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I. Introduction and survey of the paper

1. If P= [U, 11, u] is a probability space(8) and (B is the <r-field(4) of all

Borel subsets of the real line, S, and / is a real valued measurable function,

then the map /-1 is a <r-algebra homomorphism of (B into 11 and induces a

cr-algebra homomorphism, F, of (B into the measure ring, 9TC, of P, where 9TC is

the quotient a-algebra, 11 modulo the ideal, 91, of sets of measure zero. This

map F from (B into the measure ring of P does not change if we vary/ on a

set of measure zero and is in some mathematical circumstances easier to

deal with than the point function /, and is more basic from some conceptual

statistical viewpoints. Consequently, following Segal [8] we make the follow-

ing

Definition 1. Let (B be a Boolean o--algebra and let 911 be the measure

ring of a probability space P. Then a (B measurable generalized random variable

on P is a <r-algebra homomorphism, F, of (B into 9TL If (B is a er-field of subsets

of a set 5 then F is said to be S-valued.

In the event S is the dual of a topological vector space B, and (B is the

(r-algebra of weak star measurable subsets of S (Definition 4 below) a notion

of integrable generalized random variable is definable. A theory of integration

for such random variables can be developed which is in some respects

smoother than the theory for ordinary vector valued' point functions. In

particular, if B is metrizable, one can characterize the indefinite integrals of

5-valued, (B measurable, generalized random variables; whereas, if B is not

separable, it is not known how to characterize the indefinite integrals of

5-valued, <B measurable, point functions. (A point function/is <J5 measurable

means /"'(TOGil for all &£<B.) If B is separable, then every 5-valued, (B

measurable generalized random variable is induced by a point function. Thus

Presented to the Society, September 2, 1955 under the title A Radon-Nikodym type theorem

for vector valued measures; received by the editors April 16, 1956.

0) This is substantially the same as the author's thesis submitted to the faculty of the
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if B is separable we do have a characterization of the indefinite integrals of

5-valued (B measurable point functions. This latter result is related to earlier

work of J. Dieudonn6 [2] on the Lebesgue-Nikodym theorem. A definitive

Radon-Nikodym type theorem of a somewhat different nature than ours has

been obtained by Rickart [7].

If B is a metrizable space, then our characterization of the indefinite

integrals of generalized random variables permits a natural definition of con-

ditional expectation appropriate to such variables. If B is a Banach space,

this same characterization justifies natural definitions of the Cartesian prod-

uct and sum of two generalized random variables.

We note here that every theorem in the sequel which applies to real topo-

logical vector spaces applies also to complex spaces. The reader will have no

difficulty in making the necessary modifications in the proofs.

II. Generalized random variables induced by point functions

2. We first inquire: When is an 5-valued (B measurable generalized ran-

dom variable, F, on a probability space P induced by a point function / as

described above? Our knowledge concerning this question is quite incomplete.

In this section we will state some relevant results of R. Sikorski and prove a

theorem of our own.

We note that there is a distinction between the question which starts this

section and the question: When is a o--algebra homomorphism h of <B into

the c-algebra 11 of measurable subsets of TJ, induced by a point function? In

the former case we are interested in knowing when a <r-algebra homomor-

phism into a certain quotient a-algebra is induced by a point function (namely

the quotient algebra 11/31, where 31 is the a-ideal of sets of measure zero)

whereas in the latter case we want to know when a <r-algebra homomorphism

into a certain a-algebra of sets is induced by a point function. To the latter

question Sikorski supplies a satisfactory answer, but in order to state the

answer we require a definition.

Definition 2. If xES, then the class of all sets AE<S>, which do not con-

tain x, is a maximal o--ideal in (B. Such a maximal <r-ideal in (B will be said to

be induced by a point in S.
We now state two results of Sikorski [9], namely: Fact 1. In order that

every ^-algebra homomorphism h of (B into an arbitrary o--field 11 of subsets

of a set TJ be induced by a point function on TJ into S, it is necessary and

sufficient that every maximal <r-ideal in (B be induced by a point in S.

As a corollary he obtains Fact 2. If 5 is a metric space and (B is the o--field

of all Borel subsets of 5 and the cardinality of 5 is not too great, namely if

it is less than the first cardinal inaccessible in the strict sense(6), then every

(') A cardinal p = t<\>Ho is called inaccessible in the weak sense, if X is a limit ordinal, and

if the condition pt<p implies Z~Lpt<P provided / runs over a set T of cardinality less than p.

If moreover m"<p for every m<p and n<p then p is said to be inaccessible in the strict sense.

See A. Tarski [ll, p. 69].
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tr-homomorphism h of (B into an arbitrary o--field of subsets of a set U, is in-

duced by a point function of U into 5.

We now return to the question with which we commenced this section.

We know nothing for the case in which (B is not countably generated. For the

case in which (B is countably generated we state a theorem of Sikorski's and

then derive one of our own. It is convenient first to state a definition of Si-

korski's.

Definition 3. A topological space is called a Borel space if it is homeo-

morphic to a Borel subset of the Hilbert parallelotope(6).

We now state a result of Sikorski [9]. Fact 3. In order that every a-

homomorphism h of a countably generated <r-field (B of subsets of a set 5

into an arbitrary o--quotient algebra 11/91 (of a set IT) be induced by a point

function on U into S it is necessary and sufficient that (B be isomorphic to

the cr-field of all Borel subsets of a Borel space.

Before applying Fact 3 to prove a theorem of our own it will be con-

venient to make a definition.

Definition 4. Let 5 be the dual of a topological vector space B. For each

xEB and <j>ES, let (x, <b) be the value of <p at the point x and let (x, ■) be the

linear functional on 5 determined by x. By the weak star measurable subsets of

S we mean the least <r-field, (B, of subsets of S, such that for all xEB, (x, ■)

is measurable relative to (B.

Theorem 1. Let (B be the weak star measurable subsets of the dual S of a

real separable metrizable topological vector space B, and let h be a a-algebra

homomorphism of (B into an arbitrary a-quotient algebra 11/91 (of a set U). Then

h is induced by a point function on U into S.

It is convenient to state as our first lemma, a well known theorem. We

first require two well known definitions.

Definition 5. Let S be any collection of subsets of a set Y. By s(5) we

mean the smallest o--ring containing 8.

Definition 6. For every class S of subsets of Y and every fixed subset

Z of F, we shall denote by &C~\Z the class of all sets of the form Ef\Z with

E in 8.

Lemma 1. If (J) 8 is any class of subsets of Y and if Z is any subset of Y,

s(&)H\Z = s(&r\A).

Our next lemma is probably well known. Since we know of no reference

we supply its proof.

Lemma 2. Let (B(F) be the Borel subsets of a topological space Y and let Z

(8) The Hilbert parallelotope is the collection of all sequences a= {aj} of real numbers

such that \cti\ gl/t.

(') For a proof see Halmos [4, p. 25 ].
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be a Borel subset of Y. Let (S>(Z) be the class of all Borel subsets of Z, i.e., the

a-field of subsets of Z generated by the relatively closed subsets of Z. Let &(Z) be

the class of all subsets of Z which are elements of (S>(Y). Then (B(Z) = Q(Z).

Proof of Lemma 2. Let 8 be the class of all closed subsets of Y. &C\Z is the

class of all relatively closed subsets of Z. Therefore <$>(Z) = s(&C\Z). An

application of Lemma 1 yields

<B(Z) = 5(8) n z.

Since s(&) =(S>(Y) it follows that

<&(Z) = <&(Y)C\Z.

The lemma now follows from the observation that since Z is a Borel subset of

Y,
<s,(Y)r\z = a(z).

Lemma 3. Let Y be the Cartesian product of the real line with itself a counta-

ble number of times. Let (Bi be the least a-algebra of subsets of Y such that each

projection mapping is measurable and let Gi be the collection of all Borel subsets

of Y. Then (Bi = d.

Proof of Lemma 3. It is trivial that (BiCCi. To show that 6iC<Bi it suffices

to show that every open subset of Y is an element of fl$i. Since Y is second

countable it suffices to show that every element of some base for the open

subsets of Y is an element of fl$i. The inverse images of open sets under the

projection mappings form a subbase and are certainly in (Bi. Since (Bi is closed

under finite intersections, the base generated by this subbase is a subcollection

of (Bi.

Lemma 4. Let S be the dual of a real separable metrizable topological vector

space B and let e be the a-algebra of subsets of S generated by the weak star closed

subsets. Then Q is isomorphic to the a-algebra of all Borel subsets of a Borel

space.

Proof of Lemma 4. Let Xi be a countable dense subset of B and let Y be

as in Lemma 3. Let T be the mapping of S1 into Y defined by letting the ith

coordinate of T(<p) he (x,-, </>) for all <pES. Then T is easily seen to be a one-one

continuous map of S into Y. There exists a countable base for the neighbor-

hoods of the origin in B. The polars(8) of these neighborhoods are a countable

set, Kj, of weak star compact subsets of S whose union is(9) 5. Since T(Kf)

is compact and since

T(S) = t({)  k)=U (T(Kj)),
_ \y-i     /     i-i

(8) The polar of a subset W of B is the set of all <t>ES such that | (x, <t>) \ S. 1.

(9) For a proof see [l ].
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it follows that T(S) is a c-compact subset of Y and therefore certainly is a

Borel subset of Y. Since T is continuous, every relatively closed subset of

T(S) is the image under T of a weak star closed subset of S. It follows by a

standard argument that every Borel subset of T(S) is the image under T

of a weak star Borel subset of 5. Conversely, given any bE&, we show that

T(b) is a Borel subset of T(S). For, since UKj = S it easily follows that

T(b) = U (T(b (~\ Kj)).
j=i

Furthermore, by Lemma 2, b(~\Kj is a Borel subset of Kj. Since F cut down

to Kj is a homeomorphism it follows that T(b(~\Kj) is a Borel subset of T(Kj).

