. For, if Yg<D,E2 then (fD) o (Yg&i) =flli.{Dgi)Di
-g,\iD)E3- Since 8 is assumed to be simple, 3 = 0 for 3 = 21. If 3=0 then

f = 0 by (1.0.2). If 3 = 21 then again by (1.0.2)/is a unit in 21, as required.
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By Theorem 3.5, any simple algebra of the form 8(21; Du • ■ ■ , Dm) is

defined by an orthonormal system. Moreover, by Lemma 3.2, the algebra $

of constants for the simple algebra 8(21; Di, • • ■ , Dm) is a field over $, and

if <i> is algebraically closed, we have $ =<J>. Since we are mainly interested in

this section in simple algebras, we shall assume that the conditions (6.1.1)-

(6.1.3) below hold. The last two of these are necessary if 8(21; Di, • • • , Dm) is

simple, as is seen from Lemma 6.1 and the above remark. The ground field <£

is assumed algebraically closed.

(6.1.1)    The system (D\, • • • , Dm) is orthogonal.

If / E 21 is such that D,/ = X</ with K E $ tor all  i,  then / = 0
(6.1.2)

or / is a unit in 21.

(6.1.3)    Djf = • • • = Dmf = 0 implies / E *.

These conditions and the fact that $ is algebraically closed will enable us to

prove that 21 is the group algebra of an elementary p-group.

Lemma 6.2. Suppose that 4> is algebraically closed. Then any nonzero ideal

of an algebra 2 = 8(21; Di, • ■ • , Dm) defined by a system satisfying the conditions

(6.1.1)—(6.1.3) above contains an element of the form Ya< Di, where at least one

ai is a unit in 21.

Proof. Let 3 be the nonzero ideal of 8. For any i, the mapping: X—*Di o X

defines a linear transformation of 3 into itself. Since D, o (Dy o X)

= Dj o (Di o X) for all i and j, and since $ is algebraically closed, there exists

a nonzero element A = Ya< Di in 3 such that DiO.4 = X*4, where X,-£$>

for all *. Then we have D;ay = Xiay for all i and/ Hence by (6.1.2), every ay is

either 0 or a unit in 21. Since not all a, are zero, at least one a, must be a unit.

Lemma 6.3. Suppose that $ is algebraically closed. Then for any system

(Di, • • • , Dm) the conditions (b.I.l)-(o.1.3) imply the following: If f,ax, • ■ ■ ,am

in 21 are such that D,f = atf for all i, then / = 0 or f is a unit in 21.

Proof. The set of all elements of the form YffiDi is easily seen to be an

ideal of the algebra 8(21; Du ■ ■ ■ , Dm). If f^O then 3j=0 and hence by

Lemma 6.2 there exists an element Yai Di in 3 for which at least one a,- is a

unit. Suppose Yffi D,- = Ya* Di. Then ffi = at and hence/ is a unit.

Lemma 6.4. Suppose that <i> is algebraically closed. Then any orthogonal sys-

tem equivalent to an orthogonal system (Du ■ ■ • , Dm) satisfying (6.1.2) and

(6.1.3) also satisfies (6.1.2) and (6.1.3).

Proof. Let (D{, • ■ • , D'm) be the orthogonal system equivalent to

(Di, • • • , Dm), and let D,= Yi djDj. If D//=Xy/ for all j then D</"=o</",
where at= Yi CijXj. Then from Lemma 6.3 it follows that/ = 0 or/ is a unit.

Thus (6.1.2) is verified for (DI, ■ ■ ■ , Dm). Suppose now D// = 0 for all j.
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Since det (dj) is a unit in A, we have D,f = 0 for all *'. Therefore/G^- Thus

(6.1.3) is also verified.

We consider 21 as an S2-module, where the operator domain fl consists of

multiplications by elements in 4> and the linear mappings Dit • • • , Dm (of 21

into itself). Since every two operators in fl are commutative, and since <$ is

algebraically closed, all the factor modules in any composition series of the

fl-module 21 are one-dimensional vector spaces over #.

We decompose 21 into a direct sum 21 = Y%' OI directly indecomposable

fl-submodules. Then, since Di, • ■ ■ , Dm are commutative, each Dj has exactly

one characteristic root X<„ in 2L, when we consider Dt as a linear mapping of

2L into itself, and there exists a nonzero w„G2L such that D.m, =X,„m„ for all

i and v. By the condition (6.1.2), uv is a unit. Since uvvE$ by (6.1.3), and since

<£ is algebraically closed, we may assume

(6.4.1) uv = 1 for all v.

We shall prove that all the u, forms an elementary p-group with respect to

the multiplication in 21.

Lemma 6.5. If D,/ = X,/, X,G^, for all i, and if f 9^0, then there exists an %„

such thatfE^-p, X, = X,>.

Proof. Let /= Yf*> where /„G2l„. Then from D,/ = X,/ it follows that

YDif>= Y^ifv Since Dif„G2L, we have D,/K=X,/„ for all i and v. Suppose
that/„?^05^/„ for two different indices v and p. Then, by condition (6.1.2),

/„ and /,, are units. By an easy calculation we obtain Di(//^1)=0 for all i.

Then by (6.1.3) we havef,fplE$. However, this is impossible since 2l^2fM

= 0, and therefore all but one of the/, are zero. Thus there exists an 2IP such

that/G2lp. Since/^O is assumed, and since D,- has only one characteristic

root X,„ in 2IP, we have X<=X,>

Now, for any two indices v and p, we have Di(u,uu) = (X,-,+X,>)m,mm for all

i. Therefore, since UyU^O by (6.4.1), it follows from Lemma 6.5 that there

exists an 2fP such that uvuaE2IP and such that

(6.5.1) \i? + X,> = X,p for all i.

From (6.5.1) it follows that D^u^u^u^1) =0 for all i. Then (6.1.3) yields

uvuu = aup with some aE$, and therefore by (6.4.1) ap = 1. Hence (a—l)p = 0,

a = 1. Thus we have uvuu = u„. Therefore all the uv form a group ® with respect

to the multiplication in 21. ® is an elementary p-group because of (6.4.1).

We shall show that there exists only one index v such that X,p = 0 for all i.

If/= 1 is the unity element of 21 then Dif = 0 for all i. Therefore by Lemma

6.5 there exists an index 0 such that 1 G2lo. Suppose that X,> = 0 for all i. Then

Di(uv) =0 for all i. By (6.1.3) we have u,E^, and hence w, = l, v = 0. General-

izing the previous statement we can show easily that X,,. =X,M for all i implies

v=p.
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Lemma 6.6. An element fE"®. belongs to 21, if and only if there exist integers

t,>0, i = l, ■ ■ • , m, such that

(6.6.1) (Z?,-X<,)"/=0, (i= 1, ••• ,m).

Proof. The "only if" part is obvious. In order to prove the "if" part, let

/= Yf^f^'&v Since 2L. are Q-submoduIes, (6.6.1) yields (7?,— A,,)'»/"„ = 0 for
all i and p. Then/„ = 0 for p9*v follows from the fact that 7), has only one

characteristic root A,> in 2I„. Hence f=f,E2L-

Corollary 6.7. If DjEKofor all i thenfE%o-

Lemma 6.8. 2L = m,2Io for all v.

Proof. Let/£E2I„ g£2l„. Then there exist integers s,>0 such that

(6.8.1) (£>, - \it)'<g = 0, (i=l, ■■-,«).

By applying the Cartan-Weyl identity to (6.3.1) and (6.5.1) we obtain

(6.8.2) (Di - (A* + XJV^'-Kfg) = 0

for all i. Then by Lemma 6.3 and (6.2.1), we have fgE2IP, where uvu^ = u„.

Thus we may write

(6.8.3) 21,21, C2L, («,«„=«,).

Since ra, is a unit of 21 it follows that the linear multiplication induced by left

multiplication with ra, is invertible, hence there is the decomposition of 21

into the direct sum

(6.8.4) 21 =X>,2L,

Moreover, the module w,2I„ is fi-invariant, because for g£2L, we have D,(u,g)

= (Diui)g-\-u„Di(g) =uv(\ivg+Dig) (Era„2L.. Hence by using the group property

of @ it follows that (6.8.4) is a direct decomposition of 21 into fl-submodules

each of which is contained in a different summand of the given Remak de-

composition of 21. In other words we have m„2I„ = 2lp, where up = u,ull, and in

particular 21, = rav2Io-

From (6.8.3) we have

Corollary 6.9. 2lo is a subalgebra of 21.

Since 2Io depends on the system (Dx, ■ ■ ■ , Dm) we may write 2I0

= 2lo(7>i, ■ ■ • , Dm). We shall show that there exists an orthogonal system

(Ex, ■ ■ ■ , Em) equivalent to the given system (Du ■ ■ ■ , Dm) such that

2lo(E1, ■ • ■ , Em) =#. To do this, it will be sufficient to show that we can

always find an orthogonal system (D{, ■ ■ ■ , D'm) equivalent to (Dy, ■ ■ ■ , Dm)
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such that the dimension of 2lo(-Di', • ■ • , D'm) is less than that of 2lo(7>1, • ■ • ,

Dm) whenever the latter is greater than one. Since DA =0 for all i, it follows

that there is a 12-composition series

(6.10.1)    0 < $ < $ + $w2 <•••<*+ $w>2 + ■ • • + 4>wn = 2l0

for the fl-module 2I0. If w2 is not a unit then by (6.1.3) we have wl = 0. Then

I+W2 is a unit. By replacing w2 by l-\-w2 if w2 is not a unit, we can always

assume that w2 is a unit. From (6.10.1) we have DiW2 = 8iE$ for all i. By

(6.1.3) we see that not all p\ are zero. We may assume without loss of general-

ity that 8x9*0. We set x = pW D{' =DU D[' =81Di-8iD1 for tVl. Then

(D{', ■ ■ ■ , D't) is an orthogonal system equivalent to (7>i, • • • , Dm) such

that D['x = l, D'i'x = 0 for all *V1. Set D[ =xD(', D[ = T>," for tVl. Then
(7?i , • • • , 7>m) is an orthogonal system equivalent to (DC, • ■ ■ , D't,) and

hence to Dx, • • • , Dm) such that

(6.10.3) D[x=x9*0,    where     x G 2I0(7J>,, • • • , 7>m);

(6.10.4) Di=Y CiiDf, where Cii E 2I0(T>„ ■ ■ ■ , Dm).
i

The new orthogonal system (D{, • • • , T5m), being equivalent to (Dlt ■ ■ ■ ,Dm),

satisfies (6.1.2) and (6.1.3) by Lemma 6.4.

