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BY
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Introduction. In §1, Theorem 2.1 of [6](3) is improved slightly and then

is used to show that nonzero, central positivity preserving projections in the

22-system of a group arise in a simple way from compact normal subgroups.

In §2 this theorem is applied to a problem in statistics.

1. Let G be a separable, locally compact, unimodular group, H(G) its

22"-system (see [l] and [5] for the definition of an 2?-system), P the non-

negative elements of 27(G), and W(H(G)) the weakly closed ring of operators

generated by left convolution operators in 77(G). An element of W(H(G)) is

central if it commutes with all right convolution operators. If x is an element

of G or/is a function on G we write l(x) or /(/) (r(x) or r(f)) for the correspond-

ing left (right) translation or convolution operators.

If K is a compact normal subgroup of G and we define irf by rrf(x)

= fizf(kx)dk where dk is normalized Haar measure on K then tr is a central

projection and rrPEP- Moreover every irf corresponds to a function i(ir(f))

on G/K and i gives a positivity preserving isomorphism between ir(H(G))

and the 2J-system of G/K. The following theorem shows that every positive

central projection arises from such a K in this way.

Theorem 1.1. Let tr be a nonzero central projection in W(H(G)) with irPEP

and let K= {x:xEG, ir(x)=ir}. Then K is a compact normal subgroup and

irf(x) =fKf(kx)dk almost everywhere for every bounded f.

Proof. K is clearly a closed and normal subgroup. We can find a neighbor-

hood U of the identity for which the closure 5 of UU"1 is compact and a func-

tion p with fv(irp)2dx>0. If a sequence ki from K is defined as follows:

kx = identity and ki+1U is disjoint from Uj_i kjU then we have

f (wp)2dx > E  f    (irpYdx = i f (irp)2dx
J j-l J kju J u

so the sequence must end for some N and KEdf=i kjS which is compact.

Hence, if/ is bounded and measurable pf(x) =ficf(kx)dk is defined and p
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can be extended to a central positivity preserving projection of H(G) onto a

subset isomorphic to H(G/K) and satisfying irp=pir = ir. xK^>l(x) maps G/K

onto a group of unitaries operating on irH(G) and taking 7rP into itself. If

we could verify the conditions of Theorem 2.1 of [6] we could infer that irH

was isomorphic to H(G/K) under the map i: i(f(xK)) =/(x), and this would

complete the proof since pH is also isomorphic to H(G/K) under the same

map. However there seems no easy way to verify condition (3) in the defini-

tion of an HP system [6, p. 485] so we are forced to prove an alternate

version of the theorem.

Let C= { 23"_i Pifi', Pi, <?;GtP and the products involved are defined}
and [23?_i piQi] be the function on G/K defined by:

[S PiQiVxK) = T,(pi,l(x)qi).
L i=i       J »-i

Lemma 1.1. (1) irH can be represented as the L2 of some measure space in

such a way that irP corresponds to the almost everywhere non-negative functions

in this L2.

(2) irP = (irP)*.

(3) If fi, hEC and there is an fEC with /<</ (J—fiEirP) for all i and
SUP Lfi]^ W then sup fi>h.

(4) There are approximate identities for irH(G) in irP and irPC\A is dense

in irP, where A is the bounded algebra of H(G) (see [l]).

(5) COP.

Proof. Itirp and irq are in 7rP then (irp, irq) >0 since irPEP and if (irp, irx)

>0 for all irpEirP then (p, irx) >0 for all pEP so irxEP so irxEtP- Hence by

a theorem of Nagy [4] (1) will be verified if we show that whenever irpi, irp2,

irqi, and irq2 are in irP and satisfy irpi+irp2=irqi+irq2vfe can find aiy (i, j — 1,-2)

in 7rP to satisfy irpi = wn+wi2, irqi = wu+w2i. But since irpi, irqi are in P we

can find Ui, in P to satisfy these equations and then set Wij=irUij.

For p in P, (ir(p*)f, g) = (ir(p*x), y) = (p*x, iry) = (x, p(iry)) = (x, ir(p)y)

whenever the products involved are defined which shows that ir(p*) =ir(p)*

so that 7rP=ir(P*) = (7rP)* verifying (2). (3) and (5) are trivial and the

approximate identities in (4) can be obtained by applying ir to a set of ap-

proximate identities for 11(G) in P.