Then applying Lemma 2 again, we see that T(bC~\K,) is a Borel subset of

F(5). Therefore T(b) is the union of a countable number of Borel subsets of

T(S), and is therefore also a Borel subset of T(S). It is now trivial to complete

the proof that the map

b -* T(b)

is an isomorphism of the <r-algebra, Q, with the o--algebra of all Borel subsets of

T(S). The proof of Lemma 4 is completed by observing that Y is a Borel

space and any Borel subset of a Borel space is likewise.

Lemma 5. The collection, (B, of weak star measurable subsets of the dual S

of a real separable metrizable topological vector space B is the same as the a-alge-

bra, 6, generated by the weak star closed subsets of S.

Proof of Lemma 5. It is trivial to verify that (BCC. We proceed to show

that ©C(B. Let T be the mapping of S into Y defined as in Lemma 4. Our

lemma will be proved once we show that T(Q)ET(($>). In the course of prov-

ing Lemma 4, it was shown that T(Q) is the collection of all Borel subsets of

T(S). Therefore, applying Lemma 2, we see that T(G) = QxI^T(S), where

Qx is as defined in Lemma 3. Then by Lemma 3, we get T(Q) =(BiHF(5).

Then by Lemma 1, (S>xT\T(S) is the least <r-algebra of subsets of T(S) such

that each projection mapping {a,}—>a, is measurable, when the mapping is

restricted to T(S). Since it is easy to check that each such projection mapping

is measurable relative to F((B) it follows that (BiAF(5)CF(fB). Therefore

F(C)CF((B). This completes the proof.

Lemma 6. Let (B be the weak star measurable subsets of the dual, S, of a real

separable metrizable topological vector space B and let Xi be a countable dense sub-

set of B. Then (B is the least a-algebra of subsets of S with respect to which all x,

are measurable.

Proof of Lemma 6. It is only necessary to show that if xEB and all x, are

measurable relative to a <r-algebra of subsets of 5 then so is (x, ■). Since #,• are

dense in B, there exists a subsequence which converges to x. Therefore there
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exists a subsequence of the measurable functions (.r,-, •) which converges

pointwise to the function (x, •)• But the pointwise limit of a sequence of

measurable functions is likewise measurable.

Proof of Theorem 1. From Lemma 6, it easily follows that 03 is countably

generated. By Lemmas 4 and 5 we see that 03 is isomorphic to the <r-algebra of

all Borel subsets of a Borel space. The theorem now follows from Fact 3

above.

III. Extending o--algebra homomorphisms

3. It is not in general true that a <r-algebra homomorphism defined on a

field of subsets of a set into an arbitrary tr-quotient algebra can be extended

to the generated <r-field so as to be a cr-algebra homomorphism (10). However,

with suitable restrictions on the <r-quotient algebra, the result is true. In

particular we have the following:

Theorem 2. Every a-algebra homomorphism of a field 01 of subsets of a set

S into the measure ring of a probability space possesses a unique extension to a

a-algebra homomorphism of the cr-field 03 generated by 01.

Proof of Theorem 2. The uniqueness of the extension is trivial. We pro-

ceed with the proof of existence. Let h he a a-algebra homomorphism of 01 into

the measure algebra 3TI of a probability space and let m be the measure on 9TC.

Since the measure algebra 9TC of a probability space is complete as a partially

ordered set we can first extend h to every subset A oi S as follows.

(1) h(A) = A [ V *(*<)]

where the inf, A, is taken over all countable sequences [Ri] such that i?,(E01

and such that
OO

(2) iCU Ri.
i=i

We first verify in a straightforward way that h is indeed an extension of h.

Let RE®-- We show that h(R)^h(R). Let Ri equal R for all i = l, 2, ■ ■ ■ .
Therefore Vh(Ri)=h(R). Thus h(R) is one of the terms over which the

infimum on the right side of (1) is taken. Therefore h(R)^h(R). We now

show that h(R) ^h(R). It suffices to show that for every sequence {Ri] over

which the infimum in (1) is taken, h(R)^Vh(Rf). If Ri is such a sequence

then i?CUi?,-. In this event R=U(Rr\Ri). Since h is countably additive on

01, h(R) =Vh(Rf~}Ri), which in turn is clearly ^Vh(Ri). We have now shown

that h equals h on 01.

We next show that h on 03 preserves complements and countable unions.

Let A be any subset of S. We will show that

(,0) For a counterexample see Sikorski [10, p. 13].
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(3) h(A) V h(A') = e

where e is the unit in the measure ring 3TL

By definition of h

(4) h(A) V h(A') = { A [ V *(*,-)]} V | A [ V A(5y)]|

where the first inf, A> is taken over all sequences {Ri} such that RiE&,

A CU ," ii?< and the second inf, A. is taken over all sequences {S,} such that

Sjea, a'cu?-i s,.
Now since any complete Boolean algebra is infinitely distributive we have

from (4)

(5) h(A) V ft(A') = A {[ V &(*.)] V [ V A(S,)]} ,

where A is taken over all pairs of sequences {Ri}, {Sj} such that

A E U Ri and i'CU Sy.

The right side of (5) is easily seen to be equal to

(6) A  { V [k(Rt) V *(5y)]| .

Since h is a homomorphism (6) equals

(7) A { V h(Ri U 5y)|.

Further, since, h is a o--homomorphism on 01 and since the unit 5 of 01

equals U,-,,- (RAJSi) we have e = h(S) = V,-.y A(P,W5y). Therefore (3) is estab-
lished.

We now wish to show that for all A £03

(8) h(A) H h(A') = 0.

In order to prove (8) and the fact that A on 03 preserves countable unions

we define a probability measure on 5 as follows:

First for each RE 01 we define

(9) v(R) = m(h(R))

where m is the measure on the measure ring 317.. It is straightforward to verify

that v is countably additive on 01. Thus as is well known v may be extended in

a unique manner to be a probability measure on 03. We now wish to show that

(10) moh~(A) ^ v(A) for every A E <B.
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Before proving (10) we first show that (10) is sufficient to complete the

proof of the theorem. We return to the proof of (8). By (10) we get

(11) moh(A) + moh(A') g v(A) + v(A') = v(A U A') = 1.

From (3) and the fact that m is a probability measure we easily see that

(12) m[h(A) V^O] = L

Since m is additive (11) and (12) are known to imply (8).

We continue to show that (10) is sufficient to complete the proof of the

theorem. We need to show that if Ai is a monotone decreasing sequence of

sets in (B with an empty intersection then h(Ai)\ 0. From the definition of

h it easily follows that h is monotone. Therefore h(Ai) is a monotone decreas-

ing sequence. To show it decreases to zero it is sufficient to show m [h(Ai) ] \ 0.

But this latter follows from (10) since v(Ai)\ 0 for j; is a countably additive

measure on (B. The following sequence of inequalities establishes (10)

moh(A) = ml A   { V k(R{)\\ ^A«|v k(Ri)\

CO

g A   Y™°KRi) = v(A)
i-l

where the infimum is taken over all countable sequences {Ri}, of elements

RiE®-, such that A CUi?,-. The first equality follows from the definition of h.

The two inequalities are immediate from the fact that m is a measure. The

last equality is demonstrated in the well known proof of the existence of

an extension of a c-measure defined on a ring (Jt of subsets of a set to the

ff-ring (B generated by (R. This completes the proof of Theorem 2.

IV. Integration of generalized random variables

4. Discussion. In this chapter we define a notion of integral for generalized

random variables which agrees with the weak integral of Pettis(n) in the

event that the generalized random variable is induced by an ordinary point

function into the dual of a Banach space. We then prove a Radon-Nikodym

type theorem, Theorem 5 below, which is fundamental for the theory of

generalized random variables.

Throughout this chapter, 5 will be the dual of a real topological vector

space B, and (B will be the collection of weak star measurable subsets of S,

and F will be an 5-valued, (B measurable, generalized random variable on a

probability space P=[U, 11, u] whose measure ring is 9H. We will occa-

sionally impose additional restrictions on B and F. Let/ be an ordinary func-

tion defined on U into 5 such that for every xEB the real valued function

(") For a discussion of various notions of integral including the weak integral of Pettis see

Hille [5].
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(*>/(■)) is measurable relative to 11. If for every xEB

I   (x, f(w))du(w)

exists, it determines a linear functional on B. If furthermore it is a continuous

linear functional of B it determines a unique element of 5. It seems natural

to say that in this event, / is integrable, and to define ff to be the element of

S thereby determined. If one accepts this definition, then it seems natural to

say that for any measurable subset AfGll, if for every xEB, fM(x, f(w))du(w)

exists, and determines a continuous linear functional of B then/ is integrable

over M, and to define Juf to be the unique element of 5 thereby determined.

It would be desirable if the set of M such that/ is integrable over M formed

an ideal. If we assume that B is complete and metrizable then one can prove

that the collection of such M is indeed an ideal; however, the collection need

not, in general, form an ideal. It seems desirable therefore to modify our pro-

posed definition somewhat, so that this collection is always an ideal, and so

that the definition is not really different in the event B is both complete and

metrizable. We are thereby led to consider / to be integrable over a meas-

urable set ilfoGH provided that for all measurable M^M0, f is integrable

over M in the sense previously defined and in this event to define Juf as be-

fore. If one examines what this concept means in terms of the mapping/-1 of

03 into 11 one is led to definitions appropriate to generalized random variables.

5. Some elementary properties of indefinite integrals of generalized ran-

dom variables.

Definition 7. For every S- valued 03 measurable generalized random vari-

able F, and every M in the measure ring of P we define a linear transformation

Fm as follows.

