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1. Introduction. If A(t) is a real, bounded, piecewise continuous, square

matrix for all t>0, it is known from the work of Liapounoff [6](3) that if

x(t) is any nontrivial solution vector of the system

(1.1) x'= A(t)x,

there exists a finite constant Xo, such that if X>Xo we have

lim x(t)e~u = 0.
|-»oo

The number X0 furnishes a limitation on the growth of solutions of (1.1). In

[6], —Xo is called the characteristic number of the vector solution x(t).

In this paper we shall give upper bounds for X0 for several cases of (1.1).

The estimates will be derived solely from bounds of A(t). In the second-order

scalar case, considered in §4, the results obtained will be best possible when

A(t) is a constant.

2. Preliminary definitions. If A(t) = [an(t)], i, j = l, 2, • • • , m, is an

mXm square matrix of functions, we define the absolute value of A(t) by

the expression

(2.1) \A(t)\   =   £   \aij(t)\.
i.i-1

If x(t) = {xi(t)}, i = l, 2, • • • , m, is a vector of order m, we define the ab-

solute value of x(t) by the expression

m

(2.2) |*(/)|   =   2Z |*<(0|.
,--i

We now define a set of functions related to the exponential function e*.

For all pairs of integers (k, n), k=0, ±1, ±2, ■ ■ • , n — 1, 2, ■ ■ ■ , we set

(2.3) *r«=    e   -■
j=fc(mod n);j'§0   J •
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For any ra, there are only n distinct eft's, since cpln)(t) =cj>)n)(t) in case i=j (mod w).

As examples, tpt)(t)=et for all k, 4>f(t) =cosh t if k is even, and 4>™(t) =sinh t

it k is odd. The set of functions 4^(1) also has the following properties which

are clear from the definition.

(a) For all t > 0,       | 4>T\t) \   < e',

(2.4) (b) For all/,  £ <pT(t) = e>,
fc—0

^ fn) (n)

(c) 7- <*>! '(0 = 4-i«.

The solution of the scalar initial value problem

xw = x       x(>">(0) = Oj, j = 0, 1, • • • , n - 1,

is given by

x(t) = E OjcpTd).
1 = 0

3. A growth theorem for a vector system.

Theorem 1. Let x be a vector of order m, and let A(t) be an mXm square

matrix of real, bounded, piecewise continuous functions of t for all />0. Let the

absolute value of A(t) satisfy \A(t)\ <A" for some positive number A. Let <p(t)

be the solution vector of

(3.1) x<"> = A(t)x

having c/>(,)(0) =a, for j = 0, 1, • • • , ra —1. Then for all t > 0,

(3.2) (a) |*(/)|   <£ \aj\A~icbT\At),

(3.3) | *W(t) |   < £ | aj\Ak~icp?2k(At)   k = 1, 2, • • • , n - 1.
y-o

(b) If K denotes the maximum of the ra quantities A~'\ a,\, then for all t>0,

| <t>(t) |   < Ke"        | t6(4)(0 |   < KAkeAt, k = I, 2, • ■ • , w - 1.

(c) For the system (3.1), Xo<^4.

Proof of Theorem 1. Part (b) is an immediate conclusion from part (a),

using (b) of (2.4). Part (c) comes directly from part (b) by definition of X0.

The proof of part (a) uses a technique of Liapounoff, see [6, p. 403].
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The equation (3.1) and the initial condition imply that (p(t) is the unique solu-

tion of the integral equation

tn-i rc (t - s)"-1

(3.4) x(t) = a0+ axt+ ■ • ■ + On-i---+ —-—A(s)x(s)ds.
(n— 1)!     J0     (n — 1)1

If fa(t) = ]Co_1 &jt'/fi, and the functions fv(t) are defined by the relation

(3.5) f^x(t) =   J*' (' ~ S)" ' A(s)fp(s)ds, p = 0, 1, 2, • • •
Jo     (n — 1)1

the sum Xlo°/p(0 formally satisfies (3.4). It is readily established by mathe-

matical induction that

(3-6) |/,(0|   <^»2 | a,-1      *Vn+'-
,_o (pn + j)!

This is shown using the facts that the absolute value of the sum of a set of

vectors does not exceed the sum of their absolute values, that for a matrix A

and a vector x, \Ax\ <\A\ \x\, and that

r ' (t — s)"-V tq+n
I     - ds = -•

Jo     (»-l)!«I (q+n)\

From (3.6) it is clear that on any finite interval [0, t], the series 2^2o fv(t) 1S

absolutely-uniformly convergent, so that term wise integration is allowed, and

the series is actually equal to (p(t). Assertion (3.2) in the theorem is a rewriting

of the statement \<b(t)\ < 2~2o  |/p(0| using (3.6) and (2.3).

If k is one of 1, 2, ■ • • , n — 1, we find by differentiating (3.5) k times that

i^ Cl (t - -y)"-1-*

f*  (t) = ,--A(s)fP-x(s)ds
Jo   (n — 1 — k)\

from which, using (3.6) we find

. n—1 t-pn+j—k

(3.7) |/f«)|   <A*n2Z\aj\ '. •
j=o (pn + j - k)!

