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1. Introduction. In recent papers N. J. Fine [l; 2; 3](2) has developed

effective notation and techniques and has achieved important results in

major areas of the Fourier theory of the Walsh orthonormal system which, is

the completion of the following orthonormal system introduced by Rade-

macher [lO] in 1922:

<t>a(x+ 1) = <t>o(x),

4>n(x) = ft(2"x).

Fine's papers refer to earlier work on Fourier properties of Walsh series

by Walsh, Kaczmarz, Steinhaus, and Paley. The latter's modified definition

of the Walsh functions will be used here:

(a) Ux) - 1,
00

(b) If n has the unique dyadic expansion £ *»2', where x< = 0, 1 and
(1-2) ,=0

Xi = 0, for i > mT, then ft(x)  = <pmi(x)<pmi(x) ■ • • 4>mi(x) where

mx, • • • ,mT corresponds to the coefficients xmi = 1.

Every function f(x) which is of period 1 and Lebesgue integrable on [0, 1 ]

may be expanded in a Walsh-Fourier series(3), f(x)~ ?.?=n ak\pk(x), where

ak=fof(x)ypk(x)dx, k=0, 1, 2, • • • .
Fine exhibited some of the basic similarities and differences between the

trigonometric orthonormal system and the Walsh system. He identified the

Walsh functions with the full set of characters of the dyadic group G. Con-

temporary with the work of Fine and somewhat more general is the work of
._        i
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(2) The numbers in brackets refer to the bibliography at the end of the paper.

(3) Hereinafter "W.F.S." will denote "Walsh-Fourier series."
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N. Vilenkin [17] on expansion of functions in Fourier series of the characters

of an arbitrary zero-dimensional, separable group. A. A. Sneider [13; 14; 15]

applied this theory to obtain results on the Walsh system. Other results on

Fourier properties of Walsh functions paralleling the classical trigonometric

results have been reported in recent articles by Sunouchi [16] and Yano

[18; 19].
The object of the present study is to extend the comparison of trigono-

metric and Walsh series formed in the above papers. A summary of the prin-

cipal results will appear presently, but first it is necessary to acquaint the

reader with some of the main facts of the situation as found in Fine's work.

The dyadic group G is the set of all sequences x={x„}, x„ = 0, 1, n

= 1,2,3, • • • , the operation of G being addition modulo 2 in each coordinate.

Denote this addition in G by "_f" and let the identity qf elements in G he

denoted by " = ".

Corresponding to each element x = {x„} of G there is a real number

Xi       x2       x3
(1.3) X(x).=—+—+ — +•• •

2       22      23

lying in the closed interval [0, l]. At the dyadic rationals x:0<x<l we have

two representations in the dyadic scale, and hence two elements of G map

onto these. If p.(x) is the inverse of X we have for all real x

(1.4) \(p(x)) = x - [x],

the finite expansion in G being associated under p. with dyadic rationals.

Then pt(\(x)) =x provided X(x) is not a dyadic rational.

Fine establishes that <p„_i (x) =x»(p(x)),«^l,wherex»(x) = Xn({*i*2 • ■ • })

is a character of G defined as +1 if xB = 0; —1 if x„ = l. All characters of G

may be obtained by taking finite products of these basic characters. Each

Walsh function is expressible as ypn(x) =Xji(v(x))xii(rl(x)) • • • Xit(u(x)), and

so the Walsh functions are identified with the full set of characters of G.

For the convenient abbreviation

(1-5) Hu(y) + u(z)) = y + z, y, 2 real,

several useful relations have been established. In particular,

°0 a.        -     A, 00 v OO .,

(a)  x + y = 2-, -   where   x =   >, — > y = Z_, —'
, On •"    On     J ■'—'     On

n=>l ^ n=l    ^ n=l    -^

finite expansions being used for dyadic rationals.

(1.6)    (b)   | (x-i- h) - x\   ^ h,       0 ^ x < I, 0 ^ h < 1

(c) yph(x + y) = ypk(x)ypk(y) whenever (x + y) is not a dyadic rational;

this exception is a denumerable event for each fixed x.
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A basic property of the abbreviation " + " is the invariance of the Le-

besgue integral with respect to it. That is, let x be fixed, let y belong to a meas-

urable set A lying in the unit interval, and let Fx(^4) = {(x+y) \ yEA }. Then

I TX(A) | = | A | (4). If f(x) is integrable, then for every fixed x,

(1.7) f  f(x + y)dy=   f f(y)dy.
J o J o

There is a natural topology of G which is obtained by taking as neighbor-

hoods the sets of points {xi, x2, ■ ■ • , xn, dn+1 ■ ■ ■ } in which Xi, • • • , xn are

fixed and ft+i, • • • vary independently. These neighborhoods, iV(xi, x2, • • • ,

x„), form a basis for G. X:G—>F[0, l] defines a metric on G which is continuous

on G, and the topology induced on G by this metric is equivalent to the orig-

inal topology.

To each real-valued function g(x) of period 1 there corresponds a function

g(x) on G defined by

g(x) = g(x) if u(x) = x for some x E [0, l],
(1'8) r -,

g(x) = limsupf(>0 if u(x) ?± x for any x E [0, lj

where lim sup is taken over those y which corresond to dyadic irrationals.

This definition forms the basis for discussing the relation between two given

classes of functions, one class on G and one on [0, 1 ].

Characteristic functions of neighborhoods of G are continuous on G since

each neighborhood is both open and closed. Finite linear combinations of such

characteristic functions are then continuous on G.

In §2 the Haar measure on G is exhibited, and the classes of measurable

and integrable real-valued functions on G are related to the corresponding

classes on [0, l].

§3 deals with order of coefficients and investigates further the startling

result of Fine that, unlike the trigonometrical case, the only absolutely con-

tinuous functions whose Walsh-Fourier coefficients satisfy bk=o(l/k) are

the constants. It is shown in particular that the arithmetic mean of the

sequence {k\ bk\ } does tend to zero. As a subsidiary result, the class of func-

tions on [0, 1 ] whose G-extensions are continuous with respect to the topology

of G is characterized.

The class of functions on [0, 1 ] whose G-extensions are Lipschitz functions

on G is identified in §4, and analogues of various results from the trigono-

metric Fourier theory of Lipschitz a functions are obtained. The analogues of

the well known theorems of Rogosinski are established in §5. The most inter-

esting result of this section is the verification of the formula

f(x) = —< lim inf Sn(x) + lim sup 5n(x)> a.e. on [0, l]
2    (     n->» n-»» /

(4) \E\ denotes the Lebesgue measure of the set E.
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when f(x) is integrable and the partial sums Sn(x) of the W.F.S. for f(x)

satisfy lim sup„^M Sn(x) < + ». §6 establishes the analogues of some results

of the transformation theory of trigonometric series.

In §7 on lacunary Walsh series, the Walsh analogue of the Central Limit

Problem of Salem and Zygmund [12] is established. Another well known

property of trigonometrical lacunary series is established for the Walsh func-

tions: if the partial sums Sn(x) of a lacunary Walsh series oscillate finitely at

each point of an interval, then X"=i I a*| < + °° • This section also establishes

the Walsh analogues of the theorems of Banach on the existence of Fourier

series with given coefficients at prescribed lacunary places.

In the final section an example is given of a continuous nondecreasing

function whose Walsh Fourier-Stieltjes coefficients do not tend to zero.

2. Haar measure on G. The discussion of the Fourier properties of the

Walsh system may proceed from two points of view:

(a) Characters Xn(x) of G and their products,

Haar measure on G,

The various classes of functions on G,

or

(b) Functions ^n(x) on [0, l],

Lebesgue measure on [0, l],

The various classes of functions on [0, 1 ], usually related to the classes

on G in some sense involving definition (1.8).

The work of Fine on W.F.S. followed mainly the second approach, refer-

ence being made to G only when a particular property of + was required.

Because of the analogy with the exponentials {e2,r*n*}, it may be thought that

the first approach is preferable. The present study shall attempt an analysis

which permits both points of view.

Letting m denote the obvious product measure on G and m its completion

(see Halmos [4, pp. 158-159]), the following theorem is immediate.

Theorem I. (1) If f(x) is Borel (Lebesgue) measurable on [0, l], its G-

extension by (1.8),/(x), is Borel (m) measurable on G and conversely.

(2) If f(x) is Lebesgue integrable on [0, l], then the G-extension, f(x), is

integrable on G with respect to m and conversely, the integrals being equal.

This theorem essentially implies that the two basic points of view listed

above should yield the same Fourier results with respect to classes of functions

characterized by integrability conditions.

3. On the order of coefficients. Fine has obtained the classical results for

the order of Walsh-Fourier coefficients of various classes of functions. How-

ever, an important difference was displayed in the case of coefficients of ab-

solutely continuous functions. If f(x) has mean value zero over (0, 27r), the

periodic function F(x) =fof(t)dt has trigonometric Fourier coefficients which
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are o(l/k). Fine showed that the only absolutely continuous functions on

[0, l] whose Walsh-Fourier coefficients are o(l/k) are constants. The follow-

ing theorem shows that "on the average" the coefficients behave as they do

in the classical system.

Theorem II. Let f(x) be real-valued, periodic, and of mean value zero on

[0, l]. Then if F(x)=fof(t)dt and F(x)~2"_0 bkipk(x) the arithmetic means

of the sequence {k\bk\ } tend to zero.

Proof. Let/(x)~^"«i ak\pk(x). Then by Fine [l, Theorem VII] for fixed

k' ^0 and j»—>oo ,

b2»+k. = - 2-<"+2>a^ + o(2-).

It follows that k\bk\ ^\ak'\ +o(l), where k = 2' + k\ k1<2'. Therefore

1      " , 1 1
-2>IM ^—:    £     l«*'l +-    E     I«*-l+o(i)
n + 1 fc=o m+1 og*s„;fc'Sr n+1 o&k&n;k>>T

= Sx + S2 + o(l).

Given e>0, choose T so that \ak>\ <e for k'>T. Then S2<e. For 5i write

k = 2' + k', where O^v^r, O^k'^T, and r is defined by 2"^n<2r+l. Then

1     A A  ,       , (1 + logs n)
Sx ̂  —— EV  | a* |   g AT--2—1 = o(l)

n + 1 _0 t'-o n+1

and the proof is complete.

Imposing a still stronger smoothness condition on a function is reflected,

in the trigonometric system, in a more rapid convergence of the Fourier co-

efficients to zero. Specifically, if F(x) is p times differentiable, its Fourier

coefficients {bk} satisfy kv\ bk\ —>0. Once again the jumps of the Walsh func-

tions cannot be smoothed out in time, and the corresponding property is

lacking entirely. In fact, the damage is so thorough that a strongly negative

result similar to the result of Fine can be established. The proof will not be

given here(6).