We shall show that %0(D{ , • • • , D'm) is properly contained in 2lo(T>i, • • • ,

Dm). Take a basis Vx, ■ ■ ■ , vr of 2Io(T,i', • • • , D'm) such that

(6.10.5) D[vx = 0,        D\vk = Y <*<ksvs (k > 1),
s<k

for all *, where a,t,£$. From (6.10.5) and (6.1.3) we have VxE$, and hence

VxE%o(Di, ■ ■ ■ , Dm). Suppose that vu • ■ ■ , t>*_,e«o(A, ■ ■ ■ , Dm). Then

from (6.10.4) and (6.10.5) we have

m

(6.10.6) DiVk = Y Y CtjajksV,.

Since c,j, aiks, and v, belong to 21o(7>i, • • • , Dm), by Corollary 6.9 we see that

the right-hand side of (6.10.6) belongs to 210(T>i, • ■ ■ , Dm) for all i. Therefore

from Corollary 6.7 it follows that vkE^.o(Dx, ■ ■ ■ , Dm). Proceeding by induc-

tion with respect to k, we have i>i£2lo(T>1, • • ■ , Dm) for all k. Therefore

2to(TJ>1', ■ • • , D'm)^n0(Dx, • • • , 7>m). Suppose X0(D{, ■ ■ ■ , D'm)=^a(Dx,

• ■ ■ , Dm) =2I0. Since/G2lo implies D{f E%o, we can regard D{ as a linear

mapping of 2lo into itself. By the definition of 2Io, 0 is the only characteristic

root of D{ in 2(o- However, this contradicts (6.10.3). Thus %a(Dx, • • • , Dm) is

properly contained in 2(o(7>i, • • • , Dm), and hence the dimension of the

former is less than that of the latter. Repeating the above process, we obtain
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an orthogonal system (Ei, • • • , Em) equivalent to the given system

(Di, ■ ■ ■ , Dm) such that 2lo(.Ei, • ■ ■ , Em) is one-dimensional.

Since the algebras 8(21; Di, • • • , Dm) defined by the equivalent systems

are the same, we may suppose 2Io=$- Then from Lemma 6.8 we have

(6.10.7) 21 = Y $u>,       DiUv = X,>«„

for all i and v. From (6.7.9) we see that 21 is the group algebra of the ele-

mentary p-group ® formed by all «,. We shall show that if (6.10.7) holds, then

8(21; Di, • • • , Dm) is isomorphic to a generalized Witt algebra. We define the

mapping di of ® into $ by 9i(ur) =X,„. Then from (6.2.1) it follows that

0i, • • • i 0m are homomorphisms of ® into the additive group of $. We shall

show that (2.0.1) and (2.0.2) are satisfied by 0i, • • • , 0m. Suppose 0i(«(r)

= • • • =6m(uc) =0. Then X,v = 0 for all i, and henceo- = 0, u„ = 1. Thus (2.0.1)

is satisfied. Suppose now that ai0i + ■ ■ ■ +am0ra = O. Then Yt a.XiK = 0 for

all v, and hence from (6.10.7) we have aiDi-|- • • • +amDm = 0. Then (1.0.2)

yields «i= • ■ • =am = 0. Thus (2.0.2) is also satisfied. Therefore by the re-

sult in §2 8(2(; Du ■ • ■ , Dm) is isomorphic to a generalized Witt algebra.

Thus we have proved the following

Theorem 6.10. Suppose that $ is algebraically closed and that the system

(Di, ■ ■ ■ , Dm) is orthogonal. Then the algebra 8(21; Di, ■ • • , Dm) is isomorphic

to a generalized Witt algebra if and only if the following conditions (6.1.2) and

(6.1.3) hold:

If f E 21 is suck that Dif = X,/, where X,- G *, for all i, then f = 0
(6.1.2) J J

or f is a unit in 21.

(6.1.3) Dif = • • • Dmf = 0 implies f E $•

In particular, if an algebra 2 of the form 2C$L;Di, ■ ■ ■, Dm), where (D\, ■ ■ ■ ,Dm)

is not necessarily orthogonal, over an algebraically closed field 4> is simple, then

2 is isomorphic to a generalized Witt algebra and 21 to the group algebra of an

elementary p-group.

Let 21, 93 be commutative associative algebras over the same ground field

$, and (Di, • • • , Dm), (Ei, ■ ■ ■ , Em) orthogonal systems of derivations of

21, 99, respectively, such that

(6.11.1) 2Io(D1, • • • , Dm) = 21,       93o(£i, • • ■ , Em) = *.

Let (5 be the Kronecker product algebra of 21, 93, and define derivations Fi of

& by setting Fi = D{ on 21 and Ff = Ei on 93. Then (Fu • • • , Fm) is an orthog-

onal system over (5. It is easily seen that the conditions (6.1.2) and (6.1.3)

are satisfied for (Fu • ■ • , Fm). Hence by Theorem 6.10 we obtain 8(S;

Fi, ■ ■ ■ , Fm) isomorphic to a generalized Witt algebra. 8(S; Fi, • ■ • , Fm)

may be regarded as a composite of 8(21; Du ■ • ■ , Dm) and 8(93; £i, • • • , Em).



524 RIMHAK REE [November

Note that (Fi, ■ • • , Fm) does not always satisfy the conditions (6.1.2)—

(6.1.3) unless (6.11.1) holds.

7. Nilpotent systems (1). A system (Du • • • , Dm) will be called nil-

potent if there exists a positive integer k such that D*= ■ • • = Dm = 0. If the

ground field $ is algebraically closed then an orthogonal system (Di, • • • , Dm)

is nilpotent if and only if 2Io(Dx, • • • , Dm) =21. In the preceding section we

have proved that if <J> is algebraically closed then any simple algebra of the

form 8(2T; Di, ■ ■ ■ , Dm) can be defined by an orthogonal system for which

2lo=<£- The case 2(o = 2l and the case 210=$ are two extreme cases. Now we

shall prove the following

Theorem 7.1. Suppose that $ is algebraically closed. Then any orthogonal

system (Di, • • • , Dm) satisfying (6.1.2) and (6.1.3) is equivalent to a nilpotent

orthogonal system. In particular, any generalized Witt algebra over $ can be

written in the form 8(21; D\, ■ • • , Dm), where 21 is the group algebra of an ele-

mentary p-group and where (Di, ■ ■ ■ , Dm) is a nilpotent orthogonal system.

Proof. We shall use the notations employed in the preceding section.

Because of the remark in the first paragraph of this section, it is sufficient to

prove the following: If (D\, • • • , Dm) is an orthogonal system satisfying

(6.1.2) and (6.1.3) and if 2lo = 2I0(D1, • • • , Dm)^2l then there exists an

orthogonal system (D{, ■ ■ ■ , D'm) which satisfies the conditions (6.1.2) and

(6.1.3) and is equivalent to (Di, • • • , Dm) such that 2lo is properly contained

in 21 o' =2Io(Di', • • ■ , D'm). By Lemma 6.8 we have 21= 23w„2Io, D,-«,=X,>w„
where X;„G$. Therefore, if 2lo?^2l, then there exists a w,y* 1, which we shall

fix hereafter. Since not all X,-, are 0, we may assume without loss of generality

that Xi„^0. We set D{' =DU Di' = Xi„D1-X,(,Di for tVO, and x=X,~1w„. Then
x is a unit and (DC, ■ ■ ■ , D'^) is an orthogonal system equivalent to

(Di, ■ ■ ■ , Dm) such that DCx = x, D/'x = 0 for tVl. We set D{ =x~lDC,

and D( =DC iori^l. Then (D{, • ■ ■ , D'm) is an orthogonal system equiva-

lent to (DC, • • • , D'm), and hence to (Du • • • , Dm), such that D(x = l,

Dix = 0 for ir^l. Therefore xG-4o' by Corollary 6.8. Thus 2Io^2Io'. Since

MoG2fo', from the above construction we have

(7.1.1) Di = YciiDj, c,yG2fo'.

Using (7.1.1) and proceeding the same way as in the preceding section we

see that 2lo is properly contained in 2(o'.

Remark. A derivation E of 21 over <£ will be called normal if Ef = 0 implies

/G^- It is clear that if D, in the above proof is normal then Xi,t^0 for every

V9^0 and hence we may use Dx instead of D. Then D{ = (Kuu„)~lDi is also

normal. Therefore if (Di, • • • , Dm) is an orthogonal system satisfying (6.1.2)

and (6.1.3) and if Dx is normal then there exists a nilpotent system (D{ , ■ ■ ■ ,
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D'ni) equivalent to (Dx, ■ ■ ■ , Dm) such that D{ is normal. This fact will be

used later in §9.

The above result may be refined if it is combined with the following

Theorem 7.2. 7/ a nilpotent orthogonal system (Dx, • ■ ■ , Dm) satisfies

(6.1.3) then there exist xi, • • ■ , x„G2l such that the elements x\l ■ ■ ■ x"n", where

0^Vi<p, x? = l, x££<£, form a basis of 21 over $ and such that D&xE®, D,xk

E^(xx, • • • , Xfc_i), the subalgebra of 21 generated by Xx, • • • , xk-x over <£, for

all i and k>l. If, in particular, <3? is perfect in the sense that every element in <£

is a pth power of an element in <£, then Xx, • • • , xn may be taken such that either

X\ ^    •   *   *   == Xn == 1  OT %\ ==    *   ■   •   ^ Xn ^ U.

The proof follows easily from the following two lemmas.

Lemma 7.3. Suppose that (Dx, • • • , Dn) is a nilpotent orthogonal system.

If Vx, ■ ■ ■ , ivG2I are linearly independent over <£, if D,vx = 0, and if Dtvk is a

linear combination of Vx, ■ ■ ■ , Vk-ifor all i and k>l, then there exists an element

nG2l which is not a linear combination of Vi, ■ ■ ■ , vr such that D(v is a linear

combination of vi, ■ ■ • , vr for alii, provided that Wis not spanned by Vi, ■ ■ ■ ,vr.

Proof. Denote by 3J* the fl-subspace of 21 spanned by vi, ■ ■ • , vk. Then

9?i<9t"2< • • • <5Rr and each factor space 3J&/9t"j:_i is one-dimensional. Since

any increasing sequence of fl-subspaces of an fi-space 21 can be refined into a

composition series of 21, there exists a composition series 9ti< • • • <9cr

<dir+x< ■ ■ ■ of 21. Since (Dx, ■ ■ ■ , Dm) is nilpotent and orthogonal, we

have DMr+x ^ 8fr for all i. Take an element v in 3tr+i but not in 9?,.. Then

DivE?Rr for all i, as required.

In the following if Xi, ■ • ■ , xtG2I, we shall denote by $(xi, • ■ • , xk) the

subalgebra of 21 generated by Xi, • • • , xk over $. The ground field $ is not

necessarily algebraically closed.

