
HOMOLOGICAL DIMENSION IN LOCAL RINGS

BY

MAURICE AUSLANDER AND DAVID A. BUCHSBAUMp)

Introduction. This paper is devoted primarily to the study of commuta-

tive noetherian local rings. The main task is to compare purely algebraic

properties with properties of a homological nature. A large part of this paper

is an elaboration of [2](2) which contained no proofs. We use [3] as a refer-

ence source for homological algebra. We begin with a list of the most im-

portant notions and an outline of results.

Unless stated otherwise, we assume throughout this paper that all rings

are commutative noetherian rings with identity elements and that all modules

are finitely generated and unitary. If R is a local ring, we shall denote its

maximal ideal by m and the quotient field R/m by F.

Given a ring R and an l?-module E we denote by hdRE the integer (finite

or + co) which in [3] is denoted by dim# E. We have hdR E^nil there exists

an exact sequence

dn dn-i
0-^Pn -> Pn-l-►-> Fo -> E -> 0

where each Pt is projective (i.e., is a direct summand of a free l?-module).

With the ring R we associate two numbers called the global dimension and

the finitistic global dimension given by the definitions

gl. dim R = sup. hdR E for all l?-modules E

f. gl. dim R = sup. hdR E for all F-modules E such that hdR E < °o.

By [I, Theorem 1 ] we know that the global dimension as defined above gives

the same number as the definition of global dimension given in [3]. If R is a

local ring, then by [3, VIII, 6.2'] we have that gl. dim l? = hdRF.
Let p be a prime ideal in R. We define the rank of p (notation: rank p)

as the maximum n for which there exists a sequence poCPiC ' ■ ' Cpn = p of

distinct prime ideals in R. It is well known that the rank of a prime ideal is

always finite. The rank of an ideal f in R (notation: rank f) is defined as the

min rank p, where the p run through the primes belonging to f in R. The

Krull dimension of R (notation: dim R) is defined as the sup rank f, where f

runs through all ideals in R.
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An element x in R is said to be a zero divisor for the P-module E if there

is a nonzero element e in E such that xe = 0. A sequence xi, • • • , x, of ele-

ments in R is called an £-sequence if Xi is not a zero divisor for the module

E/(xi, ■ ■ • , Xi-i)E and E/(xx, ■ ■ ■ , xa)E?^0. The least upper bound of

lengths of E-sequences (finite or + co) is called the codimension of E (nota-

tion: codings).

Assume now that R is a local ring. It is well known that

dim R = rank m g (rrt/m2: F)

where the right hand number is the linear dimension of the vector space m/m2

over the field P. If equality holds, then R is called a regular local ring.

The various numbers attached to the local ring R compare as follows:

f. gl. dim R = coding R ^ dim R ^ (m/m2: F) g gl. dim R.

The first two relationships will be established in the first section of the paper.

The next inequality was stated above. The last inequality was proved by

Serre [10] who showed that if n = (m/m2: F), then Tor*(P, F)^0.

It will be shown that R is a regular ring if and only if gl. dim 2?< co, i.e.,

if and only if all the above inequalities are equalities. Using this result we

show that if R is a regular local ring, then Rp is a regular local ring for any

prime ideal p in R.

§2 is devoted to a study of regular local rings. It is shown that any factor

ring of a regular local ring (consequently any complete local ring) satisfies

the "saturated chain" condition for prime ideals. Also another proof of the

Cohen-Macaulay theorem is given.

In §3, we prove certain properties about the completion of Zariski rings.

In particular, we show that if R is a local ring, and R its completion, then

gl. dim 2? = gl. dim R. Using this fact, together with the fact that every com-

plete local ring is the quotient of a regular local ring, we prove theorems on

codim/jE analogous to those proved in §1.

In §4, we introduce the notion of a regular ring, naturally extending the

definition from local rings to arbitrary noetherian rings. For these rings, we

show that the Cohen-Macaulay theorem is valid, and we also show that a

commutative noetherian hereditary ring is the direct sum of a finite number

of Dedekind rings.

1. Codimension. Let R be any commutative ring with identity element

(not necessarily noetherian) and S a multiplicatively closed subset of R not

containing 0. Then we denote by Rs the ring of quotients of R with respect to

5 [see §9, no. 48]. If p is a prime ideal in R, and S = R — p, then we will denote

Rs by Pp. The natural ring homomorphism R—>RS, gives an operation of R

on Rs which makes Rs an P-module. It has been shown in [9, no. 48] that

for any P-module E (E not necessarily finitely generated), Torf(Ps, E)=0

for all w >0. Hence Rs®rE is an exact functor of E. Thus, if E' is a submodule
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of E, then RS®RE' is a submodule of Rs®rE.