Theorem III. The only twice-differentiable functions F(x), F(x)

'~S"=o bkypk(x) for which the arithmetic means of the sequence {k2\bk\ } tend

to zero are the constants.

A well known result from trigonometric Fourier series is the proposition

that if the Fourier coefficients of a function f(x) of bounded variation are

o(l/n),f(x) is continuous. This result is not valid for the Walsh functions.

Walsh polynomial coefficients, being zero from some place on, are surely

o(l/n), however, such polynomials are not continuous functions. If continuity

in the group G is considered, a partial analogue may be obtained. It is con-

(6) Where proofs are not given, they are found in the author's thesis (see footnote 1).
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venient first to define a special class of functions on [0, 1 ] which are related

to the continuous functions on G.

Recalling the meaning of the induced combining symbol " + " on the

interval [0, l] given in (1.5), we make the following definition:

A function/(x) of period 1 is "continuous (IF)" at a point x of 0^x<l if

e>0O- 35(e, x)>03\f(x+y)-f(x)\ <e whenever 0^y<8(e, x).

Any continuous function is continuous (W). The usual algebraic proper-

ties of continuous functions hold for continuous (IF) functions. Any Walsh

function is continuous (IF), for, at their dyadic rational discontinuities Xo,

(xo+y) lies to the right of x0 for y sufficiently small, and Walsh functions are

continuous on the right. Consider/(x) = z2*i£x 8i, where [di] is an enumera-

tion of the dyadic rationals in [0, l] and 5j>0, X^< + °°. This function is

continuous (W), not continuous, and is not a polynomial in Walsh functions.

The next theorem is easily verified and shows that the concept "continu-

ous (IF)" is a natural candidate to replace ordinary continuity on the real

line in situations involving Walsh functions and the ordinary processes of

analysis.

Theorem IV. If f(x) is continuous (W) on Ogx<l and if f(x — 0) exists

and is finite at each dyadic rational x, 0<x^l, then f(x), the G-extension of

f(x), is continuous on G. Iff(x) is continuous on G, the function f(x) =J(jjl(x)) is

continuous (IF) on 0^x<l and f(x — 0) exists and is finite at each dyadic ra-

tional 0<x^l.

To verify that in the theorem the condition "f(x — 0) exists and is finite at

each dyadic rational x," is not redundant, it is enough to exhibit a function

which is continuous (W) but such that f(x — 0) = + oo at a dyadic rational.

The function 1/1—2x on 0^x<l/2 and equal to 1 on 1/2^x^1 is such a

function with /(1/2 -0) = + «=.

Theorem V. If f(x) is nondecreasing and bounded on 0 ^ x ^ 1 and its

Walsh-Fourier coefficients satisfy a2" = 0(1/2"), then the function f*(x) =f(x+0)

has the same coefficients as f(x) and has its G-extension continuous on G.

In view of the result of Fine, that the only absolutely continuous functions

whose Walsh-Fourier coefficients are o(l/n) are the constants, it is well to

observe that any nondecreasing step-function with dyadic intervals of con-

stancy is an example of a function satisfying the conditions of the theorem,

although it is not known how general such functions can be.

Proof. f*(x) obviously has the same coefficients as f(x) and it is enough

to show that/* has only dyadic rational discontinuities.

Lemma I. The Walsh-Fourier coefficients {a2<>} of the function

fA       /0, 0 g t < x,
gx(t)   =    \

Kb, x £ I < l,b > 0
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are nonpositive, zero for x=m/2r and n large, negative and t^o(1/2") for other x.

Proof. a2n = bPxxp2n(t)dt= -bJ2n(x) = -b/2"Jx(2"x) by Fine [l, p. 400]. If
x = m/2r then a2« = 0 for n^r and is negative for n<r. If x is not a dyadic

rational the fractional part of 2nx falls between 1/4 and 3/4 for infinitely

many n.

Decompose f*(x) into a continuous part and a jump function, f*(x)

= g(x)+j(x)- Clearly j(x) = 2<k<><s* \f*(ci)—f*(ci — 0)], where {d} are the

discontinuities of /*. It is enough to show that j(x) has no discontinuities

other than dyadic rationals.

As in Lemma I, we denote the step-function at c,- with jump (f*(ci)

—f*(d — 0)) by ga(x). Then j(x)=limN,00 Yli-i ie{(x) and the value of the

2nth Fourier coefficient of j(x), a$, is E<" i °2»'\ where ajffi is the 2"th Walsh-

Fourier coefficient of gCi(x).

Suppose Ci is a dyadic irrational discontinuity of j(x). Then by Lemma I,

df   S «]»    s 0, I «j» I   g  | aj»   | ,        n = 1, 2, 3, • • ■

and

oi?' ?* 0(1/2").

However, the 2nth Walsh-Fourier coefficients of f*(x) are o(l/2B). If the

2nth Walsh-Fourier coefficient of the continuous part of f*(x), a$, is non-

positive, then a2»=a2"+fl2" =a2" =0, and hence a2% =o(l/2n), which would

be a contradiction. But

/. i *"—i   /• (*+i)/a"
a2°  =       g(WAl)dl = £ g(DU(t)dt =g 0.

J 0 It—0   J fc/2*

Each term in the sum is nonpositive since g(x) is nondecreasing and ft" is +1

on the first half of [k/2n, (k + l)/2n] and —1 on the second half. The theorem

is therefore proved.

4. On convergence and summability. The nth partial sum and «th (C, 1)

mean of a Fourier series are denoted respectively by

£,Sk(x;f)
*=i

(4.1) 5„(x;/) = ]£ a*ft(x)    and    <rn(x; f) =-■
t=o n

The Dirichlet kernel is Dn(x) = E"-o fa(x), and Fine has shown that Sn(x)

may be written

(4.2) Sn(x) =   f   f(x + t)Dn(t)dl =   f  f(t)Dn(x + t)dt.
Jo Jo

The size of Dn(t) is estimated by |F>„(0| <2/t, 0<t<l; and D2n(t)=2" for

tE[0, 1/2") and zero elsewhere.
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Fejer's kernel is K„(x) =«_1Xs-i Dk(x), so that

(4.3) <t„(x) =  f  f(x + t)Kn(t)dt.

These formulas and other relations for Dn(x) and Kn(x) have obvious counter-

parts on G. For example, if A,(x) represents the ith character of G(Af being a

finite product of the x»(x)), then corresponding to (4.2)

Sn(x) =  f f(y) ( X A<(* + y)) dm =   f f(x + y)Dn(y)dm.

Fine [3] has recently proved that if fEL(0, 1), its W.F.S. is (c, a) sum-

mable a.e. (a>0). The following lemma due to Yano [18] is used in proving

Theorem VI.

Lemma II. fo\K„(t)\dt^2, « = 1, 2, 3, • • • .

Theorem VI. If f(x)EL(0, 1), Jl\ak(x; /)— f(x)\dx-+0 as k-+<x> where

&k(x;f) is the (C, 1) mean of the W.F.S. off(x). Similarly, fa\ ck(x; ]) —f(x) | dm
—»0 as &—>«> for every f in L(G).

Proof. The proof of the last sentence of the theorem follows from the first

sentence by Theorem I. Let g(x) be a continuous function for which

/I f(x) - g(x) | dx < a.
o

For continuous g(x) the theorem is true since ak(x; g)-^g(x) uniformly (cf.

Fine [1, Theorem 24 II]). Then

/I <rk(f) — f\dx &   I     | <Tk(f) - o-k(g) | dx +   I     I ak(g) - g | dx
0 J 0 " 0

+ r i / - * i <**
J o

=s r u*(/-«) u*+"(i) + r i/-«u*

S3 I     \ f — i\ dx + o(l), since for any h(x) E L,
J o

/| eifc(x; A) | dx =   I A(x + f)Kn(t)dt dx
o •/ o   I J a

= f  I *(*) I ( f  I *»(* + 0 I *) d* = 2 f I ft I <**•
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This proves the theorem. The result may also be obtained from the work of

Orlicz [8] on the mean convergence of Toeplitz transformations whose ker-

nels are bounded. The idea of Orlicz applied to the Walsh case is to prove

that jl\o-k(x; f)\dx^Cfl\f(x)\dx (a result which is valid for C = 2) for any
integrable/(x). This together with the point-wise convergence a.e. of crk(x)

—*f(x) for f(x) bounded implies the result.

We now consider certain problems involving the concept of a Lipschitz a

class of functions, 0<agl. Fine [l] has demonstrated, just as in the trig-

onometric case, that the W.F.S. of such functions converge uniformly to/(x).

Moreover, if a>l/2, the series converges absolutely. Yano [19] has demon-

strated that if f(x) is a Lipschitz a function on (0, 1), 0<a<l, the (C, 1)

means of the W.F.S. for f(x) satisfy tr„(x) — f(x) =0(n~a). Additional exact

analogues of several results of trigonometrical Fourier theory (cf. Zygmund

[21, p. 106]) can be obtained if the concept of a Lipschitz a function is carried

to the group G.

We define the class of Lipschitz a functions f(x) on G, 0<agl, as those

functions satisfying

i - - *
(4.4) ] f(x) — f(y) I   < C\(x + y)a, for some constant C.

We further define/(x) on [0, 1 ] to be Lipschitz a(W), 0<a^l, if

I f(x + y) - f(x) |   < Cy" 0 g x < 1, 0 g y < 1,
(4.5)

*
p(x + y) = u(x) + u(y),

*
i.e., except when (p.(x) +p.(y)) ends in a sequence of l's. The following theorem

may then be established.

Theorem VII. If f(x) is a Lipschitz a function on G, 0<agl, then f(x)

=/(jii(x)) is Lipschitz a(W) function on [0, 1), and f(x — 0) exists and is finite

at each dyadic rational 0 <x ^ 1. If f(x) is a Lipschitz a(W) function on [0, 1),

0 <a ^ 1, and f(x — 0) exists and is finite at each dyadic rational 0 <x ^ 1, then

the G-extension off, f(x), is a Lipschitz a function on G.

Remarks. (1) If/(x) is a function of class Lipschitz a on [0, l],/(x) is a

Lipschitz a(W) function.

(2) If/(x) is a function of class Lipschitz a(W) on [0, l],/(x) is continu-

ous (IF) on [0, lj.
(3) In the case of the system {e2""1}, each function is of Lipschitz class 1,

but the corresponding constant of the definition changes with each n. The

G-extensions of the Walsh functions have a similar property. The function

X„(x) is constant on each of the 2" neighborhoods N{ = N(xi, x2, ■ ■ • , x„). If

x and  y are in Nit | Xn(x) — Xn(y) \ =0.  If xENi, yEN,, i^j, then

X(x + y) ^ 1/2"
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since the first n coordinates of x must differ from the first n coordinates

of y in at least one place. Under all circumstances |x«(*) — Xn(y)| Ss2, and it

follows that for C=2n+l,

*
\Xn(x) - Xn(y)\   ^ C\(x + y),       x, y'mG.