Lemma 7.4. Suppose that (Dx, ■ ■ ■ , Dm) is a nilpotent orthogonal system

satisfying (6.1.3), and that Xx, ■ ■ ■ , xrG2l are such that the elements x[l ■ ■ ■ x"r',

where 0^Vi<p, x°=l, are linearly independent over <i> and such that Dtxk

E$(xx, ■ ■ , xt_i) for all i and k. If xr+xE^(xi, • • ■ , xr) is such that T),xr+1

E$(xi, ■ ■ ■ , xr) for all i, then the elements x[l ■ ■ ■ x"'t\, where 0^i\<p,

x? = 1, are linearly independent over <£.

Proof. An element of the form y = x\l ■ ■ ■ x";, where 0^i'i<p, will be

called a monomial, and the number w = w(y)=vx-\-v2p-\- ■ ■ ■ -\-vrpT~x the

weight of the monomial y. A monomial is uniquely determined by its weight.

A monomial of weight w will be denoted by yM. If/ = a0yo+aiyi+ • • • -\-awyw,

where atE^, aw9*0, then the weight w(f) off is defined by w(f) =w. It follows

easily from our assumption that w(Dtf) <w(f) for all i if09*fE®(xx, • • • , xr).

Any linear combination of the elements xj1 • • • x'%*x can be written in the

form/o+/ixr+i+ • • • +/p_ixr'+11 with/0, • • • , fP-xE$(xx, ■ ■ ■ , xr). We shall
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prove by induction with respect to k that if /0, • • • , /jbG$(xi, ■ • ■ , xT),

Oik<p, then
h

(7.4.1) /0 + /ixr+i + • • • + fhXr+i = 0 implies /0 =••■=/* = 0.

If k=0 then (7.4.1) is clear. Suppose that (7.4.1) holds for all k<v but not

ior k = v.Letk = v,fo+fiXr+i+ ■ ■ ■ -r-/i-x*+i = 0,/t^0, and let/* be of minimal

weight with respect to this property. For any i, we have

(7.4.2) (Difk)xr+i + (CkDiXr+i)fk + Difk-i)xr+l+ • • • = 0.

Since w(Difk) <w(fk), we have D,/fc = 0 for all i. Then (6.1.3) yields fkE$-

Since/t^O, we may assume/fc = l. Then (7.4.2) yields Di(kxr+i+fk-i) =0 ior

all i, and hence by (6.1.3) kxr+i+fk-iE$. Since 0<k<p, this contradicts

the assumption that xr+iE$(xi, ■ • • , xr). Thus (7.4.1) is proved for all k,

completing the proof of the lemma.

An algebra 8 over $ is called normal simple if 8k is simple for any extension

K of <$. Z is normal simple if 8k is simple for any algebraically closed extension

K of <$. It is known [4] that the generalized Witt algebras are normal simple

if p>2 or if p = 2, m>l.

Theorem 7.5. Suppose that p>2 or that p = 2, m>l. If (Du • • • , Dm) is

a nilpotent orthogonal system then 8 = 8(21; Di, • • • , Dm) is simple if and only

if the algebra $ of constants of 2 is afield, while 2 is normal simple if and only

*/t=*.

We need a general remark. Let 8 be an algebra over f>, and €>' a subfield of

d>. Since 8 is a vector space over €>, 8 can be regarded as a vector space 8'

over $'. The multiplication xy in 8 is bilinear as a multiplication in 8'. There-

fore 8' is an algebra over f>', although not necessarily finite dimensional. If

{ui} is a basis of 8 over $, and if {ay} is a basis of <£ over <$', then the set

{ajU,} is a basis of 8' over <£'. We refer the algebra 8' as "8 regarded as an

algebra over ■!>'." Lemma 7.6 below is probably well known, and in any event

the proof may be supplied readily by the reader.

Lemma 7.6. 8' is simple if and only if 2 is simple.

Lemma 7.7. If "t> has a finite degree > I over <£>', then 2' is not normal simple.

Proof. Since $ is algebraic over $', there exists an extension K of <£>' such

that <$k has a zero divisor a. The set 3 of all elements of the form of, where

{E^k is an ideal of 2k since (af)g = a(fg) ior all/, gG8k- 3 is different from
zero, since ay^O. We shall show that 3^8k- The set of all xG^k such that

ax = 0 is a subalgebra of <1>k of dimension ^ 1, so let Oi, • • • , ar be a basis of

this subalgebra over K. Take ar+i, • • • , a.G$K such that a%, ■ • • , a, is a

basis of $k over K. Since a^O, we have r <^s. Let «i, ••-,«» be a basis of 8

over$. Then ajUiy j=l, ■ ■ ■ , s, i = 1, • ■ • , n, form a basis of 8k over K. Then



1956] ON    GENERALIZED WITT ALGEBRAS 527

{aa,w,} is a system of generators of 3 over K, and aai= • • • =aar = 0, so

that 3^8k- Therefore 8k is not simple, and hence 8' is not normal simple.

Consider the algebra 8(21; Dlt • ■ ■ , Dm) whose algebra ® of constants is

a field. Since $ is a subfield of the algebra 21, we may consider 21 as an algebra

21 over $. Since Dtc = 0 for all cE®, D{ defines a derivation Di of 21- It is easily

seen that 8(21; Dx, • • • , Dm) is the algebra 8(21; Dx, ■ • , Dm) regarded as an

algebra over $. Therefore by Lemma 7.6 8(21; Dx, ■ • • , Dm) is simple if and

only if 8(21; Dx, • • • , Dm) is simple, provided that $ is a field. Note that

(1.0.1) and (1.0.2) remain valid for the derivations Dlt • • • , Dm.

Lemma 7.8. Let $c be the algebra of constants of 8(21; Dx, ■ ■ ■ , Dm), and K

an extension of <T>. Then the algebra of constants of 8(21k; Dx, ■ • ■ , Dm) is Sk-

Proof. Let ux, • ■ ■ , ur be a basis of $, and u\, • - • , u„ •••,«„ a basis

of 21. Suppose/= Yaiui, where a.GK, belongs to the algebra of constants of

8(2Ik; Dlt ■ • ■ , Dm). We shall show that ar+i= • • • =a„ = 0. For any i, we

have ar+xDiUr+x-\- ■ ■ ■ +a„T>,M„ = 0. If ar+i, • • • , a„ were not all zero, then

there would exist 8r+x, • • • , BnE&, not all zero, such that p\.+i£>,wr+i + • • •

-\-8nDiU„ = 0 for all i, since DiUjEW-Then we have 8r+iUr+i+ • • ■ +8„unE®,

a contradiction. Thus ar+i= • • • =a„ = 0. Therefore the algebra of constants

for 8(2lK; Di, ■ ■ • , Dm) is «K.

Proof of 7.5. Suppose that 8 is simple. Then, by Lemma 3.2, $ is a field.

Suppose that 8 is normal simple. Let K be an algebraically closed extension

of <£. By Lemma 7.8 the algebra of constants of 8k is Sk- Since Sk is a field,

$=#.

Conversely suppose that S is a field. First consider the case S =f>, and let

K be an algebraically closed extension of <i>. Then by Lemma 7.8 the algebra

of constants of 8k is K. Since K is algebraically closed, and since (7>i, • • ■ ,Dm)

is nilpotent and orthogonal, by Theorem 6.10, 8k is a generalized Witt algebra.

Hence 8k is simple. Therefore 8 is normal simple. Since the algebra of con-

stants of 8(21; Di, ■ • ■ , Dm) is always S, 8(21; Du ■ ■ ■ , Dm) is normal simple,

and hence 8(21; Dx, ■ ■ ■ , Dm) is simple.

Corollary 7.9. The derivation algebra of the group algebra 21 over * of an

abelian group ® whose order is divisible by p is simple if and only if ® is an

elementary abelian group, provided that the order of ® is greater than 2.

Proof. Suppose that ® is an elementary p-group with independent gener-

ators xi, • • • , xn. Then 2l=<£(x1, • • • , x„) and it is easily seen [2, p. 217]

that 35(21) =8(21; d/dxx, ■ ■ ■ , d/dxt). Let $ be the algebra of constants for 8,

and let/G$. Then d//dx,=0 for all i clearly implies that/G*. Hence £=<!>.

Since (d/dxx, ■ ■ ■ , d/dxt) is a nilpotent orthogonal system, the simplicity of

35(21) follows from Theorem 7.5.

Suppose now that ® is not an elementary p-group. Choose an element

xG® as follows: if ® contains an element y9*l of order relatively prime to p,
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then we set x=y; otherwise, choose an element y of order pr, r>l, in ® and

set x = yp. In the latter case we see easily that Dx = 0 for all DG35(2l). In the

former case, y"=l, (p , q) = 1, and hence qyq~lDy = 0. Therefore we have also

Dx = 0 for all DE35(21). The element x —1?^0 is a zero divisor belonging to

the algebra of constants for 35(21), and the set 3= {(x-l)D|DG35(2f)}

forms an ideal of 35(21). In order to show that 3 is a nonzero proper ideal, we

decompose ® into a direct product of a group ©i and a cyclic p-group ©2^1

generated by an element z. Define a linear transformation E of 21 by the rule:

£(gi2') =tgiZt~l, where giG®i- Then it is easily seen that £ is a derivation of

21 such that £z = l. We have 0^(x-l)£G3, since (x-l)£z = x-1^0. Thus

3^0 is proved. Suppose £G3; E = (x-l)D with DG35(21). Then we have

1 = (x — l)(Dz), a contradiction, since x —1 is a zero divisor. Thus 3^35(21)

is also proved. Therefore 35(21) is not simple.

Corollary 7.10. Let 2l=$>(xi, ■ • • , x„) be the group algebra of an elemen-

tary p-group with independent generators xi, • ■ • , x„. Suppose that (Di, • • ■ ,

Dm) is an orthogonal system such that

d                            d
Di = 0,1 —- + ■ ■ ■ + ain->

dXj dxn

where aikE$(xi, • ■ ■ , xk-i) for all i and k. Unless p = 2, m = l, 8(21; Du • • • ,

Dm) is normal simple if and only if the following condition is satisfied:

For any k, there does not exist f E *(*i, ■ • • , Xk-i) such thai atk = Dif

for all i.

Proof. We may assume <$ is algebraically closed. It is easily seen that

(Di, • • • , Dm) is nilpotent. Therefore, by Theorem 7.5, 8(21; Du • • • , Dm) is

normal simple if and only if (6.1.3) is satisfied. Since DiXk = aik, (7.10.1) fol-

lows from (6.1.3). Suppose now that (7.10.1) issatisfied. Let/G$(xi, ■ ■ • ,xr).

If r = l then (6.1.3) is clear, since D,x1 = aliG,$ and not all aa are zero by

(7.10.1). We shall proceed by induction with respect to r. Suppose that r>l

and that (6.1.3) is true if/G$(xi, • • • , xr_i). Suppose nowf=ba+biXr + • • •

+bkxr, where b0, • ■ ■ , bkE&(xi, • • • , xr_i), bk^0. If D;/=0 for all i, then

(7.10.2)    Dif = (Dibo + ha^ + ■ ■ ■ + (D,bk-i + kbka^xT1 + (Djbk)xT = 0.