The domain of Fm is the set of all xEB such that the linear functional on

S, (x, ■), is integrable relative to the measure uM o F where (uM o F)(A)

= uM(F(A)) =u(MC\F(A)) for all AE<$>-
If x is in the domain of Fm then we define Fm(x) to be that element of

Li(um o F) determined by (x, ■). For brevity we write

Fm(x) = (x, ■).

Proposition 1. Fm is a linear transformation defined on a subspace of B.

Proof is immediate from definition of Fm.

Proposition 2. If the domain of Fm is a complete metrizable subspace of B

then Fm is continuous.

Proof of Proposition 2. By the closed graph theorem it is sufficient to show

that FM is closed. Since metrizability implies first countability it suffices to

show that if x„£domain of Fm and xn—>x and FM(xn)—>y then x£domain of

Fm and Fm(x) =y. Since the domain of Fm is closed it follows that x is in the
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domain of FM- Since xn converges to x, (xn, •) converges everywhere to (x, ■).

Since FM(xn) = (xn, ■) converges to y in Lx(uM o F) it follows that y = (x, ■)

almost everywhere (um o F). Therefore FM(x) = (x, ■) =y in Lx(um o F). This

completes the proof.

Definition 8. F is said to be weak star semi-integrable over M provided

that for all xEB, (x, ■) is integrable relative to the measure uM o F and the

mapping

x->J  (*, <p)d(uMoF)((p)

is a continuous linear functional defined on B.

Definition 9. F is said to be weak star integrable over AT0 provided that

for all ATg ATo, F is weak star semi-integrable over AT.

In the event B is complete and metrizable there is no need to distinguish

between weak star semi-integrability and weak star integrability as the

following proposition implies.

Proposition 3. Suppose B is complete and metrizable. If for all xEB, (x, ■)

is integrable relative to the measure uM<s o F then F is weak star integrable over Mo-

Proof of Proposition 3. Let ATg AT0. The measure uM o F is less than or

equal to the measure Um0 o F on every measurable set bE<$>. Therefore for all

xEB, (x, ■) is integrable relative to Um o F. That is, every xEB is in the do-

main of Fm- Therefore by Proposition 2, Fm is continuous. So the mapping

x—>(x, •) is a continuous mapping of B into Lx(um o F). It easily follows that

the mappingx—*f(x, -)d(uMO F) is a continuous linear functional on B. Thus

F is weak star semi-integrable over AT. By Definition 9 it follows that F is

weak star integrable over AT0.

Definition 10. If F is weak star semi-integrable over M then we define

fMF to be that unique element in 5 determined by

(x, J   P)= J   (*. <p)d(uMoF)<p.

Definition 11. Let F be any S-valued, (B measurable generalized random

variable. We define the indefinite integral of F to be the vector valued function

v with domain the set of all AT in the measure ring of P such that F is weak star

integrable over AT, and where

v(M) =  f   F.

The following proposition follows immediately from the definitions and

is stated here for later reference:

Proposition 4. Let F be an S-valued, <B measurable, generalized random
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variable and Mo an element of the measure ring of P. Then any one of the follow-

ing hold if and only if they all hold.
1. Mo is in the domain of the indefinite integral of F.

2. F is weak star integrable over Mo.

3. For all M^M0, F is weak star semi-integrable over M.

4. For all M£i Mo, F is weak star integrable over M.

5. For all M^=M0, M is in the domain of the indefinite integral of F.

6. For all M^ Mo, and for all xEB, (x, ■) is integrable relative to the meas-

ure um o F and the mapping x—*f(x, <p)d(uM o F)<p is a continuous linear func-

tional defined on B.

Definition 12. F is said to be weak star integrable provided that for all M

in the measure ring of P, F is weak star integrable over M.

Corollary to Proposition 4. An S-valued, 03 measurable generalized ran-

dom variable is weak star integrable if and only if it is weak star integrable over

the unit of the measure ring of P.

Our primary objective is to characterize the indefinite integral of a gen-

eralized random variable. An obvious property of indefinite integrals is their

countable additivity, a concept which we now define explicitly.

Definition 13. A mapping v of a subset of a o"-ring into 5 will be called

weak star countably additive provided that for every disjoint sequence Mi in

the domain of v such that Vf1i Mi is also in the domain of v, we have

(OO V OO

V   Mi) = Y v(Mi),
i=i       /       i=i

where the sum, Y, 1S meant in the sense of the weak star topology on S.

Proposition 5. The indefinite integral of a generalized random variable F is

weak star countably additive.

Proof of Proposition 5. Let v be the indefinite integral of F and let Mi be

a disjoint sequence in the domain of v such that M=VMi is also in the domain

of v. We need to show that v(M) = Yv(^d where the sum, Y,1S taken in the

sense of the weak star topology on S. It suffices to show that for all xEB

(x, v(M)) = Y (x, v(Md).

That is we wish to show that for all xEB

Equivalently, we need only show that

£FM(x)d(uMoF) = Y f     (x)d(uMioF).
FMi
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That is we must only show that

|  (x, -)d(uMoF) = Y I  (*, -)d(uMioF).

This equality does indeed hold since the measure % o F is the sum of the

measures UMt o F. Therefore the proposition is established.

6. A preliminary Radon-Nikodym theorem for generalized random vari-

ables. We are now ready to prove a preliminary theorem of Radon-Nikodym

type.

Theorem 3. Let v be a weak star countably additive function whose domain

is the measure ring of a probability space P= [U, 11, u] and with values in S.

Suppose that for all My^O in the measure ring of P, v(M)/u(M)EK, where

K is a convex subset of S which is compact in the weak star topology. Then v

is the indefinite integral of an S-valued, 63 measurable, generalized random vari-

able h.

Proof of Theorem 3. Our proof will be accomplished as follows. First we

will define h on sets of the form x~l(J) where J is a left closed right open inter-

val of real numbers and where x_1(J) is the set of <pES such that (x, <p)EJ-

We will then prove that h can be extended to be a (r-algebra homomorphism

of the Boolean subalgebra of (B generated by sets of the form x_1(J). Then

by Theorem 2 there exists a further extension of h to (B. We will then show

that v is the indefinite integral of h by showing, that for all AT in the measure

ring of P, M is in the domain of the indefinite integral of h and fiah = v(M).

We now proceed to the details of the proof. We will use the letter x to

represent either a vector in B or the continuous linear functional on 5 to

which it gives rise. Thus by x o v we mean the mapping which assigns to

each M in the measure ring 9TC of P, the real number (x, v(M)). Clearly x o v

is a countably additive real valued measure defined on the measure ring 911.

Therefore by the usual Radon-Nikodym theorem, there exists an integrable

function fx defined on U into the reals, unique up to a set of u measure zero

such that

(1) I   fxdu = JOSO 1t(D),
J D

where ir is the canonical projection mapping of 11 onto the measure ring 9TC,

and F>G1l.
Let J be any left closed, right open, interval of real numbers, infinite

intervals not being excluded. Then irfxl(J) is an element of the measure ring

and is uniquely determined by x and J. We now define h on sets of the form

x~l(J) as follows.

(2) h[x-\J)} = rf?KJ).
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We omit the easy proof that h is well defined on such sets. Let g be a set

of the form

(3) g = xrKJi) r\ • • • n xrKJn)

and let & be a finite union of sets of the form (3)

(4) b = U gj.
3=1

It is straightforward to check that the class of all sets of the form (4) is the

Boolean algebra generated by sets of the form x_1(J). It then follows(12)

that a necessary and sufficient condition for h to be uniquely extended to a

Boolean algebra homomorphism of this Boolean algebra is:

If xrl(Ji) C\ • ■ • f~\ Xnl(Jn) is empty then

h[xrKJi)] A • • • A k[xnKJn)] = o.

We proceed to prove (5).

Lemma 1. Let E be a convex set of reals and x a vector in B andfx as defined

above. Suppose 0<Mt%irf~\E). Then v(M)/u(M)Ex~1(E).

Proof of Lemma 1. From (1) we get

1      r                xo v(M)
(6) - |   fju = -—

u(M)J M u(M)

where /m/^m means the integral of fx over any set in 11 which represents M.

It is well known that the left side of (6) is in the least convex set containing

the image under fx of any representative of M. By hypotheses E is such a set.

Therefore

x o v(M)
-—EE

u(M)

or equivalently

v(M)

u(M)

Lemma 2. Let Ei, ■ ■ • , E„ be convex sets of reals and xu ■ ■ • , xn vectors in

B. LetfXl, ■ ■ ■ ,fx„be as defined above and suppose

0 < M = Tf~l(Ei) A ■ • • A wft(EJ

then

(") For a proof see Sikorski [lO],
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v(M) _x _!
-7— g*i (son -..n*. (Fn).
«(AT)

Proof is immediate from Lemma 1.

It is easy to see that (5) above is immediate from Lemma 2. Thus h can

be extended to be a Boolean algebra homomorphism of the Boolean algebra

generated by sets of the form x_1(J).

We next wish to show that h as thus extended is a <r-homomorphism. It is

sufficient to show that if bn is any monotone decreasing sequence of subsets of

5 whose intersection is empty, (where each bn is of the form (4) above) then

l\h(bn) =0. We now proceed to show that this sufficient condition holds.

Lemma 3. If it-fa1 (J) 9*0, then for any e>0, there exists a closed interval, Z,

such that

Z EJ and u[Ttfx\z)] > u[rf7\j)] - «•

Proof of Lemma 3. unfa1 is a regular measure on Borel subsets of reals.

Lemma 4. If irfa^JOA • • • At/^T/O^O then for any e>0, there exist
closed intervals Zi such that ZiEJ< end

uWUl(Zi) A • • • A irU(Zn)} > uWfxl(Ji) A • ■ • A nf~l(Jn)} - e.

Proof of Lemma 4. This lemma follows from Lemma 3.