From these remarks it is easy to see that no constant will serve for every n.

The statement is proved in the same way for a general character of G which is

a finite product of the Xn(x). The function ft,(x) is Lipschitz a(W) on [0, 1),

and again the constant increases with n.

If f(x) is a Lipschitz a function on [0, 1 ], then w(5,/) ^ Cba for some con-

stant C where co(8,/) is the modulus of continuity of/(x). We define

(4.6) u(b,f)= max   , |/(*)-/(j)|.
all g, Jf=G with X(i+J)«S

Clearly if f(x) is a Lipschitz a function on G, <i(5, f) ^ C8a. The counterpart

of w(5, /) on the real line is

(4.7) aw(o, f) = .max | f(x + y) - /(*) | .
0SK1; 0S»<S; 0»(i)+/i(b)) not ending In l's

If f(x) is a Lipschitz a(W) function, o)w(b, f) <C5a. By Theorem VII, if /(*)

is Lipschitz a on G, then/(x) =f(u(x)) satisfies uw(b, f) <C8" on [0, l].

The next results are stated both on G and on [0, 1 ], but are proved on G.

Theorem VIII. (1) Iff(x) is a Lipschitz a function on G, then the partial

sums Sn(x) of the Fourier development of f(x) relative to the characters of G

satisfy

ci(S, Sn(x)) = 0 I 5a log — J uniformly in n.

(2) If f(x) is a Lipschitz a(W) function on [0, 1 ] andf(x — 0) exists and is

finite at dyadic rationals, then

o3w(5, Sn(x)) = Old" log — J uniformly in n.

*
Proof. For any x, yEG with X(x+y) <5

(4.8) | Sn(x) - Sn(y) |   = I f [/(* + t) - f(y + t)]Dn(t)dm
\J a

in in
I ̂     lall 7;X(I)§4 'J    lall I;X(?)>«•

* _   * * *
The second integral (since \[(ic+i) + (y + t)] =\(x + y) <5) satisfies
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| ^Co" f j D»(I) | din
I J all I;X(?)>J ^ all I;X(I)>J

f1 2 1
g Cb" I    — * = 2C5<* log — •J,    t &  S

For the first integral in (4.8) we have

If [](x+t)-f(y + l)]Dn(l)dm
I*'all I;X(7)S8

^   f | /(*+*) ~ /(*) I   I Dn(t) | dm
J \<h£i

+ f     I Ks) - ?(y + DI I S»(D Mm +1 f     (/(*) - /(y) ]s,(i)i« .

But since \((x+t)+x) =\(i) and X((j+i)+y) =X(/~), we have

(4.10) ^ 4C f  —dt+ \f(x)- f(y) | I f Dn(t)dl .
Jot | Jo

Now the function g(x) =1 on (0, 8), =0 elsewhere, is a function of bounded

variation, and so 5n(0; g)—>g(0) by a result of Walsh. But 5„(0; g) =fQiDn(t)dt.

Therefore \JQDn(t)dt\ 's bounded, say by M. Thus the first integral in (4.8) is

4C<5"
(4.11) <-+ MC5".

a

Combining (4.9) and (4.11)

|5„(x) - Sn(y)\   ^C*5»log —

*
for small 8 and X(x+y)<8, the constant C* being independent of n, and

co(8, Sn) =0(5" log 1/8) uniformly in n.

Theorem IX. (1) A necessary and sufficient condition for f(x) in L to be a

Lipschitz a function on G is that {an(x)}, the (C, 1) means of the Fourier de-

velopment of f(x) relative to the characters of G and Haar measure, be Lipschitz

a functions on G uniformly in n.

(2) A necessary and sufficient condition for f(x) in L to be a Lipschitz (Wa)

function on [0, 1 ] for which f(x — 0) exists and is finite at dyadic rationals is that

{o-„(x)}, the (C, 1) means of the W.F.S. of f(x), are Lipschitz a(W) functions

uniformly in n.

Proof. Suppose/(x) is a Lipschitz a function on G. Then
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I «?.(*) - vn(y) I   =\[ (f(x + t)- f(y + t))Kn(t)dm

where K„(t) is the G-extension of the Fejer kernel. By Theorem I and Lemma

II, fa\Kn(T)\dm =fl\Kn(t)\dt^2, and hence

I *»(*) - *.(?) |   S   [ \f(x*  t) ~ f(y + i) |  | Kn(t) | dm
J a

(4.12)

g CX[(x + t) + (y + t)]a f | ZC„© | cfw ̂  2CX(x + y)°.
*^ a

Conversely, suppose {<r„(x)} satisfies (4.12) uniformly in n. By (C, 1)

summability a.e. of the W.F.S. of f(x)=f(p,(x)), an(x) converges to/(x) a.e.

with respect to Haar measure on G. Let xo be a point of convergence to a

finite limit. Then {a„(x0)} is a bounded sequence of numbers, say by M, and

i i        i - i        i i *
| ffn(x) |   —   | <r„(x0) |   g   | ffn(x) — <rn(x0) |   ^ CX(x + x0)a S C,

and so

!  ^n(x) j     ^   M + C

for all n and all x in G. By Ascoli's theorem, a subsequence {<rnjfc(x)} converges

uniformly on G tof(x). Now for any x, y,

I /(*) - f(y) I  ^ I /(*) - ?»*(*) I + I *»»(*) - fn»(y) | + | J„»(y) -f(y) \ .

Choosing k so large that the first and third terms on the right are each less

than

C\(x+y)°,

the second term satisfies this by (4.12), and hence/(x) is in Lipschitz class a

on G, proving the theorem.

5. Theorems of Rogosinski. The following important results of Rogosinski

are usually included in a study of the Gibbs phenomenon for Fourier series:

(a) If an = 0(l/n) and if the series l/2a0+ X"-i (a* cos kx+bk sin kx)

converges to s(x), then 1/2 [Sn(x+an)+Sn(x — an)]—>s(x).

(h) If this series is summable (C, 1) to s(x), and if an = 0(l/n), then

{l/2 [Sn(x+an)+Sn(x— an)] — (Sn(x) — s(x)) cos »«„}—>s(x). The analogues

of these results in the Walsh system will now be investigated.

Theorem X. If Xt°-o ak\]/k(x) is a Walsh series on G which converges to

s(x) at x in G, then for any sequence [an\ of G with X(a„) =0(l/n),

—      *
Sn(x + a„) —> s(x) as w —* oo.
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Proof. The following calculation on [0, 1 ] can be done on G for every x,

{«„}, X(a„)=0(l/«).
n-l

Sn(x + an) = X) akMx)M<*n) for x E £(«„), | E(an) |   = 0.
it—o

Using a device found in Fine [l, pp. 391 and 403], let 2_"_1^an<2_|,and write

(n-l)=rl'+s, 0gs<2'. Then

r-l  2"-l >

5n(x + a„)   =   £   Z)  02,'»>-rplrVm+p(x)'rVm+p(a:„)    +   £   a2"r+plrVr+p(*)lrVr+p(an)

m=»0   p«0 p~0

for x(fE(an). But is easily verified that ^,(«») =^p(a„)^m(2,'a„), and

&p(<xn) = 1 when p<2". Hence

r-l 2"-l •

5„(X + a„)   =   £   £  a2'm+p^2'm+p(x)^m(2"an)  +   £ a2'r+p1p2'T+p(x)>pr(2'ctn)

m—0   p—0 p—0

r-l

= £ ^m(2'aB) [5(OT+i,2<x) - 5m2>(x)] + ^„_i(a„) [5„(x) - Sr2'(x)}
m=-0

where 5fl(x) = Yll-o a*^*(x) and ipr(2*an) =f,,(a„) =^2-r(«n)^(«n) =^„_i(a„).

Or we may write

r-l

S„(x + an) = 52"(x) + X "Pm(2"an) [5(m+i)2"(x) - Sm2-(x)]

(5-D
+ *_,(«„) [5„(x) -5r2'(x)]

x (££(«„). Now, a„<2c/n for some fixed c. Hence r <n/2'<2c/2"an^2c+1 and

the number of terms in the right side of (5.1) is bounded. If 5„(x)—kj(x), then

the first term on the right side of (5.1) tends also to s(x) and the remaining

terms go to zero for all x^U"_i E(ct„), and the theorem is proved.

Concerning the second result of Rogosinski stated at the beginning of this

section, the Walsh analogue might be expected to take the form

(5.2) {5„(x + a.) - (5„(x) - S(x))^n-,(5„)} -> s(x).

This is not a correct result, however. In fact, if x=X(x)> an=X(a„), x+a„ are

not dyadic rationals, (5.2) is equivalent (after a double application of Abel's

formula) to

n-3

X) (k + 1) [4<k(otn) ~ 2i/a.+i(a„) + tA;+2(an) ] {<Tk+i(x) - s(x) }
ft=0

+ (n - 1) [\pn-.2(an) - irVi(a„)]{(r„_i(x) - s(x)}

00

= X b„,k{ak+1(x) — s(x)} —>0.
fc—0
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Thus we have a linear transformation of {o-k+i(x)—s(x)} by the infinite

matrix (»„,*)• Let (n — 1) =2"+s, 0^5<2"and choose x', a'n, x'+a'„ not dyadic

rationals, with 2~"~i<an<2~". Then X"-o \bn.k\ ^« and the matrix is not

a Toeplitz matrix. Thus there exists a sequence {a'k(x')} converging to s'(x')

but for which (5.2) does not hold for [a'n\. Moreover, it is possible to find a

Walsh series XjT-o atit'k(x) which at x' has the (C, 1) means {<r£(x')}.

Theorem XI. Let f(x)ELk(0, 1), 1<&<oo, and \nk] be a lacunary se-

quence of integers nk+i/nk>q>l. Then for any sequence 0^a„ = 0(l/ra), the

W.F.S. of f(x) satisfies Snit(x+a„k)^>f(x) a.e. as &—>oo.

Proof. Using (5.1) with n=nk, 2-'~1^ant<2-', and nk-l =r2'+p,

0^p<2" it is apparent that the partial sums on the right are lacunary if

n = nk and, as before, there is a finite number of terms. By the following

lemma due to Paley [9] the right side tends to f(x) a.e. and the result is

proved.

Lemma III. Iff(x)ELk(0, 1), 1 <k< oo, and \nk] is a lacunary sequence of

integers nk+i/nk>q>l, the partial sums of the W.F.S. of f(x) satisfy Snt(x)

—yf(x) a.e.

The next theorem resembles the second theorem of Rogosinski.

Theorem XII. If f(x)ELk(0, 1), Kk<<x>, and {«„} is any sequence

satisfying O^a„ = 0(l/n), then the partial sums of the W.F.S. of f(x) satisfy

[Sn(x + an) - (S„(x) - f(x))yPn-i(*n)]->f(x) a.e.