From (3.7) we have that on any finite interval [0, /] the series 2^,0^(1) is

absolutely-uniformly convergent,-and so represents the &th derivative of (p(t).

Assertion (3.3) of the theorem is a restatement of

\4>w(t)\ <i\fPk\t)\
0

using (3.7) and (2.3). This completes the proof of Theorem 1.
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Equation (3.1) is a very special case of the rath order linear equation in

that lower order derivatives are not present. The proof depends on this re-

striction, and the result is not true without it.

It is possible to write (3.1) as a first-order system of dimension mn, and

then apply Theorem 1. The result is not so good. The mnXmn matrix will

have absolute value m(n — I) + \ A(t)\ <m(n — l)+A". Since the order of the

system is one, the majorizing exponential will be exp [(An+m(n — 1) ]t, which

is larger than eAl.

4. The second-order scalar case. We now restrict ourselves to the second-

order scalar case

(4.1) x" + a(l)x = 0,

where a(t) is real, piecewise continuous, and bounded. If a<a(t) <8, we can

appl>' Theorem 1 with m = l,ra = 2, and obtain X0<max { \a\ 1/2, \B\ 1/2}. This

result was essentially obtained by Liapounoff [5; 6] in the study of (4.1) with

periodic a(t).

For the case of periodic a(t) many criteria are known to ensure that X0 = 0

(i.e. that all solutions of (4.1) remain bounded). See Liapounoff [6], Borg

[3], and Bellman [l; 2]. If a(t) is not periodic, but has a limit at infinity or

other suitable properties, information on the precise asymptotic form of

solutions of (4.1) can be obtained. See Bellman, [l; 2], Coddington and

Levinson [4].

For certain applications to nonlinear theory it is of interest to know an

upper bound on Xo- In Theorem 2, we obtain an upper bound on Xo depending

only on a and 8, the bounds of a(t).

Theorem 2. Let a(t) be real, piecewise continuous and bounded for all t>0.

For all t>0, let a<a(t)<8. Then for equation (4.1), X0<p, where p is given by

p =   | a I1'2 if 3a + B < 0,

p = 2-3'2Q3 - a)(B + a)"1'2 if 3a + B > 0.

Remark. If a(t) is a nonpositive constant, a= —A2, it is clear that X0=^4.

The theorem gives Xo<^4. If a(t) is a positive constant, it is clear that Xo = 0.

Here a = 8, so the theorem gives X0<0. Thus for constant a(t), the results are

best possible.

Proof of Theorem 2. To prove the theorem we must show that if X>p,

and x(t) is any nontrivial solution of (4.1), then both of x(t)e~u and x'(t)e~Xt

approach zero as t becomes positively infinite.

Make the standard polar-coordinate transformation in (4.1). Setting

x = rsind, x'=rcos8, we obtain the system

r' = r[l - a(f)] sin 0 cos 0,
(4.2)

8' = cos2 0 + a(l) sin2 0.
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For a nontrivial solution of (4.1), rj^O for all /, and we assume r>0 for all

t>0.
For a nontrivial solution of (4.1), let r0 be the value of r at t = 0. Define u

by

1 r
u = sup — log — •

<>i   t r0

We assert that if X>p, then both of x(t)e~^' and x'(t)e~~xt approach zero as t

becomes positively infinite. Since r(t)2 = x(t)2+x'(t)2, it will be sufficient to

show that r(t)e~*' approaches zero. Since for t>l, r<r0e"', if /z = 2_1(X—p) >0,

we have for / > 1

re-*t =  rg-hte'hr-\)t _  re-Mg-(X+M)(/2 < re-hte-*t < rQg-A<#

Hence re~xt approaches zero.

It is not difficult to obtain an upper bound for u. Indeed since

1 r        1    r' r' 1    r',
— log — = — I    —dl = — I    [1 - a(s) ] sin 6(s) cos 9(s)ds,
t fo        I J o    r t J o

and | sin 8 cos 8\ < 1/2, we have

1 r       1   r* i , 1 ,
— log — < — I     | 1 — a(s) \ ds < — sup | 1 — a(t) \ .
t r0       2tJ0 2   i2o

Hence

1
p < — sup | 1 — a(t) | .

2   (So

The final refinement of the estimate is made by making a change of inde-

pendent variable t=br, and selecting that value of b giving the best estimate.

If in (4.1) we set t = br, (b>0) and x(br)=y(r) we obtain

d2y
(4.3) -±+b>a(br)y = 0.

dr*

From the preceding we have that if k > 2~l sup 11 —b2a(br) | , ye~kr and y'e~kr

both approach zero. For such k, x(br)e~kr and x'(br)e~kT both approach zero.

Setting br = t, and k = b\, we find that x(t)e~xt and x'(t)e~*' both approach zero

if X> (1/26) sup(>o \l-b2a(t)\.

We have shown so far that for any b >0, we have Xo< (1/26) sup 11 —b2a(t)\.

We have a<a(t)<fi for all t>0.