Lemma 5. If 7 = V'_i Wf-\(Jj.i)A • ■ ■ Air/^CJ/.n,)]^ then for any
e >0, there exist closed intervals Zj,i such that Zj,iEJi,% and such that

«{ v [ a »/i(^/.<)]} > <y) - e-

Proof of Lemma 5. This lemma follows easily from Lemma 4.

Lemma 6. Let 7m = VJ"i A?-'/ *fsm1,i,i(Jm.i,i) end suppose ym is monotone

decreasing. Let M = l\ym and suppose M3AO. Then there exist closed intervals

Zm.j.iEJm.j.i such that

/    •»       Jm    nm,j      _x \ M(^f)

«i A   V  A *U.i.i(Zmj,i) \ ^—— •
1 m-1   j— 1   i-1 / ■i

Proof of Lemma 6. Let tm = u(M)/1m. We apply Lemma 5 to ym and em to

get the existence of closed intervals Zm,j,iEJmj.i, and such that

«{   V      A    *f*m.J.t(Zm.i.<)(   >  «(7m)  - «»•
l y-i   1-1 '

We easily confirm that
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f      » lm       „,„,,• -, w(jJ,/) M(J|/j

«i A    V   A ■/—,.«(*-./.<) J * «[At«] - X>» = «M-7- = -77--
V m—l   ;=1     i=l J L 2.

Lemma 7.1fbn is any monotone decreasing sequence of subsets of S of form (4)

above, whose intersection is empty, then P\h(bn) =0.

Proof of Lemma 7. Let M = p\h(bn) and assume Mt^O,

lm     nm,j   _.

Om  =    U       f|   xmlj,i\J m,i,i).

;=1    i-l

Let ym = h(bm). By Lemma 6, there exist closed intervals Zm,i,iEJm,i.i such

that

f     »        tm     "rn.i        _j ") U(M)

«{ A   V   a T/^../.,(^.i..) = —r- ■
\ m—l   j—1    t=l / ^

In particular

N       lm     nmj

on =  A    V    A  ■ffxm,j.i(Zm,j,i) ̂  0 for every AT.
m—l    J—1     i-l

Then I claim

t)(5jv) ^     '"   ""•'   -1
——- e n   u  n xm.j,i(zm,i.i).
u(5n) m=l    j_l    t=l

To see this we use the distributive law and apply Lemma 2. Furthermore

v(8N)/u(8N)EK. Thus we have proved that for every N

N        lm     *m,i ,

xn n  u  n «-./f<(z»l/lo
m—l   y—1    i—l

is nonempty.

For every A/ this set is compact in the weak star topology. These sets obvi-

ously possess the finite intersection property. Therefore

00 lm     nm.j ,

kt\ n  u  n xm.i.i(zm,j,i)
m—l   i-l    i=l

is nonempty. It easily follows that

00        lm     rim.j ,

HUD    *m,y,i(Zm.y,,)
m—l   j'=l    t-1

is nonempty. And since Zm,y,iC-7ro,y,i we see that

00        lm     rtm.j        -

nUn    *m./„-(/m.y.i)
m-1   y-1    t-1
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is nonempty, i.e, flm-i bm is nonempty. This contradiction completes the proof

of the lemma.

Lemma 7 implies that h is a <r-homomorphism of the Boolean algebra gen-

erated by sets of the form x_1(7). Now by Theorem 2, h can be extended to

be a (T-homomorphism of the er-algebra generated by sets of the form x_1(T).

To complete the proof of the theorem we need only show that for all AT in the

measure ring of P, M is in the domain of the indefinite integral of h and

fuh = v(M). By Proposition 4, it suffices to show that for all M in the measure

ring, h is weak star semi-integrable over AT and fuh = v(M). That is we need

to show that for all xEB, (x, ■) is integrable relative to the measure Um o h

and:

(x,v(M))=  I  (x,4>)d(uMoh)(<p).

This is easily established via the following sequence of equalities

(x,v(M))=  I    fxdu=   I  yd(uMofx)(y)
J M J

=  I yd(uMo ho x~l)(y) =  J  (x,<j>)d(uMoh)(<p),

The first equality follows from the definition of /„. The second equality is

standard measure theory. The third equality is by definition of h. The last

equality is again standard measure theory. The proof of Theorem 3 is now

complete.

7. A sufficient condition for absolute continuity of the indefinite integral

of generalized random variables. It is easy to see that if v is weak* countably

additive on the measure ring 9TC of a probability space, then z>(0) =0; that is,

v necessarily possesses a kind of absolute continuity property with respect to

the probability measure u on the measure ring. In case 5 is the real numbers

the usual Radon-Nikodym theorem is therefore easily seen to imply that

every weak* countably additive function defined on the measure ring of a

probability space into 5 is the indefinite integral of an integrable random vari-

able. It is therefore natural to inquire whether this result is true if 5 is the

dual of an arbitrary Banach space, B. This however is not the case. Errett

Bishop called to my attention the following counterexample. Let the measure

space be the unit interval under Lebesgue measure. Let B be L2 of the unit

interval and 5 its dual. Let v(M) be the element of 5 corresponding to the

characteristic function of any representative of M where AT is any element of

the measure ring. Then v is weak* countably additive. However v is not the

indefinite integral of a generalized random variable F. For assume that it

were. Then there exists a sphere V, say the sphere of radius k in S, such that

F(V)*0.
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Let 0<M<F(V). Then for all xEL2,

| (x, v(M)) |   = I ( x,   C F J   = I   f (x, <p)duMoF(<p)
\\       J M   )  I \   J

^  f \(x,<b)\ duM oF(<f>) ^ J  ||x|| M\duM oF(<p)

= \\x\\  I  \\<j>\\duMoF(<h) ^ ||x|| £■«(.¥).
Jy

Now let x be »(AQ. Therefore «(Af) = (v(M), v(M)) ^\\v(M)\\-ku(M). E'quiv-
alently 1 g||i/(if)|| •&. Therefore 1 ̂  (v(M), v(M))k2 = u(M)k\ We arrive at a

contradiction by letting ilf have sufficiently small positive measure.

Therefore in order that v be the indefinite integral of a generalized random

variable we need an additional restriction on v besides weak star countable

additivity. In order to state the additional property v must satisfy, it is con-

venient to make a definition.

Definition 14. Let 3TC be the measure ring of a probability space P= [TJ,

11, u] and let S be the dual of a topological vector space B. Let v be a function

defined on a subset of 3TC into S. We say that v is absolutely continuous with

respect to u provided that there exists a collection Ma of elements of 3K

whose sup is the unit of 311 and such that for each a and each Af£3TC with

MiHMa, v is defined on M and v(M)Eu(M) -Ka, where Ka is a convex weak

star compact subset of 5 corresponding to Ma.

In the event v were a countably additive real valued function defined

on 11, it is well known that v is absolutely continuous in the usual sense if

and only if the function ti defined on the measure ring of P by

v({A}) = v(A)

is well defined, where {A } is the element in the measure ring corresponding

to A Git. In order to show that for real valued countably additive functions,

our use of the words absolutely continuous is consistent with previous usage

we observe that the usual Radon-Nikodym theorem can be used to show that

if v is a countably additive real valued function defined on the measure ring

of a probability space P= [TJ, 11, u] then v is absolutely continuous with re-

spect to u in the sense of Definition 14.

We do not know if the indefinite integral of an 5-valued, 03 measurable,

generalized random variable is necessarily absolutely continuous with respect

to u. We do however have the following:

Theorem 4. Let h be an S-valued, 03 measurable generalized random variable

on a probability space P=[U, 11, u] where S is the dual of a real metrizable
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topological vector space B. Then the indefinite integral of h is absolutely con-

tinuous with respect to u.

Lemma. Let S be the dual of any real topological vector space B and let

[S, <S>,v]be a probability space where (B is the collection of all weak star measura-

ble subsets of S. Suppose further that S is a measurable cover of the polar, K, of

a neighborhood, W, of the origin in B. Then the mapping

*->(*, •)

is a continuous linear transformation of B into L„(v), the Banach algebra of

essentially bounded measurable functions on S. Furthermore it is a continuous

linear transformation of B into Lx(v) and the mapping

*-» J  (x, <p)dv(<p)

is a continuous linear functional, y, on B. Also yEK.

Proof of Lemma. It is clear that for each xEB, (x, ■) is measurable ((B).

We show that it is essentially bounded. K is a weak star compact subset of S,

and therefore the image of K under the continuous function (x, •) is a com-

pact interval T of real numbers which depends upon x. Let b be the set of

(AG5 such that (x, <p) E'l- Clearly bG(B and b(~\K = 0. Therefore v(b)=0 since

5 is a measurable cover of K. Therefore (x, ■) is essentially bounded by its

bound on K. The mapping x—*(x, ■) is clearly a linear transformation of B

into the essentially bounded measurable functions on 5. To show continuity

it is sufficient to show continuity at the origin. In fact it is sufficient to show

that some neighborhood of the origin in B maps into the open unit sphere.

For all xEW and all (pEK\ (x, <p) | gl. Since (x, ■) is essentially bounded by

its bound on K, it follows that | (x, <p) | gl almost everywhere (v). Therefore

continuity into Lx(v) is established. Since the injection map of Lx(v) into

Lx(v) is continuous it follows that x—+(x, •) is continuous on B into Lx(v) and

the mapping x—>f(x, <p)dv(<p) is clearly a continuous linear functional y on B.

We now show yEK. Assume yE'K. Then since 5 is locally convex in the

weak star topology there exists a continuous linear functional separating y

from K. Since the only continuous linear functionals on S in the weak star

topology are in B it follows that there exists an xEB such that

(x, <p) t* (x, y) for all <p E K.