Proof. Formula (5.1) may be rewritten as

Sn(x + «n)  - ypn-l(0Cn)[Sn(x)   ~ f(x)]

i—i

= Sv(x) + £ ypm(2'an)[S  (x)    - Sm2*(x)] + *-i(«») [/(*) - $*(*)]
(m+l)2„

m=l

for x E E(an).

The relation holds for each n if x^U^.! E(an). As w—><», v—>oo, and the col-

lections {Sm2'(x)}, m = l, 2, • ■ ■ , r^2c+l are each lacunary sequences of

partial sums. By Lemma III each such sequence tends to/(x) a.e. so the right

side converges a.e. to/(x).

This section will end with the proof of a valuable formula for any integra-

ble function/(x) in terms of the partial sums of its W.F.S. This result (which

is an analogue of a well known result for the trigonometrical system, e.g., see

Marcinkiewicz and Zygmund [7, pp. 3, 4]) is not related to the theorems of

Rogosinski, but depends on some of the facts used in the proofs of these

theorems, and so it is included in this section.

Theorem XIII. Iff(x)EL(0, 1) and if the W.F.S. of f(x) has partial sums
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satisfying lim sup„_0O5„(x) < + oo for x£E where E is any set of positive

measure, then for almost every xEEwe have

lim inf 5«(x) > — oo

and

f(x) = —< lim inf 5„(x) + lim sup 5„(x)> .
2    v   n—*°° n—*» /

Proof. The function 5*(x)=lim supB_0O5„(x) < + oo is a measurable

function on E, and following Lusin, there exists a set FEE such that the

complement of F relative to E has measure less than e/2, and S*(x) is con-

tinuous on F relative to F.

Also the sequence of functions {l.u.b. kinSk(x)} converges on F to S*(x),

and therefore there is a measurable subset E' of F such that \E' — F\ <e/2,

and the sequence converges uniformly on E'.

Let x be a point of metric density of E'. Then the relative density of

any interval containing x and of sufficiently small diameter is close to unity.

More specifically, if am(x), j3m(x) are defined by

P P+l
(5.3) am(x) =-g x <-= /3m(x),

then there exists vo such that for v^vo

1
\ET\(a,(x),p,(x))\   >—-1~"-

For every n such that (n —1)>2'°, define v by 2"^(« —1) <2"+1, and consider

the image of the interval T:2-('+1) <a<2~' under transformation TX(T)

= {x+a, aEl}. We have | TX(T)\ = | T| = 2-("+1). However, except for a set

of measure zero TX(T)E(a,(x), p\(x)), and so EC\TX(I) is not void, i.e., there

exists an a = an such that (x+a„)£-F/ and anEI- For such a„ by (5.1) with

r = l, as is now the case,

Sn(x + an)   = S2>(x) [1  - f—i(a»)] + 4<n-l(an)Sn(x).

But \f/n-i(ctn) =^2'(«n) =^i(2"a!„) = -1 since otnEI. Thus

(5.4) 5„(x + a„) = 2Sv(x) - 5„(x) for each n.

Now in view of the continuity of S*(x) over £' relative to E' and the fact

that x is in E' and for each n, (x+an) belongs to E', we have

5„(x + a„) g 5*(x + a„) + e„ ^ 5*(x) + o(l), n large.

By (5.4)

2S2r(x) g 5*(x) + o(l) + 5„(x), large ».
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But S2'(x) =/(x) + en(x), en(x)—>0 a.e. Assume that the x under consideration

is such a point of convergence and f(x) is finite (which it is a.e.). Then

S*(x)+o(l) = -Sn(x)+2/(x)-r-2en(x), and hence S*(x)-2f(x)£ -S*(x)

= —lim infn^oo Sn(x). Consequently lim inf,,..,* 5„(x) > — <», and the first

assertion of the theorem is proved since E' is of measure arbitrarily close to

that of E.
Knowing S*(x) > — oo we may write

(5.5) /(*) g — {S*(x) + 5*(x)} a.e. on E.

Suppose now that the argument were repeated starting with the inequality

5*(x)> — oo as the given condition. All inequalities would be reversed, and

from this would follow l/2{5*(x)+5*(x)} S/(x) a.e. on E. Combining this

with (5.5) proves the theorem.

6. Transformations of Walsh series. In the theory of trigonometric series

a number of results have been established (see Zygmund [21 ]) which identify

Fourier series with classes of functions. A theory of transformation of series

from one class to another class by means of multipliers has also been estab-

lished. In this section, the Walsh analogues are obtained. If a Walsh series

zZ*-o akypk(x) is the Fourier series of f(x) which belongs to a class of functions

fl, then we shall say (following the classical exposition) that the series itself

belongs to fl. For any numerical sequence {Xt} consider besides the Walsh

series the two series

(6.1) I>*W*)

and

00

(6.2) £x*a«P*(«).
I—0

Given two classes P, Q, of Walsh series, the class of sequences {X*} denoted

by (P, (?) is composed of sequences which transform P into Q, that is, when-

ever the given Walsh series belongs toP, (6.2) belongs to Q. We first identify

the series belonging to certain classes of functions.

Theorem XIV. A necessary and sufficient condition that a Walsh series

should belong to the class B of essentially bounded periodic functions on [0, l],

is the existence of a constant M such that the (C, 1) means of the series satisfies

\ak(x)\ ^2M, all k, all x.

Proof. If |/(x)| gMa.e., then by Lemma II |«r*(*)| gfo\f(x+t)\\Kk(t)\dt
£2M, all x and k.

If |o-*(x)| £2M, all k and all x, then
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4AT2 £   f  ak(x)dx = X>-(l - 4")  ^ Z^ifl " "t)
J 0 ,_0 \ « / j-0 \ « /

where p is any fixed integer less than (k — 1). But as ft—»oo this implies

y,'_n Oj ̂ 4AT2, and since j> is arbitrary, /./In aj< + °°. There exists an/(x)

in Z2 such that/(x)~^jl0 aj\f/j(x). By the result of Paley [9], ak(x)—»/(x)

a.e. and since |fft(x)| ^2 AT for all ft and all x, |/(x)| ^2 AT a.e.

In characterizing series which belong to the class of continuous functions,

the continuity on the group G is required. The usual characterization (uni-

form convergence of the (C, 1) means <rk(x)) fails because the Walsh (C, 1)

means are only continuous (W). For example, if f(x) is a Walsh polynomial,

0k(x; f)—yf(x) uniformly, but/(x) is not continuous.

Theorem XV. A necessary and sufficient condition for a Walsh series on G

to belong to the class C of continuous functions on G is that the (C, 1) means

{ak(x)} of the series should converge uniformly.

Proof. If XjT-o ak$k(x) is the Fourier series of a function/(x) continuous

on G, then {ffi(x)} converges uniformly. This is the theorem of Fejer on the

group G.

On the other hand, if {(r*(x)} converges uniformly, define f(x)

= lim*..,*, ak(x). Note that/(x) is continuous. Consider

{yth coefficient of ak(x)} =(l-)ai=   I  ak(x)^j(ot)dnt.

Now as ft—»oo the left side converges to aj while the right side converges to

foJ(x)fc(x)dm.
In the classical theory, the concept of a Fourier-Stieltjes series is intro-

duced. To every function F(x) of bounded variation on [0, 27r] corresponds a

trigonometrical series whose coefficients are Riemann-Stieltjes integrals, e.g.,

(1/ir)flr cos ktdF(t).
In the Walsh case the corresponding integrals ftyktydF't) need not exist

as Riemann-Stieltjes integrals. This is the case, for example, when the func-

tion of bounded variation F(x) has a common discontinuity with ipk(x). It is

necessary, therefore, either to consider the problem in the context of the group

G where $k(x) is continuous or to generalize the Stieltjes integral involved

and/or restrict F(t). The first approach leads to the difficulty of defining

functions of bounded variation on the unordered group G. The Lebesgue-

Stieltjes integral or modified Pollard-Moore Stieltjes integral of Hildebrandt

[5] are generalizations for which Jltpk(t)dF(t) does exist for every F(t) of

bounded variation on [0, l], however, this approach has thus far involved

other difficulties. The validity of the sufficiency portion of the classical nec-

essary and sufficient condition for a series to be a Fourier-Stieltjes series
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fl\an(x)\dx^V has thus far been neither proved nor disproved by the

author. We therefore define S' as the class of series 2J"-o akyj/k(x) whose coeffi-

cients are ak = flypk(t)dF(t) where F(t) is continuous and of bounded variation.

Theorem XVI. If X*"-o akypk(x) belongs to S', fl\an(x)\dxS2V and
l/n X*-o akypk(x) converges to zero uniformly in x and conversely.

Proof. Except when (x+t) is a dyadic rational (the set of such I for fixed

x has F-measure zero)
n     k-l

Kn(x + t) = Kn(x, t) = £ £ ypr(x)Mt)/n

and hence  \an(x)\ ^Jo\Kn(x+t)\\dF(t)\. Then with (n-l) =2'+n',

0^n'<2>,

f   | cn(x) | dx ̂  f   (f   | K„(x + t)\\ dF(t) \Jdx

/>l/2"+I-l| / i\\    (•  (.■+1)/2I'+1 \

E   M*+-: \dF(l)\)dx^2V

since K„(x+t) is constant (for fixed x) for t in [i/2p+l, (i + l)/2'+1), and

fl\Kn(u)\dui%2 by Lemma II.
Moreover, let «=Xi-o xi2i, x, = 0, 1, x, = l, and let Wy = X3t-o x»2\

O^j^v. Repeating the formulaDn(x) = D2"(x) +yp2"(x)Dn-2<'(x) k times (k<v)

yields (using 5.3)

—   E «^r(x)   g   f; —   f ^ (x 4- 0ZV-<(* + *)dF(<)
n    T-o >-o      w    l^o    n_n'-i

11 r1
H-I   yp     (x + t)D(x + t)dF(t)  D0(u) = 0.

n \J o    """>•-* n»-t

=S X ^— [F(ft-i(x)) - F(a,_,(*))]
<=o        n

2"-*+'[F(l) - F(0)]

n

^ [F(ft_i+1(x)) - ^w(*))] + — [F(l) - 7(0)].

The first term can be made small uniformly in x by choosing n large and the

second small by choosing k large.

Conversely, if fl\an(x)\dx^2V and l/«X*=o akypk(x)-+0 uniformly in x,

define Fn(x)=J%a„(t)dt. Then (cf. Zygmund [21, p. 80]) there exists F„k(x),

a uniformly bounded subsequence converging everywhere to F(x) of bounded

variation.
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For each k (nk>i)

(6.3) (l-—)a,=   f  Ux)ank(x)dx =   f h(x)dFnt(x).
\        nk/ Jo Jo

With i = 2'i+i', 0^i'<2'\ let Ii=[j/2>i+\ (j+l)/2si+1), j=0, 1, 2, • • • ,
(2"'+1 — 1) be the intervals of constancy of \pi(x). Then

(6-4)   (■ - =)- T^'Ki^) - M^)] •
Letting ft—>co, and replacing each Fnk(x) by F(x) we have a,-=/0Vi(x)JF(x)

if F(x) is continuous.