If a+fi<0, sup \l-b2a(t)\ =l-ab2. The minimum of (l-a62)/(26) oc-

curs at 62=-l/a, and is (-ay2= \a\1/2. If a=fi = 0, a(t)=0, and X0 = 0. If
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a+/3>0,sup|l-tS2a(f)| =1 -ab2iib2<2/ (a+B),hut =8b2 -liib2>2/ (a+B).

For a+8>0, we then find

1
min — sup | 1 — b2a(t) \
6>o 2b <>o

occurs for b2=— l/a and equals (—a)112 if 3a-r-|3<0, and occurs for b2

= 2/(a+8) and equals 2-zi2(a + B)-"2(B-a) if 3a+8>0.

From this last we see that X0<p, where p is defined in the statement of the

theorem. This completes the proof of Theorem 2.

5. Application to damped systems. We now apply the result of Theorem 2

to the damped equation

(5.1) x" + cx'+ a(t)x = 0 (c > 0).

We seek conditions on the damping constant c which will ensure that all

solutions of (5.1) approach zero as t becomes positively infinite.

Theorem 3. Iw equation (5.1) let a(t) be positive, piecewise continuous, real

and bounded for all t>0. For all t>0 let 0<a<a(t)<B. Then if x(t) is any

solution of (5.1), both x(t) and x'(t) approach zero exponentially as t becomes

positively infinite whenever c>Bll2—a112.

Remarks. If a(t) is a positive constant, the condition of the theorem is

c>0, which is necessary and sufficient for the result.

Because of the behavior of (5.1) when a(f) is a nonpositive constant, it is

not possible to assert exponential decay of all solutions from a knowledge of

merely the bounds of a(t) when a(t) is allowed to be nonpositive.

Proof of Theorem 3. In (5.1) set x=ye~cl/2. We obtain

(5.2) y"+L(t)--^\y = 0.

By Theorem 2, we can find an upper bound for X0 corresponding to (5.2). If

we can show that Xo<c/2, the present theorem will be proved. Using Theo-

rem 2, we have Xo<p, where

(c2        V'2
p = I-a J if 3a + 8 < c2,

p =  2-W(B - a)\B + a-c2\ if 3a + B > c2.

We shall show that if c>Bli2-a1'2, then p<c/2.

Since a>0, if c2>3a+B, p<c/2 from the first formula for p. If c2<3a+8,

the condition
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/ 1     X"1'2       1
2-*'2(0 -a)h+a-jc2\        <jc

is found to reduce to

|31/2  _  al/2  <  c  < £1/2 +  0,l/2_

But if 0<a<fi, then 3a+J8<(j31/2+a1/2)2, so that when c2<3a+fi, the right

hand condition is satisfied. Hence whenever c>fill2—a112, p<c/2, and hence

Xo<c/2. This completes the proof of Theorem 3.

6. Application to Floquet theory. In the following we consider equation

(4.1) with the additional assumption that a(t) is periodic of period L. It is

known from Floquet's theory that there exists a complex constant p, the real

part of which is determined, such that the general solution of (4.1) can be

written

x(l) = Cxe"'px(t) + C2e-"'p2(/)

where px(t) and p2(t) have period L. If Re p^O, the imaginary part of p is a

multiple of 7r/7, as a consequence of a(t) being real. A multiple of 2-iri/L may

be added to p without changing the form of the solution. If p is a multiple of

2-iri/L, the form of the solution is possibly

*(0 = Cxpx(t) + C2[p2(t) + tpx(t)}.

(When a(t) is real it is possible to make p real, but px(t) and p2(t) are then

possibly of period 27,.)

The solutions of (4.1) with a(t) periodic are called stable if Rep = 0, and

the exceptional case mentioned above does not occur. Conditions on a(f) are

known which ensure stability as was mentioned in §4. From our point of view,

Xo = Rep, so that bounds on growth of solutions with a(t) periodic can be

deduced from Theorem 2.

Theorem 4. In the differential equation

(4.1) x"+a(t)x= 0,

let a(t) be real, piecewise continuous, periodic of period L, and let it satisfy

a<a(t)<fi. Then if p is the Floquet constant for solutions of (4.1),

Rep<(-a)"2 if3a + fi<0,

Re p < 2-3'2(/3 - a)(fi + a)~112 if 3a + fi > 0.

Proof of Theorem 4. Since Rep=Xo, this is an immediate corollary of

Theorem 2.

When a = 0, Theorem 4 says that Re p<(fi/8)ll2 = 0.35fi112. The bound

of a constant times fi112 is the best possible type. The following is an example

with a = 0 for which Re p = 0.23fi112.
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Consider the equation x"+a(t)x = 0, with a(t)=B>0 ior 0<t<TB-1<2/2,

a(t)=0, TrB-ii2/2<t<2irB-li2 = L. If <p(t) is a solution such that 0(0) = 1,

c6'(0)=0, and xp(t) is a solution such that 0(0) =0 and yp'(0)=l, then it is

known that 2 cosh pL =cj>(L) +xp'(L). For the example at hand, cp(L) = —3ir/2,

and0'(Z,)=O. Thus

81'2 3ir
coshpL = - 3ir/4, so Re p = -cosh-1 — = 0.23B1'2.

2ir 4
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