Since v is a probability measure, f(x, <p)dv(<p) is an element of the closed con-

vex hull of the essential range of (x, ■). It was shown above that the essential

range of (x, ■) is contained in T, the image of K under the continuous function

(x, ■). Therefore f(x, (p)dv(<p) equals (x, <p) for some <pEK. Therefore (x, <p)

= f(x, <p)dv(<p) = (x, y). This contradiction completes the proof of the lemma.
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Proof of Theorem 4. Let Wn he a countable base for the neighborhoods of

the origin in B, and let Dn he a measurable cover for Kn, the polar of Wn-

Since S equals the union of the Kn it follows that the same is true for the

union of the Dn. Also, since h is a cr-algebra homomorphism it follows that the

unit of 3TC is the sup of Mn = h(Dn). Let ME^H with 0^M^Ma for some

fixed a. We now apply the lemma where v= (1/u(M)(um o h). Therefore the

mapping

x -> I  (x, 4>)dv(d>)

is a continuous linear functional, y, on B; and yEK. That is, the mapping

x—>(l/u(M))f(x, d>)d(uM o h)(<p) determines an element of K. Therefore the

mapping x—*f(x, <f>)d(uM o h)(<p) is a continuous linear functional. Therefore

h is weak star semi-integrable over M. This is true for every Mi%\Ma and

therefore by Proposition 4, M is in the domain of the indefinite integral of h.

Furthermore (l/u(M))(x, fMh) = (l/u(M))f(x, <p)d(uM o h)(<p). Therefore

(l/u(M))fMhEK. This completes the proof.

8. A Radon-Nikodym theorem.

Theorem 5. Let 3TC be the measure ring of a probability space P = [ TJ, II, u]

and let S be the dual of a topological vector space B. Let v be a function defined

on 31t with values in S which is both weak star countably additive and absolutely

continuous with respect to u. Then v is the indefinite integral of a unique S-

valued, 03 measurable, weak star integrable, generalized random variable, h, on P.

Proof of Theorem 5. We first prove existence. Since v is absolutely con-

tinuous with respect to u, there exists a collection AftG3H, where k ranges

over some set A, such that sup Mk = 1G3TC and such that for each kEA and

each M^ Mk, v(M) Eu(M) ■ Kk where Kk is a convex weak star compact sub-

set of 5.

Let vk=v cut down to Mk- We observe that Theorem 3 is valid not only

for probability spaces but for any finite measure space. Therefore there

exists a collection hk of cr-algebra homomorphisms of 03, into the subring of 3TC

consisting of the principal ideal generated by Mk with the property

/hk = v(M) for every M ^ Mk-
M

Now define h(b) =Vhk(b) for each bE<$>- We now check that h is a tr-homo-

morphism.

The fact that h preserves countable unions is trivial. We proceed to show

h preserves complements. We need to show that

V hi(b)    and    V (Mk - hk(b))

are complements. The sup of these two is easily seen to be the identity in 9TL
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We need only prove that their inf is zero. Their inf is

V hj(b) A (Mk - hk(b)).
i.k

Thus we wish to show that for each / and k

hj(b) A (Mh - hk(b)) = 0.

We observe that the collection of &G® for which this latter equation holds

forms a o--subalgebra of (B and that therefore we need only show that it holds

for a generating subset of (B. In particular we need only show that it holds

for sets of the form x~~l(J) where xEB and J is a left closed right open interval

of real numbers. By the usual Radon-Nikodym theorem, there exists an

essentially unique real valued integrable function fx defined on U such that

Jfx = (x, v(M) for all M E 911.
M

By definition of hk and hj (in Theorem 3)

hk(x~\j)) = Tf~x\j) A Mk

and

hj(x~\j)) = rfx\j) A Mj.

These two equations imply that

hj(x-KJ)) A (AT* - hk(x-KD)) = 0.

Therefore h preserves complements. Thus we have shown that h is a cr-algebra

homomorphism.

It is convenient to note here for later use the fact that

ho X      = irf'x  .

For: h(xrl(J))=supk hk(X-l(J))=snpkTrfa1(J)f\Mk = Tcfa1(J). Therefore for

every Borel set C of real numbers,

h(x-\c)) = TfZ\c).

Equivalently

ho x    = irfx .

We now show that h is weak star integrable and that v is the indefinite

integral of h. That is, we will show that for all AT£9TC and all xEB

(x, v(M)) =   I   (x, 4>)duMo h(<p)
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in the sense that the integral on the right exists and equals (x, v(M)). This

follows from the following sequence of equalities

(x,v(M))=   j    /,=  J  ydujtof,(y)
J M J

=    I   ydiiM o h o £~l(y) =   j   (x, d>)duu o h(q>).

The first equality follows from the definition of fx. The second is standard

measure theory. The third follows from the fact already noted; namely

ho x~1=irfx1, and the fourth is standard measure theory.

We now prove uniqueness. We observe that the function /, was determined

as that essentially unique function such that fufx=(x, v(M)) for all MG3TC-

Therefore ir/J1 is uniquely determined by x and v. Therefore h o x~l is

uniquely determined by x and v. Thus h is uniquely determined on sets of

the form x~1(C) for C a Borel subset of the reals. Therefore h is uniquely de-

termined on a generating subcollection of 03. By a standard argument h is

uniquely determined on 03. This completes the proof.

Definition 15. The unique h determined by v we call the Radon-Nikodym

derivative of v.

9. The main result: a characterization of the indefinite integral of 5-

valued generalized random variables for S the dual of a metrizable space.

As an immediate consequence of Proposition 5 and Theorems 4 and 5 we

deduce our main result:

Corollary 1. Let 3TC be the measure ring of a probability space P = [ TJ, 11, u ]

and let S be the dual of a real metrizable topological vector space B. Let 03 be

the collection of weak star measurable subsets of S and let v be a function defined

on 3TC into S. Then v is the indefinite integral of a unique S-valued 03 measurable,

weak star integrable, generalized random variable on P if and only if v is both

weak star countably additive and absolutely continuous with respect to u.

10. A characterization of the indefinite integral of 5-valued weak star-

integrable ordinary random variables for S the dual of a separable metriza-

ble space. Theorems 1 and 5 together imply a generalization of a theorem of

Dieudonn6 [2, p. 132] which we state as:

Corollary 2. Let 311 be the measure ring of a probability space P = [ TJ, 11, u ]

and let S be the dual of a real separable metrizable topological vector space B. Let

03 be the collection of weak star measurable subsets of S and let v be a function

defined on 3H into S. Assume v is both absolutely continuous with respect to u and

weak star countably additive. Then there exists a point function f on TJ into S

such that /-1(&)GH for all 6G03 and such that for each A Git and each xEB

(x,XA(-)-f(-))
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is integrable with respect to u and

I  (x,XA(w)-f(w))du(w) = (x,voie(A))

where ir is the canonical mapping of tU onto 9TI and XA is the characteristic func-

tion of A.

Proof of Corollary 2. By Theorem 5, v is the indefinite integral of a gen-

eralized random variable h. By Theorem 1, his induced by a point function/.

It is straightforward to check that/ has the desired properties.

We observe that Corollary 1 implies the converse to Corollary 2. Thus if

S is the dual of a separable metrizable space, we have a necessary and suffi-

cient condition that an 5-valued function v defined on the measure ring of a

probability space be the indefinite integral of an 5-valued, weak star integra-

ble point function.

11. Conditional expectation and the Fubini theorem for generalized ran-

dom variables. Corollary 1 enables us to define conditional expectation. Let g

be a weak star integrable 5-valued (B measurable generalized random variable

on a probability space P = [U, 11, u] with measure ring 9U where 5 is assumed

to be the dual of a metrizable space B and (B as usual is the collection of weak

star measurable subsets of 5. Let 9TC0 be a <r-subalgebra of 9TC. It is easy to

see that there exists a cr-subalgebra of 11, H0, such that 9TC0 is the measure ring

of the probability space [U, 1t0, wo]=Po where u0 equals u cut down to llo.

Let v be the indefinite integral of g

v(M) =  I   gdu for all AT E 9TC.
J M

Then by Corollary 1 to Theorem 4, v is both weak star countably additive

and absolutely continuous with respect to u. Let Vo equal v cut down to 3TC0.

It is easy to see that v0 is also weak star countably additive and absolutely

continuous with respect to m0. Then we apply Corollary 1 again, to find a

unique weak star integrable, 5-valued, (B measurable generalized random

variable, go, on P0 which is the indefinite integral of vo. We call go the condi-

tional expectation of g with respect to 9E0 and designate it by E[g\ 9H0]. Then,

if h is any 5-valued (B measurable generalized random variable on P we define

as usual the conditional expectation of g with respect to h to be E[g\ h((&)].

The uniqueness of the Radon-Nikodym derivative permits one easily to show

that £{£[g|9H0]|9Ei} =£[g|9Hi] whenever 9TCiC9TCo. It is convenient here

to remark, that the usual Fubini theorem can be interpreted to say two

things. Firstly, if a function f(x, y) is integrable with respect to a product

measure then the conditional expectation off with respect to the x coordinate

exists and is integrable, with the same integral as/, and secondly, the condi-

tional expectation,/o, of/ with respect to the x coordinate can be obtained

as follows:
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Mx) = J   f(x, y)du(y).

It is easy to see that whenever we have a conditional expectation for general-

ized random variables, the analogue of the first part of the usual Fubini theo-

rem is valid. However there seems to be no analogue for the second part of

the usual Fubini theorem.

12. A determination of the weak star distributions on the dual of a Ban-

ach space induced by generalized random variables. If F is an integrable

generalized random variable and xEB, then the real valued, Borel measurable

generalized random variable, F o x~l is induced by a real valued point func-

tion defined on TJ. This point function is necessarily in Li(u) and we designate

it by F(x). F(x) can easily be seen to be the usual Radon-Nikodym derivative

of the signed measure

M -* (*, v(M))

where v is the indefinite integral of F. From this observation one easily

deduces that F is a linear transformation of B into Li(u). The question

naturally arises as to which linear transformations from B into Li(u) arise in

this manner.