Therefore Dtbk = 0 tor all i. Then the induction assumption gives bkE$- From

(7.10.2) we have Dibk-i+kbkaik = 0 for all i. If 0<& we set h = (kbk)-lbk-u

Then we have hE$(xi, • ■ • , xr_i) and air+D,it = 0 for all i, a contradiction.

Therefore & = 0. Then/G$(^i, • • • > xr_i) and the induction assumption gives

/G*. Thus (6.1.3) holds for all/G2I.
Let 8 = 8(21; Dx, • • • , Dm) he the algebra given in the above Corollary

7.10, and let 8'= 8(93; E\, ■ ■ ■ , Em) be an algebra defined by a group algebra
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S3 (over <f) of an elementary p-group with independent generators y\, • • - , y,

and by derivations of S3 given by

a a
Ei = atxyx-!-■•■+ airyr ■->

dyi dyr

where afjE^. Unless m = l, p = 2, the algebra 8' is normal simple if and only

if the following condition is satisfied:

r

If integers kx, ■ • ■ , kT are such that Y  a»'»^« = 0  for   all   i,   then

(7.10.2) ,=i
kx m • • - = k, as 0 (mod p).

In case (7.10.2) holds, L' is a generalized Witt algebra. We have

2Io(7>i, • • • , TJ>m)=2lo and S8o(Ei, ■ • • , Em)=<l>, and hence by the remark

following Theorem 6.10 we can construct a "composite" 8" = 8((S; Fi, • • • , Fm)

of 8 and 8'. Here (S becomes the group algebra (over <£) of an elementary

p-group with independent generators X\, ■ • • , x„, yi, • • • , yT, and

d d d d
Fi = aa-\- • • ■ + ain-h aayx-[-•••+ aiTyT- •

dxx dxn dyx ayT

Thus, unless m = l, p = 2, the algebra 8" is normal simple if (7.10.1) and

(7.10.2) are satisfied. We may also prove that the conditions (7.10.1) and

(7.10.2) are necessary in order that 8" be simple.

8. Nilpotent systems (2). The case m = l. If the 7J>-dimension m = l, then

we can still further sharpen the results obtained in the preceding section. In

particular, it will be proved that any generalized Witt algebra of the form

8(21; D) over an algebraically closed field is uniquely determined by its

dimens •'on. The results obtained here will be the basis of the argument in the

next s ection.

Consider the group algebra 2l=$(xi, • • • , x„) of an elementary p-group

with independent generators x\, • - • , xn and the derivation D of 21 defined by

d       p-x a p_i       j,_i a
(8.0.1) D = -A-xx    ■-+ ■ ■ ■ + xx     ■ ■ ■ xLx-

axi ax2 dx„

Then D is nilpotent. Let y„=Xi' • • • x„" be a monomial of weight w = vx

+*'2p+ • • • +fnpn~1. Then Dyw is easily seen to be a linear combination of

monomials of weight <w. Since xf-1 • • • xf-1 is the monmial of maximal

weight in $(xj, ■ ■ • , xk), there does not exist fE$(%i, ■ ■ ■ , xk) such that

Df=x\~1 ■ ■ ■ xl~\ Therefore from Corollary 7.10 it follows that

(8.0.2) 7J»/=0 implies/ G $•

Hence if 2 <p then the algebra 8(21; D) is normal simple.

Remark. Jacobson [3, Theorem 4] proved the existence of a derivation D
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of 21 satisfying (8.0.2) under the condition that <I> is infinite. However, the

above arguments show that such a derivation exists for any field $.

Lemma 8.1. 7//G21 is of weight w^l then Df is of weight w — l.

Proof. We may assume that/=y«, is a monomial of weight w. Suppose that

Dyw is of weight <w — 1. Then Dyx, • • • , Dyu are linear combinations of

yo, • • • , y<c-2, and hence there exist cti, • •■ , awE^, which are not all zero,

such that Ya*Dyi = 0. Hence we have D(^a<y,)=0, Ya<y<^^' and

ai= • • • =aM> = 0, a contradiction. Therefore Dya is of weight w—l.

As an immediate consequence of (8.1) we have

Lemma 8.2. If 0iw<pn — l then there exists an element /G21 such that

Df=y„.

Now we consider an arbitrary algebra 8(21; D) of D-dimension m = l,

where D is a nilpotent derivation satisfying (8.0.2). We shall assume that<I> is

perfect. If 21 is of dimension greater than 1 then we can easily find an element

xG2I such that Dx= 1, xp= 1. Then 1, x, • • • , x"-1 are linearly independent.

Suppose we have already found Xi, ■ • • , x*G2l satisfying (8.3.1)-(8.3.3) be-

low:

(8.3.1) *? = 1 for all t = 1, ■•• , k;

The elements Xi • ■ • X*, where 0 i p( < p, x, = 1, are linearly inde-

pendent over 4>;
p—1 p—1 p—1

(8.3.3) Dxi = 1,   Dx2 = xi   , • • • , Dx* = Xi     • • • **-i.

If 21 is not spanned by the elements x? • • • x?, then by Lemma 7.3 there

exists i>G2l such that Di>G#(xj, ■ ■ • , x*), while vE&(xu • • • , x*). We set

Dv=ax\~1 • • ■ xjt-1-f-g, where a£$ and where g is a linear combination of

monomials of weight <pk — 1. By Lemma 8.2 there exists /G$(xi, • • • , xk)

such that Df = g. Then D(v—f) =ctx\~1 • • • xj-1. Hence a^O, otherwise

D(v—f) =0, v—fE$, and vE$(xi, • • • , xk). Since $ is perfect, there exists

/3G*$ such that Xk+i = or1(v—f)+B satisfies xf+J = 1. Thus we have proved the

existence of Xk+i satisfying

j,-i p-i p
VXk+l =  Xi       • • •  Xk    , Xjfc+i =  l,

(8.3.4)
Xk+l E *(*i. • • ' , Xk).

Then by Lemma 7.4 the elements Xi ■ • • x^J are linearly independent over

<I>. Repeating the above process we obtain xi, • • • , x„G2l such that the ele-

ments Xi ■ ■ ■ x'n", where 0^.-<p, form a basis of 21 and such that (8.3.4)

holds for all k. Let ® be the multiplicative group generated by the elements

Xi, • • • , x„. Then 2l=<$(xi, ■••,*») is the group algebra of ® over $, and

D can be written in the form (8.0.1).
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By a similar argument we may choose xi, • • • , x„ satisfying x? = • • • =xj

= 0 instead of xf = • • • = xJJ = 1. Thus we have proved

Theorem 8.3. Suppose thatQis a perfect field. If 21 has a nilpotent derivation

D satisfying (8.0.2) then 21 is the group algebra of an elementary p-group with

independent generators x%, • • • , xn (or 1 +Xi, • • • , 1 +x„) by which D can be

written in the form (8.0.1).

Corollary 8.4. Suppose that <£ is algebraically closed. Then any generalized

Witt algebra of D-dimension 1 is uniquely determined by its dimension and can

be written in the form 8(21; D), where 21 araci D are the same as in Theorem 8.3,

that is, 2l=4?(xi, • • • , x„) is the group algebra of an elementary p-group with

independent generators Xi, • • • , x„ (or, 1+Xi, • • • , l+x„), and where D is

given by (8.0.1). 7/ 2I=$(xi, • • • , x„) then any generalized Witt algebra

8(21; Dx, ■ • ■ , Dn) of D-dimension n is isomorphic to the algebra 8(21;

d/dxi, • • • , d/dxn).

The proof of the second part of Corollary 8.4 is as follows: It was shown

in §2 that any generalized Witt algebra 8 can be defined by an orthogonal sys-

tem (Dx, • • • , Dm) which can be written in the form D{ = Yi aaxi(d/dxj),

(i=l, • ■ • , m), where a,,G* and where x\, • • ■ , xn form a system of inde-

pendent generators of an elementary (multiplicative) p-group of which 21

is the group algebra over $. It was also shown there that the m Xn matrix

(&ij) is of rank m. In our present case where m=n, (aij) is a nonsingular

square matrix. Therefore (Dlt • • • , D„) is equivalent to (xi(d/dxi), • • •,

xn(d/dx„)) and hence to (d/dxt, • • • , d/dxt). Therefore, 8(21; Dx, • • • , Dn)

= 8(21; c9/c3xi, • ■ ■ , c9/c9x„), which is uniquely determined by $ and ra up to

isomorphisms. (Note that we have started with a generalized Witt algebra.

If we had started with an orthogonal system (Dx, ■ ■ • , Dn) satisfying (6.1.2)-

(6.1.3) then we could use the main result of §6 in order to identify it as a

generalized Witt algebra.)

The proof of the second part can also be derived from the following

general theorem of H. Zassenhaus (cf. his forthcoming book on representation

theory): Any w linearly independent elements of a vector module 25 of dimen-

sion w over a commutative ring 21 with unit element, which is its own quo-

tient ring, form a basis of 25 over 21.

Thus the problem of classification of the generalized Witt algebras is

completely solved for the two extreme cases: m = l and m=n. The author

has been unable to solve this problem in general.

9. Principal and normal systems. Let 21 be the group algebra over the

ground field <I> of an elementary p-group © of order p". A set {xi, • • • , x„} of

elements in 21 will be called a set of principal generators of 21 if xf = 1 for all i

and if the pn elements x"xlx£ ■ ■ ■ x„", where 0£vt<p, x?=l, form a basis of

21 over €>. (Note that the group ® does not always coincide with the multipli-

cative group generated by Xi, • • • , x„.)  Consider now mn elements ay,
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(*=1, • • • , m;j = l, • ■ ■ , n), in <£ satisfying the conditions (9.0.1)-(9.0.2)

below (cf. (2.0.4)-(2.0.5)):

If kx, ■ ■ • , kn are integers such that Yi aa^i = Oior i = I, ■ ■ ■ ,m,

then ki =;••• = kn = 0 (mod p);

(9.0.2)    The rank of the m X n matrix (an) is m.

It is easily seen that, for given m and n such that min, if $ contains suffi-

ciently many elements then we can always find mn elements a^E^ satisfying

(9.0.1)-(9.0.2) above. Take an arbitrary set {xi, • ■ • , x„} of principal gen-

erators of 21 and an arbitrary set of mn elements a,-yG$ satisfying (9.0.1)—

(9.0.2), and define linear transformations D\, ■ • • , Dm oi 21 by the rule:

Di(Xi    ■   ■  •   Xn)   =   (anVi +   •   ■   ■   + ainVn)Xl    •   ■   ■   Xn ,

lor i = 1, • ■ • , m. Then it is easily verified that Du • ■ ■ , Dm are derivations

of 21. We have D, o Dy = 0 for all i and/ In order to prove this statement, set

(9.0.3) Uv=   Xl    •   ■   ■   Xn, Xi„   =   a.lCl +   •  ■  •   + ainV„.