The proof of Theorem 1.1 is completed by:

Theorem 1.2. If H is an H-system with a subset P and G is a group of uni-

taries commuting with right multiplications in H, and H, P, G satisfy the condi-

tions (1) through (5) imposed on (irH, irP, G/K) by the previous lemma then

H, P is isomorphic to the H-system of G under an extension of the map [ ] of

C onto functions on G.

Proof. We first prove the following lemma.
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Lemma 1.2. If D is a strongly closed subset of G and U is an element not in D

then there is an f in C with [f](U) =1 and [f](V)<l—a<l for all V in D.

Proof. We can take U to be the identity. For some p.'s in PP\A the strong

neighborhood { V; || Vpi — p,-|| <8, i=l, • • • , n} is disjoint from D and if we

take

'-twf/tlWI'»=i    '   i=i
we have [f](I) = 1 and

[/] (f) = i (Pi, vpi) / 11WI2 < t (\W - \A / t Nl2.
i—1 I        1=1 t- 1 \ £        / I        »-l

From now on the proof follows the proof of Theorem 2.1 in [6], using the

definition of C given above instead of that in [6]. We shall only indicate the

changes that are necessary. Lemma 2.1 is no longer needed and Lemma 2.2 is

trivial. Lemma 2.3 requires the following result.

Lemma 1.3. If B and B' are closed, bounded, and disjoint then

inf (d(B), d(B')) = 0.

Proof. For a Fin B' choose an/ in C with [f](V) = l+aand [f](B)<l-a,

and let M(V) = {W;f(W)>l}. For each U in B choose a g in C with [g](U)

= 1 and [g](M(V))<l—8. Then if e„ is a set of approximate identities in P

we have, on M(V), [(/—inf (/, g))en]> [(/—g)en] which converges uniformly

to Lf ] — [g] > 5 and at 27, [(g-inf (f, g))en]>[(g-f)en] which converges to

k]-[/]>« so that 2/5 (/-inf (f,g))en covers M(V) and 2/a (g-inf (f-g))en

covers a neighborhood N(U) of U for large enough n. Hence (d(M(V)),

d(N(U))) <(4/a8)((f-inf (/, g))en, (g-inf (f, g))en) which converges to 0 so

that if N(Ui) is a countable subcovering of B(d(M(V)), d(B))<(d(M(V)),

sup d(N(Ui))) =0 and then finally by a similar argument (d(B'), d(B)) =0.

Lemma 2.4 and 2.5 go as before but for Lemma 2.6 we need to know that

if 5 is open and bounded then d(.S)5^0. This is an obvious corollary of the

following lemma.

Lemma 1.4. If S is open and bounded, p is in P and for every U in G

(p, Ud(S))=0 then p=0.

Proof. It will be sufficient to prove (p,f) =0 for all/ in C. We can find a

countable covering Sn of G with SnEUnS for some Un in G and a„=sup/(x)

for x in S„<2 inf/(x) for x in Sn. Then a„d(Sn) <2f so a = sup„ and(S„) <2f.

Choose a set gnj from C so that (gnj)jZi covers S„ and ||sup; gnj— d(Sn)\\

<(B/2n) so that
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SUp Ongnj   <   2/ +   X a» (   SUP £"i ~  d(Sn) J
n,l n-l        \     1 I

where the last sum exists and has norm <p\ Hence/<sup angnj so

(P,f)<(P, SUp Ongnj)   =    Hm    (/>, SUp Ongnj)
JV-.00   \       n<JVj=l to oo /

< lim inf  X an(p, U„d(S)) + aAp, sup gnj — d(S„) )
AT-"        ,W1 \ J /

< lim inf J) (sup/(x))||/>|| - rt < p(sup f(x))\\p\\
AT->«o 2

for every j3.

Finally in the proof of Theorem 2.1 only the second paragraph where it is

proved that ST is the identity needs revision. For this we show as before

that if E=ST then E = E2 so that (E*)2 = E* and for any x and bounded B

(x-E*x, Ud(B)) = (x-E*x, E(S(c(UB)))) = (E*x-(E*)2x, S(c(UB)))=0 so

by the above lemma E* is the identity so E is also.

We can restate Theorem 1.1 using ideals instead of projections as follows.

Theorem 1.3. If I is a two-sided ideal in H(G) which can be represented as

the L2 of a measure space in such a way that I(~\P corresponds to the almost

everywhere non-negative functions then I consists of all the functions which are

invariant under l(k) for all k in the compact normal subgroup K=\k; l(k) is

the identity on 1}.