Suppose now that R is a noetherian ring and that £ is a finitely generated

l?-module. We recall that for the submodules of E there exists a primary de-

composition theory analogous to that for ideals (see [8]). A prime ideal p in

R is said to belong to a submodule E' of £ if p belongs to the annihilator in R

of £/£'. In the following lemma, which we state without proof, we summarize

the part of this theory that we shall need.

Lemma 1.1. Let S be a multiplicatively closed subset of R not containing 0,

and let E' be a submodule in the R-module E. Then pi, • • ■ , pn, the prime ideals

in R belonging to E' in E, have the following properties:

(a) An element x in R is in one of the p,- if and only if x is a zero divisor for

EIE';
(b) An ideal f in R is contained in one of the pj if and only if there is an

element ein E which is not in £' such that te is contained in E';

(c) Let pi, ■ • • , pr be those ideals which do not meet S. Then E' ®RRs is a

proper submodule of the Rs-module EcE)RRs if and only if r>0. If r>0, then

Rspi, ■ ■ • , Rspr are the prime ideals in Rs belonging to E' <E>RRS in E®rRs-

Lemma 1.2. Let E be an R-module and let p" be a prime ideal in R which

belongs to (0) in E. If x is an element in R such that the ideal (p", x) is t^R,

then E^xE. Further, if x is not a zero divisor of E, and if is a proper prime ideal

containing (p", x), then there is a prime ideal p' belonging to (0) in E/xE such

thatp~)p'D(p",x).

Proof. Since (p", x) is a proper ideal of R, there exists a proper prime ideal

p in R which contains (p", x). From the exact sequence of l?-modules

E -i E -» E/xE -> 0

we deduce the exact sequence of l^-modules

(1) E®RRn^E®RR9-^(E/xE)  ®RRn^0,

where/ is multiplication by x in R and g is multiplication by the image of x

in F„ which we shall denote also by x. Since p"CP. and p" is a prime belonging

to (0) in £, we have by 1.1 that E<g>RR*?±(0). Since x is in l?pp, the maximal

ideal of the local ring l?p, we know by [3, VIII, Proposition 5.1'] that g is

not an epimorphism. Therefore (E/xE)®RRf^0, which means that

£/x£^0.
Suppose x in R is not a zero divisor for E. Then it can easily be seen

that x in Rn is not a zero divisor for E®RRt. Since p" belongs to (0) in £,

we have by 1.1 that R9p" belongs to (0) in E®RRn. Therefore we know that

there is a prime ideal p" in the local ring Rv such that p" belongs to (0) in

(E®RRv)/x(E®RR9) and !?ppDpD(Rtf", x)=Frp(p", x) (see [5, 135 no. 8];
also [10, Lemma l]). From the exact sequence (1) we deduce that
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(E ®B R9)/x(E ®R Pp) « (E/xE) ®R Pp.

Since (E/xE)®RRx,9£0, we have by 1.1 that p = Ppp', where p' is a prime be-

longing to (0) in E/xE which is contained in p. Thus by contraction to R

we have pDp'D(p", x). Since p was any proper prime ideal containing (p", x),

the lemma has been established.

Unless stated otherwise, we assume throughout the rest of this section that

R is a local ring with maximal ideal m, and P = P/m.

Proposition 1.3. Let pi, • • • , pn be the prime ideals in R belonging to (0)

in E. If xx, ■ ■ ■ , x, is an E-sequence, then (xx, • • • , x,) is contained in m and

sikdim R/pi for all i. Thus we have that codim^E^dim R< °o.

Proof. Suppose x,- is not in m for some i. Then x,- is a unit in R and thus

XiE = E. Since (xx, ■ • ■ , x,)E contains x,-E = E, we have that £/(xi, • • • , x,)£

= 0, which contradicts the definition of an E-sequence.

Let p be one of the p,-. We will show by induction that 5^ dim R/p. For

5 = 0, it is obvious. Assume the statement true for s — 1. By 1.2, we know there

is a prime p' belonging to (0) in E/xxE with p'D(p, xi).