Then DiUr = \ivu„ and we have

(D, o Dj)u, = Di(DjUy) - Dj(DiUr)

=   Kiv\jyUv Kjv\,vUv   =   u

for all uy, and hence DtoDj = 0 is proved. Suppose YfiDi = 0 with/,G2(.

Then (YfiDi)Xj = 0, and hence Y* fian = ® ̂ or all j. Then from (9.0.2) it
follows easily that/j = 0 for all i. Thus we have proved that (Di, • • • , Dm)

is an orthogonal system. Any system obtained in the above manner will be

called principal. Principal systems were used in §2 to define generalized Witt

algebras.

We shall show that any principal system (Di, • • • , Dm) satisfies the con-

ditions (6.1.2)—(6.1.3). Suppose D,/ = 0 for all i. Set/= Y/YvU, with y„E$-
Then X,»7, = 0 for all i and v. If 7,5^0, then X,„ = 0 for all i, and hence from

(9.0.1) and (9.0.3) it follows that vi= ■ ■ ■ =p„=0 (mod p), u,= 1. Therefore

/ = Yo«oG<i>, proving (6.1.3). Suppose now D,/ = X,/ for all i with/= ?.\y,u..

\i and 7„ all being in <£. Then y,\iV = \iy, for all i and v. If 7,5^0, 7^5^0, then

XI»=X,>(=X,), and hence Di(u,u~l) =0 for all i. Since (6.1.3) holds for the sys-

tem (Di, • • • , Dm), we have m^m^'G^*, which, however, is impossible unless

v=p. Therefore f = yu, for some 7G3> and u,. Since uv is a unit in 21, (6.1.2) is

also verified.

It is proved in §6, assuming $ is algebraically closed, that any orthogonal

system (Dx, • • • , Dm) satisfying (6.1.2)—(6.1.3) is equivalent to a principal

system and that the system (Du • • • , Dm) is principal if and only if D(fE®

tor all i implies/G*, i.e., 2I0(Dj, • • • , Dm) =<!>.

We recall that a derivation D of 21 is called normal if and only if D/ = 0

implies /G3*. A system (Di, • • • , Dm) will be called normal if some Df is
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normal. Two systems (Dx, ■ • ■ , Dm) and (D{, ■ ■ ■ , D'm) will be called scalar-

equivalent if Di = Yi lnDj for all.*, where 7,7 G$ and where the matrix (7,7)

is nonsingular. Any system scalar-equivalent to a principal system is also

principal.

Lemma 9.1. 7/ $ is infinite, then for any principal system there exists a

normal principal system scalar-equivalent to it.

Proof. Let the principal system (Dx, ■ ■ ■ , Dm) be defined by means of

<XijE<& satisfying (9.0.1)-(9.0.2), a set {xi, • • • , x„} of principal generators,

and the relations DtXj = auXy. Consider the pn linear forms (p(v; £) = Ya £>anvj

in the indeterminates £1, • • • , £„,, where 0^v,<p. By (9.0.1), we have

4>(v; £)9*0 if V9*0. Since $ is infinite there exist 81, • • • , 8mE$ such that

(j>(v; 8)9*0 for all V9*0. We shall show that D= Yfi'Di is normal. Suppose

Df = 0, where/= Yl>ur with 7,G$- Since Du, = <p(v; 8)uy, we have y$(v; 8)

= 0 for all V9*0. Then <p(y; 8) 9*0 for V9*0 implies 7, = 0 for all V9*0. Therefore

/G$ and hence D is shown to be normal. Since not all p\- are zero, we may

assume 8x9*0 without loss of generality. Set D{ =D, D[ = T\ for *>1. Then

(D{, ■ • ■ , D'm) is a normal principal system scalar-equivalent to (Dx, • ■ ■ ,

Dm).

From Lemma 9.1 and the remark following the proof of Theorem 7.1, we

obtain the following refinement of Theorem 7.1.

Theorem 9.2. T/$ is algebraically closed then any orthogonal system satisfy-

ing (6.1.2) and (6.1.3) is equivalent to a normal nilpotent orthogonal system.

The characterization of the generalized Witt algebras given in the follow-

ing theorem contains considerably fewer parameters than that given by Kap-

lansky.

Theorem 9.3. Suppose <i> is algebraically closed. Then any generalized Witt

algebra over <£ can be written in the form 8(21; Dx, • • • , Dm), where 2l=€>(xi,

• • • , x„) is the group algebra of an elementary p-group with independent gener-

ators Xx, • ■ • , xn, and where

o       „_x a v—x        v—i a
(9.3.1)    Dx = -+xPx-+•••+*"     • • • xLi-1

dx, dx2 dxn

/ a       p-i    a p_i       „_! a \
D, = a,, I-h Xi-h • • ■ + Xi     ■ ■ • Xn-x ■-)

\dx, dxi+i dxj

(  a p-x      p-x a \ a
+ aili+x I —-[-•••+  Xi+X  ■   ■   ■ Xn-X- ) + «tn ■-,    (1   <   *')

\axi+i dx„/ dxn

with aijE$-

Proof. By Theorem 9.2, a generalized Witt algebra 8 can be written in the

form 8(21; Dx, ■ ■ ■ , D,n), where (Dx, • ■ ■ , Dm) is a normal nilpotent orthog-

onal system. We shall assume that Dx is normal. Then by Theorem 8.3 there
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exist Xi, • • • , x„G2l such that x*= ■ • • =x% = l, such that the monomials

x'il ■ ■ ■ xnn, 0 iv<p, form a basis of 21 over <£, and such that Dt takes the form

(9.3.1). Suppose that D is an arbitrary derivation of 21 commutative with Du

From Di(Dxi)=D(DiXi)=0, we have Dxi = aiG<$. For any k>0, we have

Di(Dxk+i) = D(DiXk+i) = D ((DiXt)xr1)

= (DDiXk)xk    — (DiXk)(Dxk)xPk

= Di((Dxh)xV).

Therefore we have Di(Dx*+i — (Dxk)x\~l) =0, and hence Dxk+i — (Dx*)xJ_1

= a*+iG3>, from which we see easily that

/ d p-i p-i   d \ d
(9.3.3)     D = ad — +... + xi    •••aCi-)+■■• + «»-

\dxi dxj dxn

Since every D, commutes with Du it has the form (9.3.3). Then by taking a

suitable scalar-equivalent system we obtain (D%, • • • , Dm) oi the form

(9.3.2).
Remark. If we take 1+Xi, • • • , l-f-x„ as independent generators of the

group ® instead of X\, • • • , x„, then the forms (9.3.1)-(9.3.2) can still be

preserved, and we have x\= • ■ ■ =x£ = 0. In this case, it is easily seen that

-1- xt-[-■•■ + Xi     ■ • ■ x„_i-= (-Di)
aXi oXi+i dxn

Therefore, if a generalized Witt algebra 8 contains Dp for every DG8 then 8

must be the derivation algebra of the group algebra of an elementary p-group.

10. The case 4> = GF(p). Let 8 be an algebra over a field <£, and «i, • ■ • , un

a basis of 8 over <$. Then M,«y= YaakUk, where «iy*G^. If we can choose a

basis {«,} of 8 over $ such that all the ay* belong to a subfield <!>' of $, then

we shall say that the algebra is definable over <£'. In other words, an algebra 8

over <£ is definable over "!>' if and only if there exists an algebra Z' over <!>'

such that 74 = Z.
Corollary 8.4 shows that any generalized Witt algebra of D-dimension

m = l over an algebraically closed fields is definable over GF(p), which may

naturally be regarded as a subfield of <i>. Whether or not this is true for an

arbitrary D-dimension m is not known.

As an application of Theorem 9.3, we shall show that if 21 is the group

algebra of an elementary p-group of order p3 then any generalized Witt alge-

bra 8 of D-dimension 2 over an algebraically closed field <i> is definable over

GF(p). Let {xyz*} be a basis of 21, where xp = yp = zp = 0. By Theorem 9.3,

we may assume that

d d d / d d\ d
Di =-f- x"'1-1- xp-lyp~l —,        D2 = a I-\- v"-1 — J + (3 —

dx dy dz \dy az) dz
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where a, BE&- Suppose first that aj»^0. Then we may assume a = 1. If, further-

more, 8 = 0, then our assertion is proved. Suppose 89*0. Taking a nonzero

element AG*, we set x' =Ax, y' =\py, z'=Ap!z. Then the set {x'iy'iz'k} forms

a basis of 21, and we have Dx = \D{, D2 =\'D2, where

di = — + x'"-1 — + x'*-y p-1 —,
dx' dy' J        dz'

a a        2      a
Dl = — + ?*-i —. + X"2-^ —- •

dy' dz' dz'

Therefore if we determine A by the equation \"*~PB = 1, then we see that 8 is

definable over GF(p). If a = 0 then we may take 8=1, and hence our asser-

tion is also clear.

At the end of §2, we have remarked that the only algebra which can be

constructed by Kaplansky's method for the case where 7>-dimension »* = 1

and $ = GF(p) is the original Witt algebra (of 7>-dimension p). Consider now

the algebra 8 = 8(21; D), where 21 is the group algebra over GF(p), p>2, of an

elementary p-group with independent generators Xi, • • • , x„, (ra>l), and

where

a       p-i a p_!       p-i a
D =-h Xi-1- • • • + xx     • • • x„_i-

axi dx2 ax„

This algebra 8 is defined over GF(p) and normal simple. Although 2op(p«) can

be obtained by Kaplansky's method of construction, 8 = 8cf(P) itself cannot

be obtained by that method. For, if it were isomorphic to some other general-

ized Witt algebra 8' over GF(p) then the coincidence of the 7)-dimensions of

8 and 8' would imply that 8' would have TJ-dimension 1 (see the last theorem

of this paper). Then from the above remark it follows that 8' is the original

Witt algebra over GF(p), which is a contradiction, since 8 is of dimension

P">p.
It may be shown similarly that any normal simple algebra over GF(p) of

the form 8(21; Dx, • ■ ■ , Dm) cannot be obtained directly by Kaplansky's

construction if »*<ra. Thus we may say safely that some new finite simple

Lie algebras can be obtained in the form 8(21; Dx, • • • , Dm).

Remark. If we construct a generalized Witt algebra 8 over $> and regard

it as an algebra over GF(p), as is done in §7, then we can obtain simple alge-

bras over GF(p). However, Lemma 7.7 shows that such algebras are not nor-

mal simple.