The answer is essentially a reformulation of Corollary 1 which for sim-

plicity we state only for the case B is a Banach space. It is convenient to

have some terminology. We modify slightly the notion of weak distribution

due to Segal [8].

Definition 16. Let 5 be the dual of a topological vector space B and let

P= [TJ, It, u] be a probability space. A weak star distribution on S associated

with P is a linear transformation T from B to the random variables on P.

T is said to be Li(u) valued provided that for all xEB, T(x)ELi(u).

Definition 17. Let 03 be the collection of all weak star measurable subsets

of the dual S oi a topological vector space B and let F be an 5-valued 03

measurable weak star integrable generalized random variable on a probability

space P= [TJ, 11, u] with measure ring 317. Let v be the indefinite integral of

F. For each xEB, we define F(x) to be the Radon-Nikodym derivative of the

signed countably additive measure

M-»(*, v(M))

defined for all MG3TC. We say that a linear transformation T from B into

Li(u) is induced by a generalized random variable provided there exists an F

such that T = F.

Corollary 3. Let 311 be the measure ring of a probability space P = [ TJ, 11, u ]

and let S be the dual of a real Banach space B. Let 03 be the collection of weak star

measurable subsets of S. Then a continuous, Li(u) valued, weak star distribution

T on S is induced by an S-valued 03 measurable weak star integrable generalized
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random variable, if and only if, there exists a monotone increasing sequence

MicE^vvhose stip is the unit of 9H and such that for each k and each AT£9Il with

M^Mk

f T(x) g ku(M)\\x\\.
J M

Proof of Corollary 3. Suppose T is induced by F. Then let Mk — F(Dk)

where Dk is a measurable cover for the closed sphere of radius k in 5 for the

measure u o F. T(x) is the Radon-Nikodym derivative of the signed measure

for AT ranging over the measure ring 9TC of P. Therefore fMT(x) = (x, JmF)

=f(x, <p)duu o F(4>) for all ME am. Now let 0?* ATg AT*. We use the lemma for
Theorem 4 where v is (1/u(M))(um o h), and TC is the sphere of radius k in

S. By this lemma, the map x—*(l/u(M))f(x, <p)duu o F(<b) is a bounded

linear functional on B of norm g&. Therefore

f  T(x) g *«(Af)||a;||.
J M

It is easy to verify that the AT* are monotone increasing with sup equal to

the unit of 9TC.

Now suppose T has the property stated in the corollary. For each M, let

v(M)ES be defined by

(x, v(M)) =   f T(x).
J M

Then v satisfies the hypotheses of Theorem 5, and therefore v is the indefinite

integral of a unique F. Furthermore it is clear that T(x) is the Radon-

Nikodym derivative of the signed measure AT—*(x, v(M)). Therefore T(x)

= F(x). This completes the proof.

V. Special classes of generalized random variables

13. A characterization of the indefinite integrals of bounded generalized

random variables. A particularly important class of integrable point functions

defined on a probability space are the essentially bounded measurable func-

tions. We investigate the appropriate analogous classes of generalized random

variables. A point function / is bounded if and only if for some bounded set

K of real numbers/-1^) is the unit of the probability space. This suggests

proposing that an 5-valued, <B measurable generalized random variable F be

called bounded provided that F(K) is the unit of the measure ring for some

bounded set K, or equivalently provided uoF(K) = l. However bounded
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subsets of S will in general not be in 03, and therefore F will not be defined on

them.

We will therefore say that F is bounded provided some bounded subset

K of 5 is a thick(is) subset of 5 for the measure uo F. This latter condition

is equivalent to the condition that 5 be a measurable cover for some bounded

set. This discussion motivates our next definition.

Definition 18. Let 03 be the weak star measurable subsets of the dual 5

of a topological vector space B and let F be an 5-valued 03 measurable gen-

eralized random variable on a probability space P= [TJ, 11, u\. We say that

F is weak star bounded ii S is a measurable cover for some weak star bounded

subset K of S (relative to the measure uo F). We say that F is weak star

bounded in the restricted sense ii S is a measurable cover for the polar of a

neighborhood of the origin in B.

The lemma to Theorem 4 implies immediately that if F is weak star

bounded in the restricted sense then it is weak star integrable. An easy con-

sequence of this observation is

Proposition 6. If B is a Banach space and F is weak star bounded then it

is weak star integrable.

Proof of Proposition 6. Suppose 5 is a measurable cover for a weak star

bounded subset K of S. By the uniform boundedness theorem K is bounded

in norm. Therefore 5 is a measurable cover of some closed sphere in 5.

Every closed sphere in S is the polar of a neighborhood of the origin in B.

Therefore F is weak star bounded in the restricted sense. The observation

above completes the proof.

We wish to characterize the indefinite integrals of generalized random

variables which are weak star bounded in the restricted sense. For this pur-

pose we need a preliminary result:

Proposition 7. Let 03 be the weak star measurable subsets of the dual S of a

topological vector space B, and suppose that K is a convex weak star compact

subset of S. Let [S, 03, v] be a probability space and suppose KEbE®- Then

there exists a countable family x.G-B such that for all i, K~E [4>: (xi, <t>) ̂ 1 ] and,

except possibly for a set of v measure zero,

CO

bD n [*:(**,*) ̂  1].
i-i

Lemma 1. The proposition holds in the event B is finite dimensional.

Lemma 2. The proposition holds for the situation in which b is in the a-ring

generated by finitely many XiE-B-

(,3) For a definition of thick see Halmos [4].
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Proof of Lemma 2. Let b be in the cr-ring generated by *i, • ■ • , xn and let

V be the subspace of B generated by Xx, ■ ■ • , x„. Then there exists a natural

projection mapping, p, of 5 onto V, the dual of V. The image of K, p(K) is

a compact convex subset of V since p is continuous for the weak star topology

on 5 and the unique topological vector space topology on V. Let vp-1 be

the measure induced on the Borel subsets of V. Since b is in the cr-ring

generated by Xi, ■ ■ ■ , x„ it follows that there exists a Borel subset h of V

such that b = p~1(h). Since KEb it follows that p(K)Eo. Therefore by Lemma

1 there exists a countable family XiE V such that for all i

p(K)c [e:(xi,e) g l]

and except possibly for a set of measure zero (flp-1)

CO

cO H [o:(xitO) g 1].
t-1

Therefore for all i, KE [<P'(xi, 4>) g 1 ] and

CO

O n [<p:(xu<p) g 1].
1=1

This completes the proof of the lemma.

For fixed K, the collection b for which the proposition holds is closed

under monotone limits and by Lemma 2 contains a ring whose generated

cr-ring is (B. This completes the proof of the proposition.

If we apply this proposition to any measurable cover b of K we get the

following:

Corollary. K possesses a measurable cover which is the intersection of a

countable number of closed half spaces.

We are now ready to characterize the indefinite integrals of generalized

random variables which are weak star bounded in the restricted sense.

Proposition 8. Let (B be the weak star measurable subsets of the dual S of a

topological vector space B and let F be an S-valued (B measurable generalized

random variable on a probability space P=[U, 11, u] with measure ring 9TC.

Let v be the indefinite integral of F. Then F is weak star bounded in the restricted

sense if and only if, for the polar K of a neighborhood of the origin in B,

v(M)/u(M) E K,

for all nonzero M£911.

Proof of Proposition 8. Assume first that F is weak star bounded in the

restricted sense. Therefore 5 is a measurable cover for the polar K of some

neighborhood of the origin in B for the measure uo F. Let M be nonzero in
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3TL Then [S, B, (l/u(M))uM o P] is a probability space. 5 is clearly a meas-

urable cover for K relative to the measure uM o F.

The definition of the indefinite integral implies that for all x

1 1      r
—— (*, v(M)) = ——-     (x, <b)d(uMoF)(4>).
u(M) u(M) J

Thus, by the lemma to Theorem 4, v(M)/u(M)EK.

Now assume that v(M)/u(M)EK for all nonzero 2/G3U, where K is the

polar of a neighborhood of the origin of B. We will show that F is weak star

bounded in the restricted sense by showing that 5 is a measurable cover of

K (relative to the measure uo F). We need to show that if bE<S> and KEb

then uo F(b) = l. Assume b=[d>: (x, <£)^l] and KEb. Therefore for all

4>EK, (x, <p)t^l. In particular,

(*, v(M)/u(M)) ^ 1

for all MG3TC. We now consider the real valued signed measure which assigns

to M the real number (x, v(M)). It is elementary to verify that since

(x, v(M)/u(M))z%l for all ME'Sii, then the Radon-Nikodym derivative fx is

almost everywhere ^ 1. Therefore ir ofx~1(— <», 1 ] is the unit of 3TC where ir

is the canonical projection mapping of 11 onto 911. In the proof of Theorem 5

it was shown that

F(b) = tt/^-oo, 1].

Therefore F(b) equals the unit of 3TL From this it easily follows that if b is

the intersection of a countable number of closed half spaces then u o F(b) = 1.

The proposition now follows from the corollary to the previous proposition.