Now x2, ■ • ■ , x, is an E/xiE-sequence. Therefore we have by our induc-

tion hypothesis that 5 — 1 ^dim R/p'. Since Xx is not contained in the prime

ideal p, we have that dim P/p'^dim R/p — 1. From this it follows that

j-^dimP/p.
The rest of the proposition follows from the definition of codimension and

the fact that dim R/t ^dim R for any ideal I in R.

Proposition 1.4. If xi, ■ ■ ■ , x, is an E-sequence, then hdRE/(xx, • • • ,x,)E

= s+hdsE.

Proof. Suppose an element x in m is not a zero divisor for E. From the

exact sequence

Q^E^E-^ E/xE -> 0

where/ is multiplication by x, we deduce the exact sequence

/' /'
-> Tor„(£, F) A Torn(£, F) -> Tor„(£/x£, F) -► Torn_,(£, F) ^ ■ ■ ■

where/' is multiplication by x. Since x£ = 0, the homomorphisms/' are the

zero homomorphisms for all n. Hence we have, for every n, the exact se-

quences

(1) 0 -» Torn(£, F) -> Tor„(£/x£, F) -> Tor„_i(£, F) -> 0.

If hdR£ = co, then we know by [3, VIII, 6.1'] that Tor„(£, P) ̂ 0 for all n.
From (1) we deduce that Torn(£/xE, F) ^0 for all w and thus hdR£/x£= ».

If hdR£=p< =o, then we have Tor„(£, P) ^0 and Tor„(E, P) =0 for all w>p.
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We therefore deduce from (1) that Torp+1(E/x£, F)^0, and Tor„(E/xE, F)

= 0 for all n>p + l, which yields the desired result for 5 = 1. The proof for

all 5 follows by induction.

Lemma 1.5. Let R, T be arbitrary rings with identity element (i.e., not

necessarily commutative or noetherian), and f: E—>E a ring homomorphism. If

E is an arbitrary (left) R-module (i.e., not necessarily finitely generated), and

Tor„(T, E)=0 for all n>0, then hdRE^hdT(T®RE). Furthermore, if there

exists an R-module homomorphism g: £—>E such that gf is the identity on R,

then the above inequality is an equality.

Proof. The first statement is essentially contained in the proof of   [3,

VIII, 3.1]. Hence we need only prove the reverse inequality.

For any E-module C, consider the identifications

Homr(r ®R E, T ®RC) « Homfi(£, Homr(7\ T ®R C)) ~ Homfi(£, T ®R C).

If we replace £ by an E-projective resolution X of £, and pass to homology,

we obtain
H(BomT(T ®R X, T ®RC)) « H(RomR(X, T ®RC)).

Since Torf(E, E) =0 for all «>0, we have that T®RX is a E-projective

resolution of T®RE. Therefore we deduce that

Extr(r ®R £, T ®RC) « ExtR(E, T ®BC).

Since gf is the identity, R is a direct summand of T as an E-module, which

implies that C is a direct summand of T®RC as an E-module. Therefore,

Extff(E, C) is a direct summand of Extff(£, T®RC), which proves the reverse

inequality.

As an application of 1.5 we prove

Proposition 1.6. Let R be an arbitrary commutative ring with identity ele-

ment (not necessarily noetherian), S a multiplicatively closed subset of R not

containing 0, and E an arbitrary R-module (not necessarily finitely generated).

Then hdRE^hdRs(Rs®RE). Further, we have that gl. dim R^gl. dim Rs-

Proof. By [9, no. 48] we know that for an arbitrary E-module £.

Tors(Rs, £) =0 for all w>0. Thus we have by 1.5 that hdR£^hdRs(Es<8>fi£).

Let t be an ideal in Rs. It is well known that Rs/t~Rs®ii(R/(ir\R)).

Since gl. dimE^hdE2?/(fnE)^hdKB2<Vf for all ideals f in Rs, it follows

from [l, Theorem l] that gl. dim E^gl. dim Rs.

Theorem 1.7. If R is a local ring, then f. gl. dim R = codim R.

Proof. If Xi, • ■ ■ , xn is an E-sequence, then

hdRE/(xi, ■ • • , x„)7c = n + hdRE = n.