11. Nonsimple algebras. Let L be a Lie algebra over $ with the multi-

plication o. For any two ideals 3i and 32 of 8 we shall denote by 3i o $>2 the

ideal of 8 generated by all Xi o x2, where x,G3»- Let $ be a commutative asso-

ciative'algebra over <l>, and denote by A($), and A(8) the lattices (defined by

inclusion) of all ideals of & and 8 respectively. If there exists a lattice iso-



536 RIMHAK REE [November

morphism a: A($)->A(8) such that (£>i£)2)° = OI o ©J holds for any two

ideals ©x, ©2GA(5c), then we shall say that $ and 8 have the same ideal theory.

In this case, if 3t is the radical of $ then di' is the radical of 8. Note that any

simple Lie algebra 8 over <i> and the field S =<!> have the same ideal theory. In

this section we shall construct Lie algebras {8} for which there exist com-

mutative associative algebras {$} such that 8 and $ have the same ideal

theory.

Consider a finite dimensional extension ^ of the ground field $ and a

polynomial 0(X) of degree n with coefficients in 'ir. Let ^(x) be the algebra

over *& with the basis 1, x, x2, ■ • • , xnp~l, where xp satisfies the equation

<t>(xp) =0, and let 21 be the algebra SP'(x) regarded as an algebra over <1>. Clearly

there exists a derivation D of 21 such that Dx= 1 and such that Da = 0 for all

aE^- Then the algebra 8 = 8(21; D) is uniquely determined by the polynomial

<j>, provided that <£ and ^ are fixed, so that 8(21; D) may be denoted by 2(<p)

without ambiguity. It is easily seen that the algebra $ of constants of

8(21; D) is generated by xp over SF, and that 3c=''Ir[X]/(<£(X)) as algebras over

<£. Hence $ is a principal ideal ring. Every ideal of $ can be written as

© = Sa = (a), where aE$, and it is always possible to choose a monic factor

a(X), i.e., a factor whose leading coefficient is 1, of <p(X) such that © = (a(xp)),

since (p(xp)EO. Thus there exists a one-one correspondence between ideals

of $ and monic factors of <f>(\).

Theorem 11.1. Suppose that 2<p. Then the algebra 8(21; D) defined above

has no annihilating ideals except the zero ideal. The algebra 8(21; D) and its

algebra $ of constants have the same ideal theory.

Here by an annihilating ideal of a Lie algebra 8 we mean an ideal 3 of 8

such that 3* = 0 for some k, where 3i = 8 o 3, 3* —8 o 3/t-i tor k = 2, 3, ■ •

Proof of (11.1). We shall prove first that S and 8 have the same ideal

theory. For any ideal © of $ we define ©" to be the set of all elements of the

form afD, where aGD and /G2I. Then ©* is an ideal of 8, since afD o gD

= a(fDg — gDf)DE£)°. We shall show that a is the desired lattice isomorphism

between A(S) and A(8). Let 3^0 be an ideal of 8 and let a(X) have the mini-

mal positive degree among polynomials such that a(x)DG3- Then D o a(x)D

= (Da(x))DG3, and the minimality of the degree of a(\) yields Da(x)=0,

and hence a = a(x)E®. Express / as f = ca+cix + ■ • • +cp-ixp~l, where

e,G$. If 0ii<p-l, then aD o cixi+1D = (i + l)acixiDE^, and hence

aCjX£DG3 tor i = 0, ■ ■ ■ , p — 2. Since aCj,_iXp_2DG3 and since

(aCp-iX^D) o (x2D) = AaCp-ixP^D,

we have 4acp_iXp-1DG3, and hence ac„_ixp-1DG3. Thus a/DG3 for any

/G21. Now, for any A(X)G*[X] such that h(x)DES, we set h(K)=a(X)q(\)
+r(\), where q(\), r(X)G^[X] and where deg r(\) <deg o(X). Since h(x)D,

a(x)q(x)DE3, we have r(x)DG3- Then the minimality of the degree of a(X)
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yields r(A) =0. Thus we have proved that every element in 3 is of the form

afD, where fEA. Hence ©" = 3 if we denote by © the ideal of $ generated

by a. Let Oi, ©2 be ideals of $ such that Of ^ ©J. We shall show that ©1 g ©2.

Suppose aiGOi- Then, by the definition of the mapping cr, we have aiDG©I,

and hence ai35G©2- Therefore there exist a2G©2 and /G2I such that aiD

= aifD. Hence 01 = 02/. Express/ in the form/= Yc<xi, where dE$t. Then

ai = Ya^ci%i- Since ax, a2, and ct are polynomials in xp, we have ax = a2c0. Hence

aiG©2 and ©ig©2 is proved. If ©I = ©£ then ©JgOJ and ©2^©T imply

©i^©2 and ©2^©i respectively. Hence ©i = ©2 and therefore cr: A(S)—>A(8)

is a lattice isomorphism. We shall prove (©i©2F = ©' o ©J for any two ideals

Oi, ©2 of t. Take a{E^ such that ©,- = (av), * = 1, 2. Then ©I and (©i©2)"

are the sets of all elements of the form a,fD and axa-JD, where/G2I, respec-

tively, since ©i©2=(aia2). From axfxD o aif2D=axa2(fxDf2—f2Dfx)D we have

OioOJ^(OiOs)'. In order to prove (©i©2)'^©iO ©J, it is sufficient to

prove that a1a2cxi£)G©T o ©2 for any cG^f and 0^i<p. If 0g*'<p-l, then

ai7> o a2cxi+1D = (* + l)aia2cx\DG©' o ©2, and hence aia2cxi7)G©i o ©2. Since

axxD o a2cx*-lD = —2a1a2cxp~1D, we have aia2cx!'_1T?G©T o ©J. Thus (©i©2)"

^©1 o ©£ is proved. Hence (Oi©2)' = ©I o ©J. Therefore t and 8 have the

same ideal theory.

In order to prove the first half, let 3 be an ideal of 8. Then there exists

an ideal © of ® such that 3 = ©*. Since 8 = $», we have 3 o 8 = ©' o $'

= (©$)' = ©' = 3- Therefore 3 is not annihilating unless 3=0. Thus Theo-

rem 11.1 is completely proved.

Lemma 11.2. With the notations as in the proof of (11.1), */ O is an ideal of

St and if a(\) is a divisor of 0(A) such that ©= (a(xp)), then 8/©'=8(a(A)) as

algebras over $.

Proof. We define a mapping ir: 8(0(A))->8(a(A)) by ir(f(x)D) =f(x)D. If

f(x)D=g(x)D in 8 (0(A)) thenf(\)=g(\) (mod 0(A)), and hence /(A) =g(A)
(mod a(A)). Therefore f(x)D = g(x)D in 8(a(A)). Thus ir is well denned. It is

easily seen that ir is a homomorphism of the algebra 8(0) onto the algebra

8(a). Now ir(f(x)D)=0 if and only if/DG©'. Therefore 8(</>)/©'S8(a) as
required.

Theorem 11.3. If 2 <p then any semi-simple algebra of the type 8(c/>) can be

decomposed into a direct sum of simple algebras of the same type.

Proof. By Theorem 11.1, 2((f>) is semi-simple if and only if $ is semi-

simple, and therefore, if and only if 0 can be expressed as a product 0

= c/>i • • • (pr of distinct irreducible polynomials in ^[A]. Suppose then that

8(0) is semi-simple and that 0=0i • • • 0,. We set 0i=0/0i, ©, = (0,(xp)).
Then $ is decomposed into the direct sum: $ = ©1+ • • • +©,. Hence, by

Theorem 11.1, we have

(11.3.1) 8(0) = ©r+••• + ©'.
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From the definition of ©< it follows easily that £>l+ ■ ■ ■ +£)'=(<pi(x")).

Hence by Lemma 11.2 we have 2(<p)/(0'2 + • • • +©')^8(<£i). Then from

(11.3.1) we have 0'^2(<f>i), and similarly ©<^8(0i) for all i. Since <£,- is ir-

reducible, 2(<i>i) is simple.
12. Automorphisms of L(A; Du • ■ ■ , Dm). By an automorphism of an

algebra 8 over <J> we mean a nonsingular linear transformation a oi L such that

(xy)' = x"y" ior allx, yG8. Because of the linearity, any automorphism is com-

pletely determined by its effect on a basis of 8 over <J>. The automorphism

group of the Witt algebra was determined by Ho-Jui Chang [l], and that of

the derivation algebra of the group algebra of an elementary p-group by

Jacobson [3]. In this section first we discuss certain relationships between

automorphisms of 21 and 8(21; D\, ■ ■ ■ , Dm).
Let a be an automorphism of 21 and D a derivation of 21. The mapping D"

which is defined by D'f" = (Df)' is easily seen to be a derivation of 21. For two

derivations Di,D2of 21 we have (Di+D2)' = D\+D'2, (DioD2)' = D\oD'2,and

(fD)"=f'D' for any/G2l. Let 8 be a subalgebra of the derivation algebra of

21. An automorphism a of 21 will be called admissible to 8 if D"G8 for any

DG8. If a is admissible to 8 then the mapping D—>D' is an automorphism of

8, which will be said to be induced by a.

If an automorphism a of 21 is admissible to 8(21; Du • • • , Dm) then from

(flDi +   ■ ■  ■  + fmDm)' = f'lD'i +   ■  ■ ■  + fj5m

it follows that (D\, • • • , D'n) is a system equivalent to (Di, • • • , Dm). Thus

we have proved the "only if" part of the following

Theorem 12.1. Suppose that 5ip and that (Di, ■ ■ ■ , Dm) is an ortho-

normal system. Then every automorphism <r of 8(21; Dx, ■ ■ • , Dm) is induced

by an automorphism of 21 if and only if (DJ, • ■ • , D'm) is a system equivalent to

(Di,    ■ ■ ■ , Dm).

To complete the proof, suppose that or is an automorphism of 8 such that

(D\, ■ ■ • , D'm) is equivalent to (D\, • • • , Dm). Then we may define linear

mappings a^ of 2( into itself such that

m

(12.1.1) (fD,)°=Yf"D]
i-i

for all/G2landi = l, • • •, m. Setting/=1 in (12.1.1) yields

(12.1.2) l'n = 8^ (Kronecker delta).

From (fDi)' o (&D,)' = (fDt o gD,)' = (f(Dig)DJ)'-(g(Djf)Diy and (12.1.1) we

have

(fDi)'o(gDi)C = Y [(fDig)'1" - (gDjf)'ik]D°k.
k
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On the other hand, from D'oD' = 0 and (12.1.1) we have

VDA'oigD,)' = Y ir'Dir - {"D'S'lDl
i.k

Therefore we have

(12.1.3)       (fDigr - (gDifr - y u'"D.gik - g'-Diri

Setting/=1 in (12.1.3) yields (Dtg)'* = Dig'jk. Substituting this in (12.1.3)
yields

(12.1.4)    (jDigyi* - (gDjf)'* = Y [/"«(£»«)'<* - rKW*].
s

We shall use the fact that (Di, • ■ • , Dm) is orthonormal. Let Xi, • • • , xmG2I

be such that DiXj = 8,j. Setting i=j = k, g=x, in (12.1.4) yields

(12.1.5) (XiDiff = Y x'i'iPrf)'" -
r

Setting/ = xy, where J9*i, in (12.1.5) yields

(12.1.6) 0 = x'i' (i9*j).