An idea of Fine [l, p. 406] may be used to demonstrate the continuity of

F(x). F(x —0) and F(x + 0) exist everywhere and hence it is enough to find

dyadic rational sequences {r/} and {rf} converging to x from right and left

respectively and F(rf)—>F(x), F(rj") —»F(x).

By definition F„t(x) = 2i-o~" (l-*7»*)o</<(*). where J{(x) =f0:\pi(t)dt.
For i large enough Ti(/3„(x)) =/j(an(x)) =0, hence

F(/3„(x)) - F(«„(x)) = lim    £ (1-W^GU*) - /»(«.(x))]

(2n-l)   / j\ /./3„(i)

(6.5) = lim    2(1-K *.(0#

F"»(I) 52»(*)
=  j        5i«(/)(ft = ■—— -> 0

by assumption. Hence if x is not a dyadic rational, we identify {/3„(x)} with

{r/}, {a„(x)} with {rf}. If x is a dyadic rational, a„(x) =x for large «, and

hence while (p\,(x)} is still {rf}, we define {rj-} = {ccn(x)} = {a„(x) — l/2n}.

Then F(x) -F(cxn(x)) =52n(an)/2n—>0 since by assumption 52»(m)/2"—>0 uni-

formly in m and so the theorem is proved.

Theorem XVII. A necessary and sufficient condition that 2"-o ak$k(x) be

the Walsh-Fourier series of a function f(x)EL(G) is that the (C, 1) means

satisfy fa\am(x)—a„(x)\dm—*0, as m, n—>oo.

Proof. The necessity is immediate from Theorem VI. It is enough to

prove the sufficiency on the unit interval. By completeness of 1,(0, 1) there

exists f(x)EL(0, 1) such that fo\f(x)—an(x)\dx—>0 as n—>oo. Define Fn(x)

=Jlan(t)dt, F(x) =Jtf(t)dt. Then

| F(x) - F„(x) |   £  f   | f(t) ~ *n(t) | *-» 0 as »-» oo,
«/o

and so Fn(x)—>F(x).
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As in (6.3), if n>k, (l-k/n)ak=fo<rn(x)ypk(x)dx=f01ypk(x)dFn(x). Arguing

as in (6.4), it is clear that as «—><», ak= fl^/k(x)dF(x) =PQypk(x)f(x)dx.

The proofs of the next results parallel closely the proofs of the classical

analogues.

Theorem XVIII. If Xt°=o V^W belongs to S', then {X„} belongs to

(B, B), (C, C(W)), and (L, L). Conversely if {Xn} belongs to any of these classes

and if also zltZo \kypk(x)/n^rO uniformly in x, then X"-o Xii/^x) belongs to S'

(cf. Zygmund [21]).

Proof. Let <rn(x), qn(x), and (r*(x) denote respectively the (C, 1) means

of the series X*°-o akyj/k(x), X"-o X*^*(x), and X"=o ak\kypk(x). Assuming the

first series to belong to B and the second series to belong to S', we have

(6.6)      o-n(x) = ;X(l-)(   f Ml)dF(t)) akypk(x) =  [ cn(x + t)dF(t).
*=o \ n / \ J o / Jo

By Theorem XIV, |<r„(x-W)| = -^> and hence \<xt\^MV. By Theorem XIV
X*°-o ak\kyf/k(x) belongs to B.

If the first series belongs to C, then [<r„(x) —<rm(x) ]—>0 uniformly for

xE [0,   l]   by   Fejer's   theorem.   But  then

| 0*n(x)   - 0*m(x) |    g    I       | ffn(x + t)   -  <Jm(x + t)\\ dF(t) \    -> 0
J 0

uniformly. This implies that {<r*(x)} converges uniformly on G and hence by

Theorems XV and IV the transformed series is in C(W).

If the given series is in L, Jl\<rn(x) — am(x)\dx—>0 by Theorem VI. Hence

from (6.6)

/| <r„(x) — am(x) | dx g   I | <r„(x + t) — <rm(x + I) \  \ dF(t) \dx
o J o  •! 0

^ F I    I o-n(x) - om(x) | dx -► 0.
J 0

By Theorem XVII, the transformed series belongs to L.

The proof of the necessity portion of the theorem proceeds exactly as in

the classical case and will not be given (cf. Zygmund [21, pp. 101-102]).

Theorem XIX. If X*°=o ̂iM*) belongs to L, {X„} belongs to (S't L) and

(B, C(W)).

Proof. Given X"-o a^*(x) in S'i it is clear that

I     | <r*n(x) - fft(x) | dx ^  j     j    \ qn(x + I) - qm(x + t) \ \ dF(t) \ dx
"0 J 0   J 0

= V f   | qn(x) - qm(x) \dx^0
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since 2™-o Xi^(x) belongs to L. But then by Theorems I and XVII, the

series XXo ak\k\pk(x) is in L.

If 2™-o ctk^^x) belongs to B,

| o*(x) - a*m(x) |   ^   f   | ?»(*) - ?»(0 | | /(* + fl | dt£ M f   | ?.(0 - qm(t) \ dt
Jo Jo

where M is the essential upper bound of /. Since E*°=-o X*^t(x) is in L, the

right side tends to zero and so {<r*(x)} is a uniformly convergent sequence.

An application of Theorems XV and IV shows 2*°-o o,k\kipk(x) to be in C(W).

7. Lacunary Walsh Series. In this section, analogues are developed for a

number of interesting results from the theory of lacunary trigonometric

series. The first is for a result of Zygmund [20 ], the proof differing from that

of Zygmund's only in respect to certain details which are peculiar to the

Walsh functions. In general, the results of this section may be restated on the

group G.

Theorem XX. If 2"-o a^nt(x) is a lacunary Walsh series whose partial

sums Sn(x) oscillate finitely at each point of an interval IE [0, l], then

Zrf-0 Ia*| < °°-

Proof. We begin by proving the lemma of Baire for the Walsh series.

Lemma IV. If the partial sums of a Walsh series oscillate finitely at each

point of an interval IE [0, 1}, there exists a constant M and subinterval [a, b ] EI

such that I 5„(x) | g M for all n and all xE [a, b].

Proof. Let I' be a closed dyadic subinterval of T and consider the neighbor-

hood N of G which is mapped onto V under X. Define Eik= {xE^\ \ Si(x)\
^k}. Each Eik is a closed set in G since Si(x) is continuous on G. Then

Djli Eik=Ek is a closed set, and N' = U^-i Ek is a union of closed sets. The set

N' contains every x£ AT which does not end in a sequence of l's. This follows

from the fact that for all such x there is an x in I' for which p(x) = x and

Si(x) = Si(u(x))=Si(x) by (1.8). But then {5<(x)} is a finitely oscillating

sequence, and so x belongs to Ea for every i when ft is sufficiently large.

This implies N= (U"„i E^VJZ where Z is at most a denumerable set. But

N is a neighborhood of G and is not of the first category and hence one of

the Ek is not nowhere dense. Call this set EM. Then Em contains a neighbor-

hood N of G.
By definition of EM, \ 5,(x) | ^ AT for all i and all x in N. But then | 5<(x) |

^AT on [a, b], a dyadic subinterval of I' which is part of the image of A7

under X.

Suppose now that nk+1/nk exceeds q > 3 and set Pn (x) = Hf-1 (1 + ^nk(x)),

ck= ±1. Then

(7.1) f   PN(x)dx =  f   (l + E ctil>.(*))dx
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when expanded because products of ^'s combine according to the following

combinatorial law (Fine [2]): if for any integers m, n we write m = Zi- „ Xj2*,

n = Xi"U y»2', Xi, y, = 0, 1, and we define

00

(7.2)     m ® n = Z | x,- — y<|2\ then ^m(x)^„(x) = ^men(x) for all x.

Let Ghk be the sum of all terms in the expansion of Pn(x) which consist of a

product of h yp's and wherein nk is the largest of the subscripts in such a

product. Then

l r" I
I    (Gu + G2k+ ■ ■ • + Gkk)dx

I J a

*   /number of terms\ / I  r b I \
= 2J .   r. )(   max*,eoJ I   yp.(x)dx\ ).

»_i \        in G„*        / \ | J a I /

Now since nk+i/nk>q>3, each integer nk necessarily contains a higher power

of 2 in its dyadic expansion than its predecessor had. It follows that no "sum"

v = nki @nki © • • • @nki., nki <nk. < ■ ■ ■ <nk- can be zero. Hence

/» 6 oo    I     f% 6

(P„(x) - l)dx   ^ Z   I    (Gi* + G2k+ ■■■ + Gkk)dx\
a *=1I " a

(7.3)
°°  h (k —1\ / l r6 l\

^ X X ( ,      . ) ( max I   i/-,(x) Jx   ).
*=1 A-l \« —  1/ \    v appearing in (?u  | J a | /

Now if the "sum" p belongs to G„*, its greatest "summand" is «* = 2*»*

+n'k, 0^nk' <2"v Thus

I f *,(*)<**   =  I J.(b) - Ma) |  =  | Mb)(b - y.Uh(b)) - *,(o)(a - 7.   (o)) |

4
<S —

w*

where ys„k(b) is defined as that one of a,„k(b), ft„t(&) (defined in (5.3)) which

is closer to b and similarly for ys„k(a). Then

/' k "    *  /&- 1\ 4        4/o\(P»(:)-l)i^EI )-:§-(-^-), q>3,
a *-l »=1 \« — 1/ «*       «i \q — 2/

Lemma V. If [nk] is a sequence of integers with nk+i/nk>q>3 and v

= («*!©w*2® " ' ' ©«*,-)i «*,<«*,< • • • <nkj, then vE[nkj(q — 2)/(q — l),

■nkjq/(q-l)].

Proof. It is clear that if m= X)«"o *«2', n= XXo yd1, Xi,yt = 0, 1, both
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disappearing eventually, then m— n^m®n^m+n. Repeating this inequal-

ity we get Wjtj —»*,_,— «*,-_,— • • • — nkl^nkj®nkj_r® ■ ■ ■ ®nH^nkj+nkj_l

+nkj_z+ ■ • • +nkl. Substituting into this expression nkj/qr>nkj_r,

«*,.       nk. nkj nkj       nkj nkj
nkj-•••-—< v < nkj -\-1-— + • • ■ + —-,

q q2 q'_1 q q2 q'~l

nkj(q — 2)               nk.q
- < j, <-.

q-1 q-1

After these preliminaries we proceed to the main idea of the proof. Given

nk+x/nk>q> 1, in general, we write q=l+2e. Now choose a number e'>0

which satisfies the following:

(a) (1 + 2e)(l - «') > p > 1       (b)^^>p>l

(7'5) n-*\»3(TT7)>'>I-

For this number t' find Q(e') such that if p > Q(e'), then (p - 2)/(p -1) > 1 - e'

and p/(p — l) <l + e'. Determine integer r so that gr>max (3, Q(e')).