Thus codim E^f. gl. dim R.
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Given any l?-module £, we can construct an exact sequence

(2) 0-^K-*X-^>E->0

with X free and K = K.er gCm^- P°r let Ci, • • • , e, be a minimal generating

system for £. Let X he the free l?-module with basis X\, ■ ■ ■ , x, and g the

homomorphism which sends Xi into e,-. Now Er«'x« 1S ln -^ ^ ar,d only if

Erie» = 0- Suppose ri is not in m. Then r\ is a unit. Thus ei= — rr'(E«>i r»e»')>

which contradicts the minimality of d, • • • , er. Hence fi and similarly all the

other r.-must be in m. Therefore K is contained in mA.

Assume that codim 1? = 0 and that f. gl. dim 1?>0. Then there exist mod-

ules E with 0<hdR£<°o. Since in (2) hdRA!=hdR£ — 1, we may choose E

such that hdR£ = l. Then K is projective and therefore free [3, VIII, 6.1'].

Thus the annihilator of K is trivial which implies that the annihilator of mA

is trivial. Consequently the annihilator of m is trivial. However since codim R

= 0, every element of m is a zero divisor. This means that m belongs to (0)

and therefore by 1.1 has a nontrivial annihilator. This contradiction shows

that f. gl. dim R^codim R if codim 1? = 0.

We proceed now by induction. Assume that f. gl. dim R^ codim R if

codim R<n. Also assume that codim R = n>0. Let x in m be a nonzero divi-

sor in R and let R' = R/xR. It is clear that codim R' gn — 1. Further, we have

thathdR12' = l.

Let £ be an l?-module with 0<hdR£<». Consider the exact sequence

(2). Since x is not a zero divisor in X (because X is free) it is not a zero divisor

in KEX. Thus x is a l£-sequence and by 1.4 we know that

hdRK/xK = 1 + hdRA- = hdR£.

Thus if we define K'=K/xK = K®RR', we have an l?'-module K' with
hdRX'=hdR£<oo.

Since hdR.R' = l, we have Torf(£, 1?')=0 for q>l. The exact sequence

(2) then implies Torf(A, R') =0 for q>0. Thus by 1.5 we have that

hdR.lT = hdR,(R' ®R K) ^ hdRK < oo.

Since codim R'^n — 1, it follows from the induction assumption that

hdR>K' g » - 1.

We now use the inequality

hdR!T g hdE'lsT' + hdR12'

[3, XVI, Exercise 5]. Substituting previous results in this inequality we ob-

tain that hdR£^«. Thus f. gl. dim F!5^codim R.

The following result is due to Serre [10, Theorem 4l:
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Proposition 1.8. gl. dim E^(m/m2: R/m).

A well  known  theorem  of  Krull   [7,  3.5,  Theorem   7]   tells  us  that

dim R ^ (m/m2: R/m).

Summarizing the results of this section we obtain

Theorem 1.9. If R is a local ring, then

f. gl. dim R = codim R g dim R ^ (m/m2:E/m) ik gl. dim R.

Theorem 1.10. A necessary and sufficient condition that a local ring R be

regular is that gl. dim E < oo.

Proof. If gl. dim R< co, then gl. dim E = f. gl. dim R. Hence, by Theorem

1.8, we have that dim R= (m/m2: R/m), so that R is regular.

Now suppose that R is regular. Then it is known that m= (ux, • • • , u„)

where («i, • • • , ui) is a prime ideal for 1 ^i^n, [7, p. 72]. Hence Ux, • • ■ , un

is an E-sequence and gl. dim E=hdRE/m = w.

Combining 1.10 and 1.6 we have

Theorem 1.11. If Ris a regular local ring and p is a prime ideal in R, then

Ep is a regular local ring.

2. Regular local rings. In this section, all rings will be regular local rings

unless otherwise specified.

Proposition 2.1. Let R be an arbitrary local ring (not necessarily regular)

and let E be an R-module. The E-sequence xx, • • • , x, is maximal (i.e., there is

no xB+xEP such that Xi, • • - , x,+x is an E-sequence) if and only if m belongs to

(0) in E/(xx, • ■ ■ , xi)E.

Proof. The E-sequence Xi, ■ ■ • , x, is maximal if and only if every element

of m is a zero divisor of E/(xx, • • • , x„)E. By 1.1 that is precisely the condi-

tion for m to be contained in some prime belonging to (0) in £/(xi, • • ■ , xs)£.

Since m is maximal, this means that m belongs to (0) in E/(x\, - • • , xs)E.

Proposition 2.2. hdRE=gl. dim R if and only if m belongs to (0) in E.