Substituting (12.1.6) in (12.1.5), we have

(12.1.7) (xiDif)'" = x7(D,jr.

Setting j = i9*k, g=x( in (12.1.4) and using (12.1.6), we have

f       -  (XiDif)        =   -  Xi   (Dif)      .

Setting/ = xy, where J9*i, in the above, we have x"}ik = 0 for J9*i9*k. Combin-

ing this result with (12.1.6), we conclude that if i9*j then

(12.1.8) x7 = 0

for all k. Setting k = i9*j, g=x( in (12.1.4) and using (12.1.8), we have

(12.1 • 9) f°" - (xiDjf)'" = - x?(D,tfix (j 9* i).

Setting/ = Xy in (12.1.9) and using (12.1.8), we have

(12.1.10) x?' = x7i.

Setting/ = x,x,-, where J9*i, in (12.1.7), we obtain

(12.1.11) (xtXj) " = x' Xj".
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Setting f = x) in (12.1.9), we have (xf)'>i — 2(xiXj)'" = -2x'"x'". Therefore,

using (12.1.10) and (12.1.11), we have

(12.1.12) (**)'" = 0 (i*j).

Setting i=j = k,f = x\ in (12.1.4) and using (12.1.12), we have

(12.1.13) (xhigr - 2(gxi)'i' = (xT\Dig)Cii - 2g'iixVi.

Setting/ = gXj in (12.1.7), we have

(xiDig + Xig) " = x"(xiDig) " + x"g".

Therefore, by (12.1.7), we have

(12.1.14) (XiDig)"' + (gxt)'u = (x7)\Dig)'H + griixV\

Setting/=x2 in (12.1.7) yields 2(x2)"" = 2(x'")2 and hence (x\)"ii = (x'")2,

since p-^2. Then (12.1.13) and (12.1.14) yield 3(gxi)"i = 3g'iix°ii and hence

(12.1.15) k*i)'"-/V

for all g, since pj^3. By using (12.1.15) and (12.1.10) in (12.1.9), we have for

*Vj and/G2I

(12.1.16) fa = 0.

Setting k=j?±i, g = x, in (12.1.4) and using (12.1.16) we have/"»'=/"ii for any

/G2I, i and/ Therefore we may set on= • ■ ■ =amn = a, using the same letter

as the given automorphism of 21 over $. Setting i=j = k in (12.1.4) yields

(12.1.17) (fDig)' - (gDif)' = f'(Dig)' - g'(Dtf)'.

Replacing g in (12.1.17) by x,g, we have

(12.1.18) (fg + XifDlg - XigDif)' = f'(g + XiDig)' - (xig)'(DifY.

Now, (12.1.15) yields (xtg)'=x'ig° for any gG2I. Therefore, by (12.1.17) and

(12.1.18), we have (fg)'=f"g" ior all/, gG2l. We shall show that every element

&G21 can be written in the form h=f". From (12.1.1) we have (fD,)'=f"D'i.

Therefore if (fDi)' = hD"i then f' = h. If f'=g" then (fD/)' = (gDi)' and hence
fDi = gDf, f = g. Therefore a is an automorphism of 2(. Let DE2, fG2l. Then

D=YfiDi, and (JD)'= Y(ff<Di)'= E(f/.)'A'= YffiD^f'D'. Therefore
the given automorphism a of 8 is induced by the automorphism a of 2f. Thus

Theorem 12.1 is proved.

Corollary 12.2. Suppose that Sip and that 21 is a field over <J>. Then any

automorphism of an algebra of the form 8(21; D) is induced by an automorphism

of 21. The automorphism group of 8(21; D) is isomorphic to a subgroup of the
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automorphism group of ft over $, where fi is the algebra of constants of 8(21; D).

In particular, if ft =<£> then 8(21; D) has no automorphism except the identity.

Proof. Let cr be an automorphism of 8(21; D). Then D' = aD with a 9*0.

Hence D" and D are equivalent. By Theorem 12.1, cr is induced by an auto-

morphism of 21. If/Gfi then D"f = (Df)' = 0. Hence Df' = 0,f'Eft. Therefore
cr induces an automorphism of fi. If cr induces the identity automorphism on

ft, then we have (/')"=/' for any/G2I, since f'EK. Therefore, (f'-f)p = 0,
/'=/, and hence cr = l. Hence the automorphism group of 8(21; D) over <£> is

isomorphic to a subgroup of the automorphism group of ft over $, as required.

By the above result, we can construct easily simple Lie algebras which

have no automorphism except the identity. For example, let <i> = P(£i, • • • , £m,

where P is a field of characteristic p and where £i, • • • , |m are m indetermi-

nates over P, and let 2I=$(xi, • • • , xm), where xf = £,-. We set

a       p_i a p_i        p_i a
D =-1- Xi    ■-h • • • + *i     ' • ■ *«-i-

axi ax2 axm

Then the algebra 8(21; D) over 4> has the desired property.

In the course of the proof of Theorem 12.1, only the fact that p9*2, 3

was used. Therefore Theorem 12.1 holds even when p = 0. Thus any auto-

morphism of the derivation algebra of the function field 21 of one variable

over a field of characteristic 0 is induced by an automorphism of 21 over $.

Now we shall consider automorphisms of the generalized Witt algebras.

In the following, 2I=$(xi, • • • , x„) will denote the group algebra of an ele-

mentary p-group with independent generators aci, • • • , xn. A polynomial

/(A)G*[A] is called a p-polynomial if /(A) is of the form /(A) = a0A"t+aiA**~1

+ • • • -\-aik, where a,E^-

Lemmas 12.3 and 12.4 are proved in [3, p. 110].

Lemma 12.3. If 1, ux, u2, ■ ■ • , un-x, where N = pn, is a basis of 21 over <$,

then there exist ra distinct indices, say, 1, 2, ■ • • , ra, such that the elements

Mi1 • • • «*". where 0^ki<p, u°=l,form a basis of 21 over $.

Lemma 12.4. The characteristic polynomial of any derivation in 21 *5 a p-

polynomial.

Lemma 12.5. If all the roots of the minimum polynomial of a derivation D

in 21 are in <£ and distinct, and if D does not satisfy any nonzero p-polynomial of

degree less than p", then all the characteristic roots of D are in # and distinct.

Proof. Since all the roots of the minimal polynomial of D are in $ and dis-

tinct, Dean be diagonalized, that is, there exists a basis l,Wi, tt2, • • • of 21 such

that Du,=\iUi, \tE$, for all *". By Lemma 12.3 we may assume that the

elements u\l ■ ■ ■ «*" form a basis of 21 over <£>. Since D(uki ■ ■ ■ uk„n)

= (SA,-*,-)«i1 • • • «*", it is sufficient to show that XX&; = 0 with 0^k{<p
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implies ^1= • • • =fc„ = 0. Suppose that there exists (ki, • ■ ■ , kn)^(0, ■ • ■ ,0)

Oiki<p, such that 2X^ = 0. Since k^sk (mod p) we have £*?£.-= 0 for
7 = 0, 1, 2, • • • . Then the matrix (Xf), where HHn, Oijin — l, is singu-

lar. Therefore there exists aa, «i, • • • , a„_iG*, not all zero, such that

Yi «X = 0 for all i. Since Dptui = \piui we have (I>yD"')w> = 0 for all i. Then
the derivation Yi ctjDp' = 0, since «i, • • • , «» generate 21 over <£. This con-

tradicts our assumption. Therefore ^X,&, = 0 must imply ki= ■ ■ ■ =kn=0

(mod p).
The following two lemmas may be verified easily.

Lemma 12.6. Suppose Sip. If a0, «i, • • • , ap_iG^ are such that ctiCtj

= a,+y, where i+j is calculated mod p, for all i9^j, and if a0^0, then a, = 1 for

all i.

Lemma 12.7. Suppose 5ip. If a0 = 0, ai, • • • , ap_iG^ are such that

jotj—icti = (j—i)oti+j, where i +j is calculated mod p, for all i and j, then af = iai

for all i.

Let 8=8(21; Di, • • • , Dm) be a generalized Witt algebra defined by a

principal system (Di, • ■ • , Dm). We shall assume that <f> is a perfect infinite

field and that 5 ip. Let a be an automorphism of 8. By Lemma 9.1 there exist

7i, • • • , 7mG* such that D=71D1+ • • • +7mDm is normal. By Lemma 12.4

the characteristic polynomial x(X) of D is a p-polynomial of degree pn. All

the roots of x(X) are in <l> and distinct. We shall show that the characteristic

polynomial of D' is also x(X). Since

(12.8.1)      Do(Do • • • (DoX) ■ ■ ■ )(taken p' times) = Dpi o X

tor any i and XE2, and since no nonzero derivation of 21 commutes with all

elements in 8, we see that x(D') =0 and that D" does not satisfy any nonzero

p-polynomial of degree less than pn. x(D')=0 implies that the minimum

polynomial of D* has distinct roots contained in f>. Therefore by Lemma 12.5

all the characteristic roots of D° are distinct, and hence the minimal poly-

nomial of D' coincides with the characteristic polynomial of D'. Therefore

x(X) is the characteristic polynomial of D'. In particular, D'f = 0 implies

/G*, that is, D° is normal. Since the characteristic roots of D' are in <i> and

distinct, D' can be diagonalized, so that there exists a basis 1, u\, u2, • ■ • of

21 over $ such that D'w,=X,Mi, X,G* for all i. By Lemma 12.3 we may assume

that the elements m*1 • • • m£* form a basis of 21. Then the pn elements ^X^,-,

0iki<p, are precisely the (distinct) roots of x(X). On the other hand, since

X, is also a characteristic root of D, there exists a nonzero element x<G2l such

that Dxi=\iXi. Then 1, Xi, • • • , xat_i, where N = p", form a basis of 21. Since

Di, • • ■ , Dm are commutative with D, we have D(Dyx.) = X,Dyx,, and hence

DjXi = OLjiXi with ay.G* for all i and/ Since 8(21; Dlt • • ■ , Dm) is simple and

since x.p^O, by Lemma 3.2 we see that x,- is a unit in 21. Therefore we may

assume that xf = l for all *. The elements x*1 • • • xnn, 0iki<p, form a basis
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of 21 over <£. Note that the matrix (a.y) is of rank tn. Similarly, D\uj = a^Uj,

a[jE$, for * = 1, • • • , m and / = 1, • • • , ra. The matrix (o^) is also of rank tn.