The sequence {nk} can then be split into r subsequences, {wAr+p},

p = l, 2, 3, ■ • • , r, with ft varying from 0 to oo. Define also the functions

(7.6) PN.p(x) = n (1 + •     * (*)), PnUx)
jt_0 p "*r+I>

Pn.p(x)
~  (1 + 6        *   (X))

kr+p    nlcr+p

where ekr+p= +1, p = l, 2, ■ ■ ■ , r. Using the usual definition for the partial

sum of a lacunary series, we have for each p = 1, 2, 3, • • • , r,

/, 6 AT-l p b
SNr(x)PN,p(x)dx =  £ akr+p       (1 + «      f (x))P<*> (*)* (x)dx

J kr+p    nkr+p     N ,p ntr+p
a k=0 ** a

r l-W-1 p b "I

+       E E akT+P' I   inkr+p'PN.p(x)dx
n'-llfVp L M •'a -J

JV_1 /    F 6 \ A'_1 C b     (k)

=    E Otr+pSfcr+j, (     /     «,   ,   \A   (x)P<*>(x)dx  ) +   £ «*r+p«tr+p   I     PN.p(x)dx
*_0 \J a     kr+P    nkr+*    N'V / *-0 J a

+ E X)  atr+p'«*r+p' (     I      6 ^     (x)P        (X)(fx)
p<_l;pVP    *-0 \Ja     kT+P     nkr+'      N-P )

= T + I2 + h.
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Consider a typical coefficient from Zi,

I f  e       * (x)P^(x)dx\
J kr+p    nkr+p    N,p

(7.8)

g    I   ^ (x)Jx +    E      I   * (*)(  T,Gi.(x))dx\

where G,, is the sum of all products of (j+l) yp's, the largest subscript being

n,r+p. The first term on the right is majorized by 4/«i and the sum by

Z \£,('.)      max      If* (*)*(*)<** 11
MWlLj-Aj/    all subscripts 7 in G^   \Ja     "tr+"   T IJ

For these integrals, because gr>max [3, Q(*')] and wer+p/w(S_i)r+p>gr, any

subscript y from Gy„ must (by Lemma V and choice of Q(e')) lie in the inter-

val [n„+P(l—t'), n,r+v(l+t')] where v^k.

But then y has as greatest power of 2, 2*"^+?, and nkr+p has a different

greatest power of 2. Their "sum" under © contains a power of 2 greater than

or equal to 2",r<r+i>. Thus \flypnkr+])(x)yl/y(x)dx\ ^4/«,r+p and

If* 4       A 2»+2        8 /    c/    \
(7.9) «      * (x)P<*> (x)dx   ^ - + £-g_(_JL_),        jr>3.

|J0   *r+p nkr+v  N'p «i       _0 Ww+p      ni\qr-2/

For Z2 by (7.4),

(r f^p(x)jx)=r r jx - r (i - zOx^x i
(7.10) VJ" '      LJ° J" J

£ (ft -«) --(-T—;), <7r>3-
Wi\ar - 2/

^Finally, for coefficients of h we have

/b \     e* b

e        \p   (x)P     (x)dx\ ^ If    yp   (x)dx
kr+p'    ntr+p'    N ,p \J nkr+p*

(7.11) '    J
*r-y r »  / v\ I /•» in

+ Zl  Z(   . ) max I    *(*),* (*)<i*
,_0   L y=0 \ J /all subscripts? appearing InG.   | •/ a       n*r+p    T |J

where p'^p, and now p may equal k.

Again 7 belongs to the interval [w>r+p(l — e'), nvr+P(l + «')]> and so the

closest that this interval may come to nkT+P' as v and p vary is when v = k and

p=p' + l; or v = k — 1 and P' = l, p=r; or v=k + l or £'=r and £ = 1.

In any of these cases »„r+p and w*r+P' are succeeding terms (in some order)

in the original sequence \nk\. The terms on the right in (7.11) are largest

when 7 and «*,+,,' are close. We may describe the two situations in which
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nkr+p' is very close to y, i.e., the worst possible cases as:

(a) yE[nk(l—t'), nk(l + t')} and nkr+p> plays the role of nk+i.

(b) nkr+P' plays the role of »t_i and yE [«*(1—e'), nk(l+e')].

In the first situation the choice of t' as made at the beginning of the

proof enables us to say nk+i/y>nk+i/nk(l+e')>q/(l+e') = (l+2e)/(l+e')

>p>l. In the second case y/nk-i>nk(l — t')/nk-i>q(l — e') = (l+2e)

•(1— e')>p>l. The next lemma is easily verified.

Lemma VI. There exist constants A and B, depending on p, such that for

m>n>A(p) and m/n>p>l, (m@n) contains a power of 2 at least as large as

2>™-bwi where m=2Sm+m', O^m'<2*m.

An application of the lemma shows that

I rh 1
(7.12) ^   (x)+ (x)dx   =   J     (b)      -J     (a) g-

\J a      nk'+>'   1 "(»,+/)®1' n(*r+*')®T 2'->-B

Since y is in the interval [n,r+p(l — «')> nrr+p(l +e') ], it follows that

(7.13) I    \P   (x)   dx   g-
IJ a    "*r+»©T nyr+p

Using this estimate in (7.11), we have for a typical term of T3

/, b                                                       4         N-l r-   v    / v \     q    -1

tnkr+v4nkrWPN,p(x)dx      ̂   —   +   El     Z(     .      -
a                                               »i        »=o L y-o \] / nVT+p J

4 N-l        2"

(7.14) ^— + CE-
«1 k_0   w„r+p

4 / qV   \

«i \        ?r — 2/

Let us now observe that if Wi is only sufficiently large, (7.9) implies that

the coefficient of each term in Ti of (7.7) is less than 77 in absolute value.

Similarly, (7.10) shows that for «i large enough, the coefficients in T2 of

(7.7) are all non-negative and numerically larger than [(b—a)—n]. Finally,

from (7.14), a large Wi implies the coefficients in T3 of (7.7) are all less than v

in absolute value. Setting ey=(sgn aj) we have from (7.7)

/5.Vr(x)PAr,p(x)dx
a

(7.15)V ' N-l r N-l

^ E ((* - a) - 2-n) \akr+P I   -   v       E       El <*nkr+p- I •
t=o p'-i;pVp   &=o

If we now sum over all p,
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r       /» b Nr Nr

Z I   SNr(x)PN,P(x)dx ^ E ((* - «) ~ 2l?) I «i|   ~(r ~ 1) Ell Oil

(7.16)   P=1",°
1 £, (6 - a)

^ — (ft — »)   2-»     *i    i 1 < -•
2 '  £ '      ' 2(r + 1)

However, on [a, b], \Snt(x)\ i%M, and since PatiP(x) is a product of non-

negative factors (l+ypn(x)), we have

(b - a) £r, '    /•»
-E I a> I   = E I    I •SVr(x) I  [ ZV.p(x) I dx

2 ;-l p-»l «/ a

^ M E f Fjv.p(x)<1x g Mr,
p=lJ a

and so as N—> oo the theorem now follows.

This result may be shown to hold under more general conditions, e.g.

Sn(x) bounded above, etc. Remarks on such generalizations are found at the

close of the paper of Zygmund in which the theorem is presented. An easy

consequence of this theorem is the Walsh analogue of the well known theorem

of Szidon.

Theorem XXI (Szidon). If a lacunary Walsh series is the Fourier series of

a function f(x)EB (class of bounded functions), then the series converges abso-

lutely.

Proof.

(AT-l)

I Sn(x) - onN(x) |   =   E akyf/nk(x)
*-l

(nN — ni)aipni(x) + (nN — n2)a2ypn2(x) + ■ ■ • + (nN — Wiv-iV/v-i^n^Xx)

nn

ni\ai\  + «21 a2 \  + ■ ■ ■ + «jv_i | ay-i |

Wat

< (| «*_, | q-1 + I fliv-21 <r2 + • • • + I *i I r(W-1)) -»o.

But from Theorem XIV, {<rnjv(x)} is a uniformly bounded sequence. It fol-

lows that { Sn(x) } is a uniformly bounded sequence, and so by Theorem XX

the series is absolutely convergent.

The next theorem is preliminary to establishing the analogues of the re-

markable theorems of Banach on the existence of Fourier series with pre-

scribed coefficients at lacunary places. These results are found in the text of

Zygmund [21], but a less complicated presentation appears in a more recent

article by Salem and Zygmund [11}. The proofs given below follow in part

this more recent exposition.
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Theorem XXII. If {nk} is any lacunary sequence of positive integers

nk+i/nk>q>l and {a,-} is any sequence of real numbers tending to zero, there

exists a Walsh Fourier-Stieltjes series Ei"o ci}Pi(x) suc^ that cni = ai, i=l, 2,

3, • • • .

Proof. Suppose |a<| ^1 for all i. Consider first the case nk+i/nk>q>3.

Since each factor is non-negative,

k

(7.17) Pk(x) = II (1 + «.lM*)) = o.
t=l

The following lemma proves that if Pk(x) were multiplied out, there would be

no collapsing of terms following the employment of the product formula,

4,m(x)4/n(x)=\pmQn(x).

Lemma VII. If q>3, all subscripts i' = («,-1ffi«,-2© • • • ffiw,-y), «,-,<«,-, • • •

<»,-,. which appear in the expansion Pk(x) = 1 + E* cijip,(x) are distinct.

Proof. For q>3, each integer «< necessarily contains a higher power of 2

in its dyadic expansion than its predecessor had. In comparing two distinct

subscripts v, the largest "summand" to appear in the first v is, or is not, equal

to the largest "summand" to appear in the second v.

Consider («,-,©«,•.,© ■ • • ©wtj) and (»j,©«,-2© • • • ©«,„) in which

nij>riip. Since mt contains a higher power of 2 in its expansion than does

ftiT, the two subscripts are distinct.

Suppose the subscripts have n^ = ftiT but differ first at the rth "summand."

Then the one having the larger "summand" at that place will have a particu-

lar power of 2, say 2*r (where 2'r represents the greatest power of 2 in the

dyadic expansion of the rth "summand") enter the calculation of its numeri-

cal value one time more than it will enter the calculation of the numerical

value of the other subscript. In all cases then the subscripts are distinct, and

the lemma is proved.

Hence as ft—>oo, (7.17) actually becomes a Walsh series E^o cj^j(x)-

Many Cj may be zero since no subscript v = (w^©^© • • • @nik) happens to

equal j; however, each coefficient c„,. appears and has the value a,-.