Proof. The projection ir of H(G) onto I is central since I is two sided and

if p is in P and q is in PCM then (irp, q) = (p, q) >0 which shows that irp is in

PCM, i.e. that irPEP- Hence Theorem 1.1 applies and completes the proof.

2. Let 5 be a field(4) of subsets of a set X and for any subfield Sx of 5

let B(Si) he the set of bounded Si measurable functions on X.

Definition. If Si is a subfield of S, f is in B(S), and m is a probability

measure on S then the conditional expectation of f with respect to Si and m

which we write E(f\ Si, m) is the element of B(Si) satisfying for every g in

B(Si)fE(f\Si, m)gdm=ffgdm. The existence of E(f\Si, m) and its unique-
ness to within sets of m measure zero follow from the Radon Nikodym theo-

rem. If M is a set of probability measures and there is an element h oi B(S,)

satisfying h = E(f\ Si, m) almost everywhere (m) ior every m in M we write

h = E(f\ Si, M). Ii E(f\ Si, M) exists for every / in B(S) we say Si is a suffi-
cient subfield ior M.

For most statistical purposes it is sufficient to consider only functions

measurable Si ii Si is sufficient for the set of measures in question (see [2]),

(4) All fields and subfields used are assumed to be Borel fields.
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and hence it is often a considerable simplification of a statistical problem to

find nontrivial sufficient subfields and in particular to find the minimal suffi-

cient subfield when one exists.

If M is dominated, i.e. if there is a measure n with respect to which each

ni in M is absolutely continuous then it can be shown (see [3, Corollary 4])

that Si is sufficient if and only if all the derivatives dmi/d(mi+m2) for mx

and m2 in M are measurable Sx. From this it follows that there is a best

sufficient subfield for a dominated M, namely the smallest field with respect

to which all the above derivatives are measurable, and that any other sub-

field is measurable if and only if it contains this one up to sets of m measure

zero for every m in M.

The following facts are easily proved.

Lemma 2.1. The map /—>2s(/| Sx, ni) is linear and has a unique extension to a

projection in L2(m). E(f\ Sx, m) can always be so defined that inf f(x) <E(f\ Sx, m)

<sup/(.r) everywhere and if Sx is sufficient for a set M of measures then

E(f\ Sx, M) can be so defined that inff(x) <E(f\ Sx, M)<supf(x).

In many statistical problems X is a topological group, 5 is the field of

Borel sets, and M is a dominated set of measures closed under translation.

The problem of finding the mean of a Gaussian distribution of known or un-

known or partly restricted variance on the real line is of this type. In this

section we find an explicit expression for the best sufficient subfield in this

case.

Let G be a locally compact, separable, unimodular group, So the field of

Borel sets of G and V(G) the set of bounded Borel measures make into a

Banach algebra with convolution for multiplication and norm given by

m = sup fj'dm where the sup is taken over all/ in B(S0) with sup \f(x)\ <1.

We will write V for the set of non-negative measures in V(G) and mo for the

Haar measure of G.

Definition. If x is in G, we write l(x)f and r(x)f for the functions defined

by (l(x)f)(y) =f(xy), (r(x)f)(y)=f(yx), l(x)m andr(x)m for the measures de-

fined by ffd(l(x)m) =f(l(x)f)dm and ffd(r(x)m) =f(r(x)f)dm. If 5 is con-
tained in So we write l(x)S= {x~lA ; A is in S} and r(x)S= {Ax~l; A is in S}.

The following facts are easily proved.

Lemma 2.2. If fis in B(S) then l(x)fis in B(l(x)S) and r(x)fis in B(r(x)S).

E(l(x)f\ l(x)S, m) = l(x)E(f\ S, l(x)m)

and

E(r(x)f\ r(x)S, ni) = r(x)E(f\S, r(x)m).

If a subfield S is sufficient for a set M in V then l(x~*)S is sufficient for l(x)M

and r(x~1)S is sufficient for r(x)M.
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A set M of measures or a subfield 5 will be called invariant if l(x)M

= r(x)M = M or l(x)S = r(x)S = S ior every x in G.

Lemma 2.3. If M is invariant, I is the smallest two sided ideal containing M

and Ip is the set of non-negative measures in I then a subfield is sufficient for M

if and only if it is sufficient for Ip.