Consider the subspace W(kx, • ■ ■ , kn) of 8, which will also be denoted

by Wk, spanned by ZG8 for which D o X = (\xkx+ • • • +A„*„)X. It is easily

seen that 93?* consists of elements of the form

xi1 • • • xk:(BxDx + • • • + BmDm),

where BiE&, so that Wk is of dimension m. The image W't of Wk under the

isomorphism cr is also of dimension m, and can be characterized as the set of

all FG8 for which D* o F= (\xkx+ • • ■ +\nkn) Y. Therefore «?'••• raj"

•(BxD'x+ • ■ ■ +BmD'm)EMl for any p\G*. If 0^k{<p-l for all *, then the
m elements «*'••• «J"D', * = 1, • • • , m, are linearly independent. For, if

Mi1 • • • «£"( YP,D't) =0 then (Y< fca'^Ujul1 • ■ ■ un" = 0, and hence Yi &««
= 0 for all/. Since (a^) is of rank m, we have Bx = ■ ■ • =Bm = 0. Therefore if

0^ki<p — 1 for all *', then WI consists of elements of the form «*'••• raj"

•03iDI+ • ■ • +f3mDro), where ^G*.
We are now ready to prove up9*0 for all *. Suppose up = 0. We shall denote

W(p-2, 0, • • • , 0), W(p-3, 0, • ■ ■ , 0) simply by W(p-2), W(p-3) re-
spectively. Then Mi = 0 implies Fo F' = 0 for any YEW(p — 2)' and

F'G9W(p-3)'. Hence lol' = 0 for any XEW(p-2) and X'EW(p-3).
This is a contradiction, since

(12.8.2) xP'Dj o xf_3Di = - XiXi'Di 9* 0.

Therefore up9*0, and similarly up9*0 for all *'. Hence we may assume up = 1

for all *'.
Now that we have shown that up = 1 for all *, it is easily seen that WI

consists of all elements of the form u\* • ■ ■ «J"(/3iD'+ ■ • • -r-BmD%), where

BiE$, without any restriction on ki. Since 8 is the sum of all Wk, it is also the

sum of all WI- Therefore every element in 8 can be written in the form

gxD'+ • • • +gmD°m, where f,G2l. This shows that (D\, • ■ • , D'm) is a sys-

tem equivalent to (Dlt • • • , Dm). By taking a suitable scalar-equivalent sys-

tem if necessary, we may assume without loss of generality that D,x, = 5,7Xy,

where 8,7 is the Kronecker delta, for **,/=1, • • • , m. Note that m^n. Simi-

larly, there exists a system (Ei, • • • , Em) scalar-equivalent to (D\, • • ■ , D'm)

such that EiUj = 8,7% for *", / = 1, • • • , m. We set

(12.8.3) (x'iD,)' = w'i(pii£i + • • • + PimEm),

where p./G*- We also set (xkDk)' = ukF for any fixed k> 1. Since F commutes

with every £>, D, o (xkDk)' = 0 yields easily po*w*F = 0, and hence we have

(12.8.4) P01 9* 0, pot = 0 (1 < *).

Now (12.8.3) yields easily pixPjx=Pi+j,x for *V/. Hence by (12.6) and (12.8.4)
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we have p,i = l for all i. Hence (12.8.4) yields D\ = Eu Similarly D' = Ei ior

all i. Again (12.8.3) yields, for any k>l, jpj\—ipik = (j —t)p,-+y,*. Hence by

Lemma 12.7 we havepik=ipik for all i. We shall writepk for pu. Then (12.8.3)

can be written as

(12.8.5) (x\Di)' = u\(Ei + i(P2E2 + ■■■ + pmEm)).

As before, we set (xkDk)' = UkF, Fui = ykui for k> 1. Then (x\Di)' o (xkDk)' = 0

and (12.8.5) imply, for i^O (mod p),

(12.8.6) PkF = yk(Ei + i(P2E2 +-1- PmEm)).

By changing i in (12.8.6), we obtain pkF = ykEi and 7*(p2£2 + ■ • ■ +pmEm)

= 0. Therefore if p*5^0 then 7*^0, and hence we have p2E2 + ■ ■ ■ +pm7im = 0,

a contradiction. Hence pk = 0 for all k>l. Since Ei = D\, (12.8.5) yields

(x\Di)' = u\D'i. Similarly we have (x)Dj)' = uip'j for all i and j. We set D/

= Xy-1Dy. Then (D/, • • • , D'ro) is an orthonormal system equivalent to

(Di, ■ ■ ■ , Dm). Since (D'jY = uJ1D'j, ((D()', • • • , (D'm)') is equivalent to

(D\, ■ ■ ■ , D'm) which is equivalent to (Du • • • , Dm). Hence ((Di)", • • • ,

D('m)°) is equivalent to (D{, • • ■ , D'm). By Theorem 12.1, a is induced by

an automorphism a of 21.

Suppose that D' = D( for all i. Then D' = D. We set y = xi' • • • x*\ Then

we have

Dy = D°y = (Dy)' = (Xi*i H-+ X.*.)^.

Hence y' = ay with aGf. Since (y")J' = (yp)"= 1, we have a" = l, a=l. Thus

y = y. Since xj1 • • • x*" form a basis of 21, the automorphism a of 21 is the

identity. Thus we have proved the following

Theorem 12.8. Suppose that $ is an infinite perfect field and that Sip.

Then any automorphism a of a generalized Witt algebra 8(21; Di, • • ■ , Dm) is

induced by an automorphism of 21. If D°i=Difor all i, then a is the identity.

Corollary 12.9. Let 8(21; Di, • • • , Dm) be a generalized Witt algebra, and

assume that there exist nonzero elements Xi, • • • , xmG2l such that DiXy = 5,yXy

for i, j = 1, • • • , m. If an automorphism a of 21 admissible to 2 leaves every xy

invariant, then a is the identity.

Proof. Since (D"u ■ ■ ■ , D'm) is equivalent to (Di, • • ■ , Dm), we may set

D\= YcaDi- Then D'x*' = 8,/xJ' = dfiCj. Since xy is a unit, we have 51y = c,y, and

hence D' = Di for all i. Therefore by Theorem 12.8 <r is the identity.

What automorphisms of 21 are admissible to 8(21; Du • • • , Dm)? In the

following we shall consider only the case m = \. If $ is algebraically closed,

then any generalized Witt algebras of D-dimension 1 can be written in the

form 8(21; D), where 21 =<i>(xi, • • • , x„) is the group algebra of an elementary

p-group with independent generators 1+xi, • • • , l+x», and where
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a       p_i a p_i       „_i a
D =-h xx-\- ■ • ■ + xx     • • • x„_i-

axi dx2 dxn

(Once 8 is given in this form, we may prove, without any condition on $,

that any automorphism of 8 is induced by an automorphism of 21.) Denote by

yw the monomial x"tl ■ • • x„" of weight w = vx+v2p-\- ■ ■ ■ -\-vnpn~l. If /

= awyw+aw+xyw+x+ • • • , where aa, aw+1, • ■ ■ ,E&, a„=^0, then we define

the weight of / to be w. Lemmas 12.10 and 12.11, below, are easily verified.

Lemma 12.10. 7//G2I is of weight w>0, then Df is of weight w — 1.

Lemma 12.11. Let 9i be the radical of 21. IffE^i2 then w(f) is not a power of p.

Lemma 12.12. Let 511 be the radical of 21, cr an automorphism of 21 admissible

to 2, and let

a

(12.12.1) Xi = anXx + • • • + ai„xn (mod 9J2)

for * = 1, • • • , ra, where a.yG*. Then atj = 0 for j<i.

Proof of 12.12. Let bD' = D, where &G2I. If 1 <i then from (12.12.1) we
have

p—1 p—1  tr p—1 p—1 p—1

(xi     • • • Xj_i) b = an + aj2Xi     + • • • + ainXi     ■ ■ ■ xn-x (mod Sft).

Therefore a,i =0 for Ki. We set

(12.12.2) x'i = aaxi + • ■ • + ainxn + /,-, /,• G 51c2.

Take a fixed * > 1 and assume that

(12.12.3) a„ = Ofoi s < r, and that w(fi) > p^1

whenever r<i. Suppose that a,i= • • • =a,,*_i = 0, a^^O for some k such

that Kk<i. From (12.12.2) we have

(xi • ■ • Xj_i)     b
(12.12.4)

p-i v-i   , p-i p-i  ,
= aikXi     • ■ ■ Xk-i + • • • + ainxi     ■ ■ ■ x„_! + Dfi.

From (12.12.3) it follows easily that w((x\ ■ ■ ■ x^1)p~1b) ^pi-1-l>pk~1-l.

Therefore (12.12.4) yields w(Dfi) = pk~l -1. Then from Lemma 12.10 we

have w(fi) =pk~1 which is a contradiction by Lemma 12.11. Hence a,7 = 0 for

/<*'. Then (12.12.4) yields w(Dfi) ̂ /^-l. Hence w(fi) >Pi~1. Thus (12.12.3)
holds for all r, completing the proof.

Denote by U the group of all admissible automorphisms of 21. Then the

mapping cr—>(afj) defined by (12.12.1) is a homomorphism of U onto a group

of raX« matrices, which is solvable by Lemma 12.12. Let U' be the kernel of
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the homomorphism. The automorphism group of 21 over $ is essentially the

same as that of its radical 5ft, since 21/5ft=<i>. Therefore U' can be regarded as a

subgroup of the group 23 of all automorphisms of 5ft which induce the identity

on St/Sl.2. Since 5ft is nilpotent, 83 is solvable (see [3, p. 117]). Hence U' is

solvable. Therefore U is also solvable. Thus we have proved the following

Theorem 12.13. Suppose Sip. The automorphism group of the algebra

8(21; D) given in Corollary 8.4 is solvable.

Finally we shall prove the following

Theorem 12.14. If two normal simple algebras 8 = 8(21; Du • ■ ■ , Dm)

and 8'= 8 (21'; D{, • • ■ , D'm<) over the same ground field <£> are isomorphic then

their D-dimensions coincide: m = m'.

Proof. Since 8 and 8' are normal simple, we may assume without loss of

generality that $ is algebraically closed, and that 8 and 8' are generalized

Witt algebras. Let pn, p"' be the dimensions of 8, 8' respectively, so that

mpn = m'pn'. Suppose m<m', and hence m'<m. By Theorem 9.1 there exists

DG8 whose characteristic roots are distinct. Let D' be the element cor-

responding to D, x'(X) the characteristic polynomial of D'. x'(X) is a p-poly-

nomial by Lemma 12.4, and of degree p"'. From x'(D')=0 and (12.8.1) it

follows easily that x'(D)=0, since no nonzero derivation of 21 commutes

with all elements in 8. This is a contradiction, since D does not satisfy any

nonzero polynomial of degree less than pn. Therefore m=m' must hold.
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