Proof. Suppose m does not belong to (0) in E. Then there is an x in m

which is not a zero divisor of E. Therefore, by 1.4, we have hdR£/x£

= l+hdRE. Since gl. dim R is finite, this shows that hdRE<gl. dim R.
Now suppose that m does belong to (0) in £. Then by 1.1 there is a non-

trivial submodule D of £ such that mD = 0. Since D is an E/m-module, D is

isomorphic to a finite direct sum of E/m's. Therefore we have Tor^(D, F) ^0

where w = gl. dim R. From the exact sequence

0 -+ Tor* (D, F) -+ Torf (E, F) -> Tor*(E/D, £)-»•••
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we deduce that Tor^(£, F)^0, which shows that hdR£ = gl- dim R.

Combining 1.4, 2.1 and 2.2, we obtain

Theorem 2.3. If dim R = n, and if xi, ■ • ■ , x, is an E-sequence, then

(a) s+hdRE^n,

(h) s+hdRE = n if and only if xx, • ■ ■ , x, is a maximal E-sequence,

(c) any E-sequence can be extended to a maximal E-sequence,

(d) hdRE+codimRE = n.

Proposition 2.4. Let t be a proper ideal in R, R a commutative noetherian

ring, and let x%, • • • , x, be an R/t-sequence. Then

(a) rank (t, Xi, ■ ■ ■ , x,)^s+rank t,

(b) if t = (0), then rank (xi, • • • , x.) = s.

Proof. It suffices to prove (a). For if (a) is established, we have rank

(xi, • • • , x.)^s. However, a well-known result of Krull [7, III, Theorem 7]

states that rank (xi, • • ■ , x.)^s. Thus (b) follows from (a).

We prove (a) by induction on 5. Assume s = l. Let p be a minimal prime

of (f, Xi). Since (f, Xi)/f is a principal ideal in R/t, generated by a nonzero

divisor, it follows from 1.1 and the principal ideal theorem that p/l is of rank

one in R/t. Therefore rank p^l+rank t. The inductive procedure is now

straightforward.

Proposition 2.5. Let R be a regular local ring and let E be an R-module-

Then hdRE^rank p, where p is any prime ideal belonging to (0) in E.

Proof. We let n=dim R. Then by 2.3 we have that hdR£+codimB£=«.

If p is a prime belonging to (0) in £, we have by 1.3 that codimj}£^dim R/p.

Thus «^hdR£+dim l?/p. It is also clear, however, that dim l?/p+rank p^w

(we will see later that we actually have equality). Hence we have the desired

result.

Corollary 2.6. If t is a proper ideal of R and hdRR/t = rank f, then t is

unmixed (i.e., all primes belonging to t have the same rank).

Proposition 2.7. Let t be a proper ideal of R, of rank s. Then if xi, • • • , xt

is any R-sequence in I such that there is no xt+i in t for which Xi, ■ • • , X(+i is

an R-sequence, then t = s. In particular, t contains an R-sequence Xi, • • • , x..

Proof. Let Xi, • • - , xt he an l?-sequence in t having the property stated in

the hypothesis. Then t must be contained in some prime belonging to

(xi, • • • , x«). However, hdRl?/(xi, • • • , x,)=j = rank (xi, • • • , xt), so that

by 2.6 all primes belonging to (xu • • • , xt) have rank t. Thus rank t^t. On

the other hand, rank f^rank (xi, • • • , xt)=t. Hence t = s.

Proposition 2.8. Let pDp' (p^p') be two prime ideals in R such that no

prime ideal is properly contained between them. Then rank p = 1 +rank p'.
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Proof. Suppose that rank p' = 5. Then p'contains an E-sequence Xi, • • • ,x„

and (xi, • • • , xg) is an unmixed ideal of rank 5. Since rank p>5 there is an

xs+x in p, such that Xi, • • • , x8+i is an E-sequence. By 1.2 we know that there

is a prime p" belonging to (xx, ■ ■ ■ , xs+x) such that pDp"D(p', xs+i)Dp'

(p', xs+i5^p'). Therefore p = p". Since (xx, ■ ■ ■ , x„+i) is unmixed and of rank

5 + 1, we have rank p=5 + l = 1+rank p'.

The following corollaries are immediate consequences of 2.8 and 1.9.

Corollary 2.9. If p is a prime ideal in R, then dim R/p+rank p=dim R.