Suppose Pk(x) is the partial sum S„k(x) of E./" o c$i(x)- Then /q| S„k(x) \ dx

= Jl | Pk(x) | dx =flP)J(x)dx = 1. We have therefore found a sequence of partial

sums bounded in the L1 norm. The argument which established the sufficiency

statement in Theorem XVI based on the uniform boundedness in L1 norm of

(C, 1) means may be repeated for a sequence of partial sums which are uni-

formly bounded in norm and for which the coefficients {cj} of the given series

tend to zero. It is easily verified, using |Oi| ^1 and aj—r0, that c,—>0 and the

theorem is valid for q>3.

In the general case q>l, we break up {nk} into r sequences, (w[ j,

{nf}, ■ ■ ■ , {n^}, in such a way that 4+iA4s)>2r- ft = l, 2, ■ • • , l^s^r
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and r being a large number which shall be defined in a moment. Let P®

denote the product (7.17) corresponding to the sequence {«is)}. By Lemma

V, if qr>3 is large enough, the series [lim*^ P*s)], 5 = 1, 2, • • • , r will

have no overlapping. But then for this r the combined series E»-i [lim*-.ooZ>*s)]

is the required Fourier-Stieltjes series.

Theorem XXIII (Banach). Let {«*} be any lacunary sequence of positive

integers w*+i/w*>gr>l and let {a,-} be any sequence of real numbers tending

to zero. Then there exists a periodic function f(x)EL(0, I) such that the Walsh-

Fourier coefficients {c,} of f(x) satisfy cni = a,, i = l, 2, 3, • • • .

Proof. Given any sequence {a,} tending to zero and any set of positive

integers \nk\ there exists a convex sequence {ey} tending to zero such that

lim*.M (a*/e„t)=0. By a result of Yano [18], the series X"-o «***(*) is a

Fourier series. Since (ak/enk)-^0, apply Theorem XXII, and there exists a

Fourier-Stieltjes series Ey-o Pi^Piix) with coefficients pnk = ak/enk. Apply

Theorem XIX, and the series E;% (PftWiix) = E;™ o CjV'y(x) belongs to L.

Then cnk = (pnktnk)=ak, and the theorem is proved.

Theorem XXIV (Banach). Given any lacunary sequence of positive integers

{nk},  nk+i/nk >q>l,  and  any  sequence  of real numbers   {ak}   such  that

E™= i at < °° > there is a continuous (W) function f(x) on [0, 1 ] (or a continuous

function f(x) on G) whose   W.F.S.   Ej™ o CAr'jix)   (or   Ey"o c$i(x)) satisfies

Cnje=ak,  K       1,  L,   '   *       .

Proof. Given E"-o ffl*<00 and any set of positive integers {«*}, there

exists a convex sequence {e,} tending to zero and such that E"-i a*An*< °°•

Then E"-o e*^*(x) is a Fourier series. If the theorem is valid with "bounded

function/(x)" replacing "continuous (IF) function/(x)," an obvious applica-

tion of Theorem XIX would suffice to establish the stronger result.

Lemma VIII. If a subsequence of partial sums \Sm,(x) ] of a W. F. S. satis-

fies [Sm,(x)\ tkM, the function is a bounded function.

Proof. M2^f01Slt(x)dx= X*V al and hence there exists fEL2(0, 1)
whose W.F.S. has Sm,(x) as partial sums. By Lemma III, any lacunary sub-

sequence }5m<([\:)] converges a.e. to/(x) and/is bounded a.e.

Assume q>3 and define

1    ' 1  /
Py(x) = — II (1 + *<z«M*)) = — ( 1 + i E a«M»)

* *-i i  \

+ i2 E akaj\l/nk®ni(x) + ■ ■ ■ + t'fli • • • a,ypni®.. .®„t(x)).

As in Theorem XXII, for q>3 all subscripts are distinct, there is no collaps-

ing of terms, and P, is a partial sum of Pr+i. As p—>oo we obtain formally a

Walsh series Xp°-o cBypf(x) in which some coefficients may be complex. In the

natural ordering of terms (by size of subscript) and by replacing vacant
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terms by zero's, cn„ = ak. Now | S„,+1(x)| =|P„(x)| ^ {II"-i (l+al)} I/2< + °°,

all x, since E*°-i al< + °°. Applying Lemma VIII, the series E"-o cp^p(x)

is the Fourier series of a complex-valued bounded function, the real part of

which satisfies the revised weaker theorem.

The case q>l is handled by splitting up the original sequence {nk} into

subsequences as in Theorem XXII.

The next two results are exact analogues of their classical counterparts,

and since the proofs are largely repetitious of the classical case, they will not

be given here.

Theorem XXV. If E"-1 a\ < + °° and {tt*} is any lacunary sequence of

integers nk+i/nk>q>l, then Et°-i ctk^nk(x) converges a.e. on [0, 1 ] to a function

f(x) which belongs to Lp(0, 1) for every p>0.

Theorem XXVI. If E"-i a$nk(x) is a lacunary Walsh series, nk+x/nj,

> q > 1, which is summable by any Toeplitz summation method inasetEE[0, l],

\E\>0, then E*"-ioJ< + »-

We now come to the Walsh counterpart of a Central Limit Theorem for

trigonometric lacunary series as established by Salem and Zygmund [12].

The innovations are in the use of "sums" of r terms in the Riesz products and

in Lemma IX.

Theorem XXVII. Let {ak} be an arbitrary sequence of real numbers satis-

fying
2 2 2    1/2

(1) An = (ax + a2 + • ■ •+ on)     —* °°  as N —» oo.

(2) aN = o(An)-

Then for any lacunary sequence of positive integers {nk}, nk+1/nk>q>l, and

any measurable set EE [0, l], \E\ >0, the distribution functions

If    c,   V^i^<   ll\<x e e E —-—-^ y\\
\ 1               k-x      An            / \

FN(y:E)=-=—1-> N=\,2,3, •••
I E\

converge to the Gapissian distribution with mean value zero and dispersion 1.

Proof. It is enough to show that for any E, \E\ >0, the characteristic func-

tions of the distributions F.v(y:£),

e*»dFN(y:E)

(7.18)

=   | £ |_1 J   exp I ih. E -*— ) dx,
J E        \     *_i      An    /
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1V=1, 2, 3, • • • , converge uniformly to e~x /2 for X on any finite range.

Split the partial sum of the given lacunary series into sums of r terms each

so that if N=Tr + N', 0^N'<r, then

*     akypnk(x) T=\   (a*r+l*ntr+1(x) + 0*r+2*„ir+2(x) +-h 0<*+l)rlA»u+1>r(*))
jx 2^ —-= «x 2^-—

*-i      An *-o An

,„    .„, ,      .    (OTr+l*nrr+1(x) + OTr+2ypnTr+i(x)+-H <*lVlrW(*))

(7.19) + JX-
^4at

r-i

=   E 2Af.* + Zn.T.
*-0

Using the zjv,* in the formula e* = (l+z)e**/V(l'1) we have

4v(X, E)

(7.20)

=   | E |"> f exp ( E "( | z,v.* |2)) II (1 + z*.*) exp (— E z*.*) <**•
•J B \ *=o / *=o \ 2    *=0        /

But \zN,k\ ^|X| [|a*r+i| +1ajtr+21 + • • • +U(*+i)r| ]/AN and this can be

made small uniformly. For large enough N, Zif-o °(\ zx,k\2) is equivalent to

T

« E  I zN,k\2
*-o

2 2 2 2 2

T ^J    («*r+l +  ff*r+2 +   •   •  *  +  «(*+l)r) (ffTr+1 +   *  *  ' +   Ajv) "1

-   I h-a2-+-T*-1(7.21) Lk=° " N J

r Nf

2       r_,     E    akr+iakr+ip (x) E    OTr+iOTr+fl' (x)

rl.' ^ I2*=0 /1W -flu

= «(X2 + 2X21 Pat(x) I ), e small.

Now |P;v(x)| ^r(r — 1) so that we may drop the factor exp (Zif-o o(|zat,*|2)

in the integrand of (7.20) with an error tending uniformly to zero.

Consider now the factor exp (1/2 ZjT-o zat.*)- From (7.21)

(7.22) Zz2N.k= -\\1 + 2Pn(x)).
*-o

If | {xG[0, 1]| |Pat(x)| ^5} I tends to zero as lV->oo, for any 5>0, it follows

that exp (1/2 ZjT-o Ztf.*)->exP (—X2/2) in measure, uniformly for X on a

finite range. Then since
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T I /    N \l/2

11(1+ **.*) hs( 11(1 +  |«y.*|,)j

(7.23)

g exp( E   I 2^.* I2) ̂  ATW, * G [0, 1],

*W(X, E) -   | £|-^2/2 f II (1 + ZN,k)dx
(7.24) JE k-o

—■> 0 uniformly for X = 0(1).

For any 8>0, | {xE [0, 1 ]| |Pat(x)| ^8} | ^JlPJf(x)/otdx. By expanding,

r1^*).      i  r^ i  f^-y   ' \
I    —r- dx = — |    —- < 2-1    2- akr+iakr+fp      (x)       )

Jo 02 82Jo     AirXtitKliZj nkr+1@nkr + ,J

N> \   2

+   E  a      a      i1      (x)       \ dx
1;£~. .    Tr+i   Tr+j   nrr + i©nrr + ,J

(7.25) 1        (*=*/       ' 8 2       \ f       2 2\
- 7777) 2-1    2-,  akr+iakr+j I -+-   2-»  flrr+iOTr+yf

o AN W=o\i^»<y /       igi<y /

(sum (over a, /3, i, j, u, v) of cross prod-

H-I     I uct   terms  corresponding   to  Walsh   l<fx
b2As J o   |

functions \p (x)
"ar+ienar+;e"^r+ue"/3r+,

where in the last term i, j, u, v^r, and O^a^ft^T; if a = p\ then iy^u or

Jt*v.
The terms involving squares are easily dealt with as

1   (*=*/'      ,       a     \        f     2       2\
""JT")   ZjI     2j     0*r-Hafcr+y I +      2-1     aTr+idTr+j}
AN   \ k=0 \lg i<j / XS i<j I

max   I akr+i |4 max      arr+i \*
r(r-l)r-'   isisr ' ' JV"(iV" — 1)   is&N> '

(7.26) £--~E-i-+ —~-" -i-
2       t-o ^4# 2 AN

N

<^^-^^--0.
2 ^

The remaining terms can be separated into two classes; class Ax, those for

which a and /3 appearing in the subscript of 1r^«r+iev+;©>+«©"i)r+.0x0 satisfy

j8 —a^2 and class w42, those for which 0^/3—«gl. Class ^42 can be dealt

with by estimating the number of terms in the class. As a and fi vary from 0

to T, there are T pairs (a, /?) with /3 — a = 1 and (F+l) pairs a = p\ The num-
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ber of terms for a given a, B with a = B is not more than (r(r —1)/2)2. Thus the

total number of terms in class A2 does not exceed 2(T+l)(r(r —1)/2)2, and

-   T

Z max  I aar+i I4
I f \ . ,   I Cx/r(r- 1)\2    JToiSigr

I    {terms of class A 2) dx   g 4 I    I-J-<f x
(y27)   l->. \ Jo\      2      /I AN J

^ Jr(r-l)y   £  |a"'4
^4(-)->0.