14. Absolutely and strongly integrable generalized random variables. If

/ is a real valued measurable function defined on a probability space, then /

is integrable if and only if |/| is integrable. If / has values in Euclidean n

space then the same assertion holds provided |/(w) | is the Euclidean norm

of the vector/(w). In the event/ has values in the dual of a Banach space

and possesses the requisite measurability, then the integrability of ||/|| is a

sufficient condition for the weak star integrability (M) of /. If/ has the requi-

site measurability and ||/|| is integrable then one might say that such a func-

tion/is strongly integrable. In the event/is only weak star measurable it is

not immediately clear how to define strong integrability. However, the con-

cept of measurable cover permits us to define a related notion. We are thereby

led to

Definition 19. If F is an 5-valued, 03 measurable generalized random

variable on a probability space P = [TJ, II, u] where 5 is the dual of a Banach

(u) See Hille [5] for a discussion of various notions of integrability.
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space B we define | F\ to be the real valued function of a real variable deter-

mined as follows:

\F\(y) =«oF(C{ci:||c6|| gy})

where for any subset y of S, C(y) is any measurable cover of y for the meas-

ure u o F.

It is clear that \F\ is a monotone nondecreasing non-negative real valued

function of a real variable and | F\ ( — 1) =0 and | F\ (y) converges to 1 as y

goes to + oo. It follows that | F\ determines a unique probability measure on

the real line. We may therefore make

Definition 20. If F is as described in Definition 19 we say that F is

absolutely integrable provided the probability measure determined by | F\

possesses a mean.

We remark that it is straightforward to verify if B is a Banach space and

F is weak star bounded then it is absolutely integrable.

Our purpose in introducing the concept of absolute integrability is the

following:

Proposition 9. If F is absolutely integrable then F is integrable.

Proof of Proposition 9. By Proposition 3 we need only show the existence

of

(1) j (x,cb)duoF(<t>)

for all xEB of norm 1. Equivalently we need only show that

(2) YuoF(bk) < oo
*-i

where bk is the set of <f>ES such that | (x, <b) \ >k. Clearly bk is a subset of ck,

the set of c6£5 of norm >k. If yk is a measurable cover of the complement of

ck, then u o F(bkC\yk) =0. It follows that u o F(bk) g 1 -u o F(yk) = 1 - \ F\ (k).

Therefore

(3) YuoF(bk) g£(l-  \F\(k)).
A-l k-l

Since | F\ possesses a mean, the right side of (3) is finite, and thus (2) is

established. This completes the proof.

We now inquire as to the relationship of absolute integrability and strong

integrability. That is, an ordinary point function / on a probability space

[U, It, u] into the dual 5 of a Banach space B is said to be strongly integrable

provided (1) /-1(£>)G1! for every subset b of S which is open in the norm

topology and (2) f\\f(w)\\du(w) < °°.



1957] GENERALIZED RANDOM VARIABLES 301

It is easy to see that iff is strongly integrable then the generalized random

variable F = wof~1 induced by/ is 5-valued and (B measurable where (B as

usual are the weak star measurable subsets of 5. Further F is necessarily

absolutely integrable. For since ||/|| is integrable, the probability distribution

on the real line induced by | /|| possesses a mean. That is the real measure

determined by ||f|| where ||F|(y) =u o/-1[<£:ll(/>ll gy] possesses a mean. It is

trivial to verify that ||F||(y) g | F\ (y). Furthermore any probability distribu-

tion which lives on the positive reals and whose distribution function is

everywhere greater than or equal to the distribution function of a probability

distribution with a mean also possesses a mean. Therefore F is absolutely

integrable.

We do not possess an example of a strongly measurable / which is not

strongly integrable and which induces an absolutely integrable generalized

random variable. However in the event B is separable it is easy to show that

strong integrability is also a necessary condition to absolute integrability.

For one can then show that ||f|| = | F\. In order to show | F\\ = \ F\ it is cer-

tainly sufficient to show that the set of <pES such that \\cj> | ^y is an element

of (&. That is it is sufficient to show that the closed unit sphere is an element

of (B. To see this latter fact we observe that the closed unit sphere is weak

star closed and apply Lemma 5 of Theorem 1. That which we have just proved

can be stated in terms of generalized random variables. First we need two

definitions.

Definition 21. Let 5 be the dual of a Banach space B and let S be the

cr-algebra generated by the subsets of S which are open in the norm topology.

Suppose F is an 5-valued, S measurable generalized random variable on a

probability space P= [U, 11, «]. We define ||F|| to be the real valued function

of a real variable determined as follows:

\\F\\(y) =«oF(*:||*|| g y).

It is easy to see that ||F|| is the distribution function of a unique probabil-

ity measure on the real line.

Definition 22. If F is as described in Definition 21 we say that F is

strongly integrable provided the probability measure determined by ||F|| pos-

sesses a mean.

If F is an 5-valued, S measurable generalized random variable on a proba-

bility space then it determines a unique 5-valued (B measurable one, by re-

stricting the domain of F to (B. There will be no confusion in the sequel if we

also designate this random variable by F.

That which we proved above can now be summarized by

Proposition 10. If F is strongly integrable then F is absolutely integrable.

Furthermore if B is separable, then F is (B measurable if and only if F is S

measurable, and (consequently) F is strongly integrable if and only if F is abso-

lutely integrable.
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VI. The composition of a generalized random

VARIABLE WITH A LINEAR TRANSFORMATION

15. If/ is an 5-valued integrable point function defined on a probability

space [TJ, 11, u] and if T is a reasonable linear transformation on 5 then

Po/ is also integrable and T(ff)=f(Tof). Our next proposition shows

that an analogous result holds for integrable generalized random variables.

Proposition 11. Let 03,- be the collection of all weak star measurable subsets

of the dual Si of a topological vector space Bifor i = l and i = 2. Let F be an

Si-valued, 03i measurable generalized random variable on a probability space P.

Suppose T is a continuous linear transformation on B2 into Pi and let T* be its

adjoint. Then G is an S2-valued, (&2 measurable generalized random variable on

P where

G(b2) = F[fa:T*(fa)Eh]

for all b2E®2. Furthermore if F is integrable then so is G, and

J>-i*(//)
for all M in the measure ring of P.

Proof of Proposition 11. We first show that for all b2 E032

[fa:T*(fa)Eb2]

is an element of A3i. For suppose b2 is of the form

[fa'(x2, fa) 3s «].

Then

[fa:T*(fa) G b2] = [fa:(x2, T(fa)) g «] - [fa:(T(x2), fa) ^ a]

which is an element of 03i since T(x2) EBu We now make the usual observation

that the set of ^2G032 for which the assertion holds is a o--algebra and includes

a generating collection of &2G032. It is now clear that G is an S2-vaIued, 032

measurable generalized random variable on P. Now suppose F to be integra-

ble. To complete the proof we need only show that for all M in the measure

ring of P, G is weak star semi-integrable over M, and

LG-T"Ui)-
Equivalently we need to show that for all x2EB2,

I  (x2, fa)duM o G(fa) exists and equals ( x2, T*l   I   F ) J.
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The following sequence of identities completes the proof.

I  (x2,<pi)duMoG(<pi) =  j  (x2,<p2)duMoFoT*-l(tp2)

= f (x2, T*(<pi))duMoF(<bi) = J (T(x2), <px)duMoF(<pi)

This completes the proof.

VII. Operations on generalized random variables

16. The existence of the cartesian product of two generalized random

variables. If/, is an ordinary real valued random variable on a probability

space P=[U, 11, u] for lgig2 then there is an obvious notion of the car-

tesian product/1X/2 of fx with/2. Namely/1X/2 is the function defined on P

into the plane by

(fiXf2)(w) = (fi(w),f2(w)).

The inverse mapping g = (fxXfi)~1 is determined uniquely (up to sets of

measure zero) by the requirement

g(AxXA2)=fx\Ax)r\f2\A2)

for Ai a Borel subset of the reals i= 1 and i = 2.

Therefore, if F< is an Si-valued, (B, measurable generalized random vari-

able on a probability space P where Si is an arbitrary set and (B,- is an arbi-

trary cr-field of subsets of Si it is natural to attempt to define the cartesian

product of Fi and F2 to be a tr-algebra homomorphism F of (B = (BiX(B2 into

the measure ring of P, determined by the condition

F(AxXA2) = Fx(Ai) AF2(Ai).

It is easy to see that there exists at most one such generalized random vari-

able. However there may not exist any such F. For Kakutani has constructed

a bimeasure (where a bimeasure is a non-negative finite valued function y

defined on all measurable rectangles AxXA2 in the cartesian product of two

measurable spaces such that for each fixed A2, y(AxXA2) is a countably addi-

tive measure of the first variable and for each fixed Ax, 7(^1X^2) is a count-

ably additive measure of the second variable) which cannot be extended to

be a measure. A modification by Halmos(16) of Kakutani's construction can

be used to exhibit generalized random variables F< such that for no general-

ized random variable F does

(") The construction of P. Halmos has not been published.
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F(AiXA2) = Fi(A,) XF2(A2)

tor all A1EB1 and all A2EB2.

In at least one important special case, however, the cartesian product

can be defined. This is the case in which 5,- is the dual of a Banach space J3,-,

and 03,- is the <r-algebra of all weak star measurable subsets of Si. For in this

case we let vt he the indefinite integral of Fi and define for each M in the

measure ring of P which is in the domain of both ih and v2, an element v(M)

in SiXS2 by

v(M) = (vi(M), v2(M)).

There exists a natural isomorphism of SiXS2 onto S, the dual of BiXB2.

Because of this isomorphism we can view v as a mapping into S. Then by

Theorem 6 below, which is a slight strengthening of Theorem 5, so as to char-

acterize the indefinite integrals of all generalized random variables, it follows

that this mapping into S is the indefinite integral of a unique 5-valued, 03

measurable generalized random variable on P, where 03 is the <r-algebra of

all weak* measurable subsets of S. Then we again use the natural isomor-

phism of SiXS2 onto 5 to obtain a unique <r-algebra homomorphism of

03iX032 into 3TC. This latter o--homomorphism we define as the cartesian prod-

uct of Pi with F2 and designate it by FiXF2.