Corollary 2.10. If R is a factor ring of a regular local ring, and pDp' are

two prime ideals of R, then all saturated chains of prime ideals between p and p'

have the same length, namely dim R/p'—dim R/p.

Lemma 2.11. Let R be a commutative noetherian ring having the property

that if pDp' are prime ideals of R, then any two saturated chains of prime ideals

between p and p' have the same length (we will say that such a ring R satisfies

the "saturated chain condition"). If t is any ideal of R and x is a nonunit in R,

then rank (f, x) ^ 1 +rank i.

Proof. Let rank f = 5, and let p be a prime of rank 5 belonging to f. Then

in the ring R/p, the ideal (p, x)/p has rank at most one. It follows from the

saturated chain condition in R that the ideal (p, x) has rank at most 5 + 1.

Since (p, x) contains (f, x), we have rank (f, x) ^1+5.

We can now prove the following slight refinement of the Cohen-Macaulay

Theorem:

Theorem 2.12. Let f = (xx, • • • , x,) be an ideal of rank s. Then Xx, • ■ ■ , x,

is an R-sequence and thus t is unmixed.

Proof. By induction on 5. If 5 = 1, then f=(xi) and thus by 2.6 we have

that the theorem is true. Consider the ideal (xx, • • • , x,_i), 5>1. Since rank

t = s, it follows from 2.11 that rank (xx, • • • , x„_i)S^5 — 1. But clearly the

reverse inequality holds, since Xx, • • ■ , x,_i is generated by 5 — 1 elements.

Applying the induction hypothesis, we have that Xi, ■ • ■ , x,_i is an E-

sequence and thus xx, • ■ ■ , x,_i is unmixed. Since f has rank 5, x, cannot be

contained in any of the primes belonging to (xi, ■ ■ ■ , x,_i). Therefore

Xi, ■ ■ ■ , x, is an E-sequence, and consequently unmixed.

Corollary 2.13. Letxx, ■ ■ ■ ,x, be an R-sequence and let a be a permutation

of 1, • ■ • , 5. Then x„(i), • • • , x„(S) is an R-sequence.

Theorem 2.14. A regular local ring of dimension two is a unique factoriza-

tion domain.

Proof. Since a regular local ring is integrally closed in its field of quotients,

it suffices to prove that every minimal prime of E, i.e., every prime of rank

one, is principal. If p is a prime ideal of rank one, then m does not belong to



1957] HOMOLOGICAL DIMENSION IN LOCAL RINGS 399

p so that hdRl?/p<hdR7?/tn = gl. dimlc = 2.  Therefore hdRp<l, hence p is

projective, therefore free, and therefore principal.

3. Completion. By a Zariski ring, we mean a pair (R, t) where R is a com-

mutative noetherian ring, and f is an ideal contained in the intersection of the

maximal ideals of R (in case R is a local ring, we shall always choose f to be

the maximal ideal m). If £ is an .R-module (finitely generated) we shall denote

by E the completion of £ with respect to f (see [8, V]). If £ and £' are R-

modules and /: E—>£' is an l?-homomorphism, then there exists a unique

extension /: £—>£' which is an i?-homomorphism. For convenience, we list

without proof some of the properties of the completion functor in the follow-

ing proposition [8, V, Theorems 4, 5, 6].

Proposition 3.1. (a) If the sequence of R-modules

0 -> E' L E X E" -* 0

is exact, then so is the sequence

0 -> £' i £ -^ E" -» 0

of R-modules.

(b) If E' is a submodule of E, then E' is a submodule of E and E' = RE',
ET\E = E'.

(c) If R is a local ring with maximal ideal m, R is a local ring with maximal

ideal m.

Theorem 3.2. If (R, t) is a Zariski ring, and E is an R-module, then

hdRE^hd%E. If R is a local ring, the above inequality is an equality, and thus

gl. dim R —gl. dim R.

Proof. Let X be an -R-projective resolution of £. Then X is an acyclic

complex over E, since £—>E is an exact functor. Since the functor is also

additive, it takes direct sums into direct sums, hence it takes summands of

finitely generated free .R-modules into summands of finitely generated free

.R-modules. Therefore finitely generated projective .R-modules are carried into

finitely generated projective .R-modules. Therefore, A is a projective resolu-

tion of E and hdR£=;hd~£.