\     2     / A*,

It remains only to show that the sum of the terms in class Ai is small.

Consider a typical term of Ai,

a     a      a      a     yp (x) ,
(7.28) ar+'  ar+»   Z3^"   0r+»    "ar+t©nar + j©n3r+u@n^r+e

where /? —a^2, l^i<j^r, l|«<i)|r. It follows that ar+j^(8r + u) — r,

and so there are at least r numbers of the given sequence {ra*} between

nar+i and nar+u- Therefore n0T+v/nar+j>qT. We cannot claim that for the yp in

(7.28), folypdx = 0 since yp may be identically 1. That this does not happen too

frequently is the gist of the following basic lemma.

Lemma IX. Let \nk\ be any lacunary sequence of positive integers nk+i/nk

>q>l. For this q there exists a value T(q) such that if r>T(q), then for each

7 = 0, 1, 2, • • • the equation nkl@nk2® - • • ®nk])=y, nkl>nki> • • • >«*„,

has a finite number of solutions when nkJnkl>qr; in fact, there exists for each

7 and this q a constant C(y, q) such that the number of solutions is less than

Cp(y, q)-

Proof. Write y= ZiX0 w,-2\ mt = 0, 1, m,y = l. Then by the definition of
ffi, the equation nkxffi»*2© • • • ®nkp = y may be written in the tabular form:

Bi B2

nkl     Wio    Wn    m12 • • ■ mUy   mUy+i ■ ■ ■ mi,

nkt     m2o   m2i   m22 • ■ ■ m2ty   m2sy+i • • • m2a

(7.29) •        wi3o   w*3i    • .miQ.

«*„     mpo   mpi   mp2 ■ ■ • mpSy.mp„

7 Wo     «i.1

Here «*, = Z?=o »»/,-2', j = l,2, ■ ■ ■ , p, where g is the largest exponent of 2

with nonzero coefficient in any «*,.. Now the entries in box Pi must add up
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column-wise to «,• (mod 2), while the entries in B2 must add column-wise to

zero (mod 2) if the "sum" is to equal y.

Yet j be an integer for which 1 + 1/2'^q. Using Sb to denote the largest

power of 2 contained in the integer b, we have for large nkl>y, 2'nt> = 2">2,t

and nkJnkt^2»+1_", where snkl=fi. Since g>l, qr—»oo as r—»oo ,and hence r

may be chosen so that if nkJnkl>qr is to hold, then (g + 1 — (3) must be large.

This means (since the entries in B2 must add to zero column-wise (mod 2))

that nkx is not large enough, does not extend far enough into T?2 to help cancel

out the upper dyadic entries of nkl. Hence nk-2 and nkl must be identical in

the upper dyadic entries, that is, in the last (g + 1 — fi) entries. If nkl does not

have (g + 1 —/3) dyadic entries past 2*t, then nki and nki have identical entries

in all places past the .r7th power of 2, i.e., all entries in B2. In the extreme

case when nkl and «*, are identical in all the upper (g + 1— /3) entries then

nkl ^ (2' + mfl_i2'-i + • • • + m0+,V+i + m#?) + (2"-' + 2^2 + • • ■ + 2°)

»*, = (2» + ma.x2°-x + • • • + ^+,20+' + mtf?)

2» 1
S 1 + — = H-

2" 2"-<3

If (g— P) =j> we see that nkJnk^l + l/2'^q, which, of course, cannot be.

All this implies that by taking r large enough, we can insure that in any

solution of nkl®nkl®nkt® • • • ®nkp =y with large nkv nkl and nki are identi-

cal in all the upper g—fl^j entries if these all lie in B2. But then nkJnki<q,

and this cannot be. The conclusion is that for such a choice of r, all solutions

of Mfc,ffittfcjffi • • • ®nkp=y must have some of the (g—/?) upper entries of

nkl lying in Bi if the sequence {nk} is lacunary. But then any such solution

is found among those sets of integers nk,>nki> ■ ■ ■ >nkp for which

nk ^ 2't+}'. The number of such solutions is clearly less than [2*t+']p = C(y, q)p.

Apply Lemma IX with p=4 and 7 = 0 to the terms in class ^4i of (7.25)

and obtain r such that

I  r' (terms of)      I       C4(0, q) .   <   ,
(7.30) I    { r-dxl ^ ——!-^- max       | a„, | | _> o.

I Jo     UlaSS Ax) | AN aUni%. appearing in a
aolution with 7=0

Combining (7.26), (7.27), and (7.30), it is clear that the integral fQlP2N(x)/o2dx

—>0 for each 8 as N—**>, and so (7.24) has been established.

NowTTLo (1+ZN.i) =a0m+ E^y^VrW wherea^ is the sum of all coeffi-

cients in the expansion whose subscripts correspond to a solution nkl®nkl

® ■ ■ ■ ®nkj> = y,nkl>nki> ■ ■ ■ >nkp, forp = l, 2, 3, • • • , N. In performing

the multiplication above, it is noticed that nkl, nkl, and nk, in any sum for y

must necessarily come from three different sums of r terms, i.e., three different

Zn,t's. Hence nkl and nkl have at least r of the integers {nk} between them.

Thus nkJnk%>qr, and by Lemma IX
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«y        = 2-,    X   C (7, 5) max   | a<   /-4jv.
p_l ISiSW

But for IV large, (C|X| maxig.siv | a,-| )/J4^<e/2 uniformly for X on a finite

range so that | a\m | g e. This holds also for | ct0N) — 11 and so

(JV) (N)
ay    —* 0, 7 = 1, 2, 3, • ■ • and a0   —> 1, uniformly for X = 0(1),

/tfllX-o (1+Zjv,*)^x—*|£| uniformly for X on a finite range, and the theorem

is proved.

8. Fourier-Stieltjes coefficients. In this final section an example will be

given of a continuous function of bounded variation whose Walsh Fourier-

Stieltjes coefficients do not tend to zero. Hille and Tamarkin [6] have cal-

culated the trigonometrical Fourier-Stieltjes coefficients of the classical Leb-

esgue function co(x) (a function based on the Cantor ternary set) which is

continuous and of bounded variation and have shown an infinite number of

the coefficients to be bounded away from zero. The Cantor set may be gen-

eralized by dropping out (at each step in the construction) subintervals the

ratio of whose measures to that of the containing subinterval is an arbitrary

value 6, 0 <6 < 1. The resulting Lebesgue functions cos(x) constructed on these

generalized sets are each continuous and of bounded variation. The Walsh

Fourier-Stieltjes coefficients of the Lebesgue function constructed with

0 = 1/2 do not tend to zero. This example establishes the next theorem.

Theorem XXVIII. The Walsh Fourier-Stieltjes coefficients of continuous

function of bounded variation need not tend to zero.

Proof. On the interval [0, l] drop out the open interval (1/4, 3/4). From

[0, 1/4] drop out the open interval (1/16, 3/16); from [3/4, l] drop out

(13/16, 15/16), etc. At the rath step drop out from the remaining 2"_1 closed

intervals open subintervals each of length 1/2 of the containing interval and

centrally located within the same. The set of points which remain, when this

is done infinitely often, is the Cantor set of ratio 1/2. It consists of all end-

points of all of the closed intervals used during the construction and all their

limit points. It may be verified that, just as the classical Cantor set consists

of all points x= Zi=i o</3', a, = 0 or 2, so the Cantor set of ratio 1/2 consists

precisely of all points x= Zi-i a</4*, a» = 0 or 3.

Let w(x) = wi/2(x) be defined by specifying that

A b( "    at Oi
u(x) = /_. —    where    x = >. ■—,    a, = 0 or 3,   and   i; = —>

ti 2' ti 4' 3

(8.1) iixEC,

w(x) = common value of co(x) at the end points of the open interval of the

complement of C in which x lies, ii x EC.
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w(x) is continuous, monotone, nondecreasing, and constant on each of the

subintervals rejected at some stage in the construction of C.

The Walsh Fourier-Stieltjes coefficients of co(x) are defined by ak

=JbPk(x)d(j)(x). This Riemann-Stieltjes integral exists and hence for any

partitions Pt= {0=x0<xt,i<Xt.2< • ■ • <xt,,„( = l}, of norms tending to

zero and any £t.iE [xt.i-i, xt,i),

a* = lim   Z tk(£t,i)[o3(xt,i) - <o(x<,,_,) ].
t-><°   t-i

After the tth step in the construction of C there remain 2' closed intervals

Af, j = l, 2, ■ ■ ■ , 2', while 2,_1 open intervals have just been removed.

Formula (8.1) implies that on any of the closed intervals co(x) increases by

1/2*. We therefore have

(8.2) ak = lun   X,-~' £• E A>   ■
'->»   s-i     2'

Consider the integers {(22" + 22"+1)}, ra = l, 2, 3, • • • . Any Walsh func-

tion of the form

ipk(x) = yp#»+#<r-y-(x) = <p2n(x)(p2n+x(x)

has a symmetric graph with respect to the abscissa 1/2. The corresponding

coefficient (8.2) takes the form

(8.3) a*=21imZ^
'->»   »-i      2'

where ij, is any number in Af. Choose £, as the left-hand end-point of Af.

The left end-points of the interval Af have dyadic expansions of the form

«i       «i       a2 at at
^ = —+—+ — H-+-h - + 0 + 0 + • • • ,        a{ = 0, 1.

2       22      23 22'-1      22'

For the special sequence of integers & = 22" + 22"+l and the special points £„

we havei£*(if,) =<b2n(£s)<l>2n+i(&) =+1 since the (2ra + l)st and (2ra + 2)nd places

in the dyadic expansion of £s are identical. Thus for this sequence of values

of k (8.3) implies a* = 2 lim,<CB Z?-l 1/2' = 1.
Remark. It can easily be shown that the Walsh Fourier-Stieltjes coeffi-

cients of the generalized Lebesgue function co«(x) are given by

«o(0) = 1,

f = 0 if k has an odd number of nonzero terms in its dyadic expansion,

ak(8)\     r       *«£->     /   i  \ l     (2i+ l\ (2% - IM "I .
=   i - x u«( — H^ -  - M—it- Yi  °therwise-

I      L Zi       \2*W l     \  2"+2 / V 2**+2 /j J
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