Proof. Since M is contained in IF, sufficiency for Ip clearly implies suffi-

-ciency for M. Suppose 5 is sufficient for M, then for any m in M, rai and n2 in

V(G),f in B(So), and g in B(S) we have, where irf = E(f\ S, M)

I (irf)gd(nimn2) = I I I irf(xyz)g(xyz)drii(x)dm(y)dn2(z)

= I drti(x) I dn3(z) I (irf)gd(l(x)r(z)m)

=   I  <f«!(x)   I <f»3(z)   I  fgd(l(x)r(z)m)

=  I  fgd(nimn2).

It is easy to extend this to finite sums completing the proof.

From now on we deal with a fixed nontrivial invariant dominated subset

M of Vp and define / and Ip as in the above lemma.

Lemma 2.4. There are elements mn in Ip such that for every non-negative, meas-

urable function f, ffdm0 = lim ffdmn.

Proof. Choose an m in M and an increasing sequence An of Borel sets of

finite Haar measure whose union is G. Let gn be the characteristic function

of An and dn the absolutely continuous measure gn(x)dma(x). Then mn=mdn

is in Ip and ffdmn=fdm(x)jAj(yx)dm0(y) =fFndm^>f'(lim Fn)dm=ffdmo
since Fn is increasing.

Since M is dominated it has a best sufficient subfield 5 and S is invariant

by Lemma 2.1. If/ is any non-negative function in L2(m0) and irf=E(f\ S, M)

= E(f\S, Ip) then firf2dm0 = lim firf2dm„ <lim ff2dmn=ff2dm0 so irf is also
in L2(m0) and 7r has a unique extension to a projection in L2(mo). Now l(x)irf

= l(x)E(f\S, M)=E(l(x)f\l(x)S, l(x-1)M)=irl(x)f and similarly r(x)irf
= irr(x)f so tt is central and since it also preserves non-negativeness we can

apply Theorem 1.1 to it.

Theorem 2.1. Let M be an invariant dominated subset of Vp and K(M)

= {x; xEG and l(x)m=m for all mEM}. Then K(M) is a compact normal

subgroup of G and S(M) = [A; A ES and l(k)A =A for all kEK(M)} is the
best sufficient subfield for M. Moreover if f is in B(So) and we define irf by
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^f(x) = fK(M)f(xk)dmi(k)  where mt is the Haar measure of K(M)  then irf

= E(f\ S(M), m) for every m in M.

Proof. We only need to identify K(M) with the K of Theorem 1.1, that is

with {x; xGG and l(x)ir = ir}. If l(k)ir = ir and m is in M then, using the fact

that 7rl = 1 where 1 is the function which is identically 1 on G, we have

f fd(l(k)m) =  f fld(l(k)m) =  f (Tf)ld(l(k)m) =  f (l(k)irf)ldm

=   I   (irf)ldm =   I   fdm

which proves that K is contained in K(M). K(M) is clearly closed and it is

also compact for if we choose m in M and compact C with m(C)>0 then a

disjoint sequence (kiC, • • • , kitC) must be maximal for some N<m(C)~l

proving that K is contained in the compact set \JkiCC~l. Hence the equation

defines a ir/and it is easily verified that S(M) is a sufficient subfield for Ip with

irf=E(f\ S(M), Ip) so that S(M) contains S and hence K(M) is contained in

K.
The assumption that M is dominated or at least admits a minimal suffi-

cient statistic cannot be dropped as the following example shows. Let G be

the reals mod one and let M he all the translates of the measure m defined by

f fdm=-f  f(x)<p(x)dx + — /(0) + — /(1/2)
J 2 J0 4 4

for some cp. Then for each x the subfield Sx consisting of all sets either con-

taining both x and x + 1/2 or neither is sufficient for M with

. (f(y) if y ?± x or x + 1/2,
E(f\Sx,M)(y) = {

yj I >\>>       \l/2(f(x) + f(x + 1/2))        if y = x or x + 1/2.

If S is contained in all Sx and we write dx for the characteristic function of

the point x then

E(f\S, M) > E(f(x)dx \S,M)=— f(x)(dx + dx+i

so

E(f\S,M)> j f(x)+f(x+1/2)

and  substituting this  in fE(f\S,  M)dm=ffdm gives

jf(x)cp(x)dx ̂  f(f(x) + f(x + l/2)cp(x)dx

which is a contradiction since/and cp are arbitrary.
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