Thus, in order that our definition of cartesian product make sense, it only

remains to establish:

Theorem 6. Let 3H be the measure ring of a probability space P = [ TJ, II, u]

and let S be the dual of a Banach space B. Let 03 be the a-algebra of weak star

measurable subsets of S and let v be a function whose domain is an ideal in 3TC

and whose range is contained in S. Then v is the indefinite integral of a unique

S-valued, 03 measurable, generalized random variable on P if and only if (1) v is

weak star countably additive and (2) there exists a monotone increasing sequence

of elements MkE'SRl ^&<<» such that (a) the sup of the Mk is the unit of 3TC

and (b) for every MEW with Mt%\ Mk, v is defined on M and \\v(M)\\ tZku(M),

and (c) if for every MtiM0, lim*...,, v(MC\Mk) exists in the weak star topology,

then Mo is in the domain of v.

Proof of Theorem 6. If v is an indefinite integral then, by Proposition 5, v is

weak star countably additive, and by Theorem 4 there exists a sequence

-M*G 311 such that V-M* is the unit in 3TC and such that for every ME 3TC with

Mt^Mk, v is defined on M and ||z»(M)|| ^ku(M). Suppose that, for every

Mt%\ Mo, \imk^00v(Mr\Mk) exists in w* topology. We wish to show M0 is in the

domain of v. That is, we wish to show that F is weak star integrable over Mo,

where v is the indefinite integral of F. It is sufficient to show that F is weak

star semi-integrable over M0. Let xEB.

It is sufficient to show that (x, <p) is integrable with respect to Um„ o F

and that
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/(x, 4>)duMioF(<p) = I x, lim   I Fdu\.
\     *-»» J M0r\Mk      /

Let Qx be the set of <pES such that (x, <f>) gO and let Oi be its complement. It

is well known that (x, <p) is integrable with respect to um0 o F if and only if

both Jqx(x, <p)duMa o F(<b) exists and Jqx(x, <b)duM0 o F(<b) exists and in this

event its integral is the sum of these two integrals. Also we have Jqx(x, <p)duM0

o F(<j>) exists if and only if f(x, <p)drx o F((j>) exists and then they are equal,

where rx = uMljr\F(Qj. Since (x, <p) is a non-negative function of c6 almost every-

where with respect to the measure rx o F it follows that

(1) j  (*, <p)drx oF(<p) = lim   f (x, <b)drx,k o F(c6)
J t—»« J

where rXtk=uMoru'(.Q.1.)C\Mk- The right side of equation (1) is easily seen to be

equal to

(2) lim(*,   f f).
»-.« \     J M0nriQx)riMk  /

The expression (2) clearly equals

lim (x, v(M0 H F(QX) n AT*)) = ( x, lim v(M0 C\ F(QX) C\ Mk)).

This latter quantity exists by hypothesis. Therefore

f   (*, <t>)duM, o F(<b) = (x, lim v(M0 Pl F(QX) Pl Mk) ).
J Q \        t—« /

Likewise

f   (x,<t>)duM,oF(<p) = (x, lim v(Mor\F(Q'x)C\ Mk) ).
J q'x \      i^» /

From these latter two equalities it easily follows that

/(x, 4>)duMa o F(<t>) exists and equals   I   (x, lim v(M0 f~\ Mk)).
J *->co

Thus indefinite integrals necessarily possess the properties mentioned in

Theorem 6.

For the converse we merely mention that if v possesses the properties

stated in Theorem 6, then one defines an S-valued 03 measurable generalized

random variable, F, as in Theorem 5. One needs then to show that v is the

indefinite integral of F. As in Theorem 5 one shows that if AT is in domain

of v then F is weakly semi-integrable over M and fMFdu=v(M). Since the
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domain of v is an ideal it follows that F is weakly integrable over M. We need

now only show that if F is weakly integrable over M0, then M0 is in the

domain of v. To show this we use property 2c of v. If F is weakly integrable

over Mo then for every Mz^Mo, F is weakly semi integrable over M. For

k = l, ■ • • ,n, • • • let Fk be the generalized random variable defined in the

proof of Theorem 5. For every x in B we have the following equalities

(3) (x,   f Fdu) -( f        Fkdu) = (x,   f Fdu) - (x,   f        Fkdu)
\        Jm / \J MDMt / \        J M / \        J M(~\Mi /

(4) = J  (*, faduM o F(fa ~ J  (x, fa)dpk o Fk(fa

where pk = uMr\Mk. It is easy to see that (4) equals

(5) f (x, fadu-M o F(d>) -  f (x, fadpk o F(d>).

Since Mk converges to the unit of 311, one sees that (5) converges to zero. That

is

(6) Fkdu converges to   I   Fdu in the weak star
J MOM* J m

topology. It is easy to see that

(7) f        Fkdu = vk(M r\Mk) = v(MC\ Mk).
J juru/t

From (6) and (7) we conclude that v(Mf~\Mk) converges in the weak star

topology. Therefore by hypothesis Af0 is in the domain of v. We conclude

the proof by remarking that the uniqueness of F is proved in a manner similar

to that of the proof of uniqueness in Theorem 5.

17. The existence of the sum of two generalized random variables. The

set of all ordinary real valued random variables on a probability space forms

a vector space under the usual definitions of sum and scalar product. Theorem

6 enables us to define the sum and scalar product for certain generalized ran-

dom variables so as to form a vector space. For, if vi and v2 are any two

vector valued functions defined on subsets Px and i?2 respectively of the

measure ring of a probability space then we define Vi+v2 on RiC\R2 in the

natural way

(vi + v2)(M) = Vi(M) + v2(M)

for all MERi(~\Ri.
And if a is a scalar we define

(aVi)(M) = aVi(M)
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for all MERi- It is straightforward to verify

Corollary 1 to Theorem 6. The collection of all indefinite integrals of S-

valued, <B measurable generalized random variables on a probability space

P= [U, 11, u]form a vector space.

Now we can define scalar multiplication and addition for generalized

random variables. Namely if Fi, F2 are generalized random variables and a

is a scalar, we define Fi + F2 to be the Radon-Nikodym derivative of vi+v2

where Vi is the indefinite integral of F,-. Likewise aFi is the Radon-Nikodym

derivative of oeu\.

Corollary 2. The collection of S-valued, (B measurable generalized random

variables on P form a vector space.

Theorem 5 is easily seen to imply that the sum of two integrable general-

ized random variables is likewise integrable. Similarly the scalar product of

an integrable generalized random variable is integrable. Therefore we have:

Corollary 3. The collection of S-valued, (B measurable integrable generalized

random variables on P is a subspace of the S-valued, (B measurable generalized

random variables on P.

We mention without proof that the notion of cartesian product enables

us to give an alternative but equivalent definition of the sum of two general-

ized random variables. Namely let FiXF2 be the cartesian product of Fi and

F2. For any two vectors x and y in S there is a unique vector x+y in S.

This operation of addition in S induces a cr-homomorphism s of (B into

(BX<B. We then define F1+F2 to be the composition <r-homomorphism

(FiXFi) o j. In a similar manner one can define scalar multiplication. These

definitions however leave one with the problem of establishing the associative

and distributive laws in order to prove that the generalized random variables

form a vector space. These laws are however trivial to verify in the case of

the indefinite integrals. We remark in conclusion that the existence of the

sum of two generalized random variables, for either definition, appears to

require the Radon-Nikodym theorem.

VIII. A REPRESENTATION OF BOUNDED LINEAR TRANSFORMATIONS

OF Lx INTO THE DUAL OF A BANACH SPACE

In this section S will be the dual of a real Banach space B, G5 will be the

collection of weak star measurable subsets of S and 911 will be the measure

ring of a probability space P = [U, 11, u]. Lx is the Banach space of classes of

real valued summable functions defined on U. A function g defined on U into

S is said to be weak star measurable provided g~1(b)Ec\x for all £>£(B. It is

strongly bounded provided ||g(w)|| is a bounded function of w. The validity of

the following theorem is open.
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Theorem A. Every continuous linear transformation of the Banach space Li

into S is of the form

(1) /-»f f(w)g(w)du

where g is a weak star measurable and strongly bounded function defined on TJ

into S. (The second element of (1) being the unique element in S defined by

Ix,   j   f(w)g(w)du\ =   I   f(w)(x, g(w))du(w)

for all xEB.)

This theorem is known if B is a separable Banach space (theorem of Dun-

ford-Pettis, see [12]) and has been analyzed by Dieudonne, see [13] and [14].

We will show that Theorem A is equivalent to Theorem C below.

Let H be the real Banach space of all finite real valued signed measures

which are absolutely continuous with respect to u. Each mEH determines a

unique signed measure on the measure ring. There will be no confusion if we

also designate this induced measure by m. For any bounded 03-measurable

generalized random variable G, and any mEH, m o G is a finite signed meas-

ure so that [S, 03, m o G] is a signed measure space. By fm o G we mean the

unique element in S determined by

(x,   j  woG) =  I   (x, fa)dmoG(4>)

ior all xEB.
Theorem A is equivalent to the conjunction of the following two theorems,

the first of which is a representation theorem for bounded linear operators on

Li of a probability space into the dual of a Banach space.

Theorem B. Every continuous linear transformation of the Banach space H

into S is of the form

(2) w-> I moG

ihen G is a bounded weak star measurable generalized random variable.

Theorem C. Every bounded S-valued, <S>-measurable generalized random

variable G defined on 03 into 3TC is induced by a point function.

Theorem C is open. Theorem B is an easy consequence of Theorem 3.

Proof of Theorem B. Let T he a bounded linear transformation of H into

S. For each AfG3TC let um he the measure u cut down to M. Define v(M)

= T(um). It is easy to see that v satisfies the hypotheses of Theorem 3. There-
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fore v is the indefinite integral of a unique generalized random variable. It

is now elementary to verify that this generalized random variable G is

bounded and that T(m) =fm o G. This completes the proof.
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