Suppose now that R is a local ring. Then R is also a local ring. Let £ be

an .R-module with minimal generating system e\, ■ • • , en. We will show that

this same set is a minimal generating set for E. Suppose ei is in the .R-module

£" generated by e2, • ■ ■ , en. Then £" = £' where £' is the submodule of £

generated by e2, ■ ■ ■ , en. Since E'C\E = E', we have d in £', contradicting

the minimality of the generating set.

Now, if E is ^-projective, it is .R-free, since R is a local ring. Therefore

ei, • • • , en is a free base for E over R. But then this is also a free base for £

over R. Hence if £ is ^-projective, then £ is R-projective.
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Let E be an E-module, and X a projective resolution of E. Then X is an

E-projective resolution of £. Since kernel (di) (where di\ Xi—>Xi-i) equals

the completion of kernel (di)C\Xi, we can deduce that if kernel (Hi) is R-

projective, then kernel (di) is E-projective. Thus hdRE:ghd~£. The rest of

the proposition follows from the fact that the global dimension of a local

ring is determined by the homological dimension of its maximal ideal.

Proposition 3.3. Let (R, f) be a Zariski ring. Then a sequence xlt ■ • ■ , x,

of elements in R is an E-sequence if it is an E-sequence. If R is a local ring, then

Xx, • • • , x, is a maximal E-sequence if it is a maximal E-sequence.

Proof. Let ti be the ideal generated by (xx, • • • , x,-). Since ti = R(~\ti,

where L = 2a„ f< is a proper ideal of E if and only if "f,- is a proper ideal of R.

From the exact sequence of E-modules

(1) E/ti-xE £ E/h-xE ^ E/UE -* 0

where/,- is multiplication by x,- and g, is the natural map, we deduce the exact

sequence of E-modules

(2) E/U-xE -^ E/U-iE h E/tiE -* 0

where, again, fi is multiplication by x,-, and g,- is natural.

By 3.1, we know that/\ is a monomorphism if/< is a monomorphism. Thus,

xx, ■ ■ ■ , x, is an E-sequence if it is an E-sequence.

Now let E be a local ring. Then m belongs to (0) in E if and only if there

is a nontrivial submodule D of £ such that m23 = 0. If such a D exists, then

in/5 = 0, which means that m belongs to (0) in £. Therefore, if xi, • • ■ , x,

is a maximal £-sequence in E, then m belongs to (0) in E/(xx, • • ■ , x,)E and

consequently m belongs to (0) in E/(xx, ■ ■ • , x,)E, i.e., Xx, • • ■ , x, is a maxi-

mal E-sequence in R.

Proposition 3.4. Let E be a nontrivial R-module, where R is again a local

ring. Then every E-sequence can be extended to a maximal E-sequence and all

maximal E-sequences have the same length, namely codimRE.

Proof. That every E-sequence can be extended to a maximal one follows

from 1.2. Hence we need only prove the invariance of the length of a maximal

£-sequence. However, in view of 3.3, it suffices to prove this for complete

local rings. Since every complete local ring E is the quotient of a regular

local ring [4], we may assume that R = T/f where T is a regular local ring.

Clearly xi, ■ ■ ■ , x, is a maximal E-sequence in E if and only if one can find

yi, • • • , y, in E such that (f, y,)/f = x,-, and such that yi, • • • , y, is a maximal

E-sequence in T. Since T is regular, we have by 2.3 that 5+hdT£ = dim T if

and only if yi, • • • , y, is a maximal £-sequence in  T. Thererore, by our
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previous observation, Xi, • • • , x, is a maximal E-sequence in R il and only

if 5+hdx£ = dim T. Thus any two maximal £-sequences in R have length

5 = dim T—hd-tE.

Proposition 3.5. If R is a local ring, and hdRE< oo, then hdRE = codim R

if and only if m. belongs to (0) in E.

Proof. Suppose m does not belong to (0) in £. Then there is an x£m

which is not a zero divisor of £ and thus hdR£/x£ = 1+hdR£. Thus by 1.6,

hdR£?=codim R.

Now suppose tn does belong to (0) in £. Then, passing to completion, we

have m belongs to (0) in E. Let R=T/t where T is a regular local ring. If

we denote by m the maximal ideal of F, then m belongs to (0) in £, so that

hdT£ = dim T. From the relationship

hdT£ ^ hdTlt + hdS£,

we obtain

dim T — hdi-R = codim R ^ hdR£.

But, by 3.2, hdRE=hdR£, and codim 1? = codim R, so that codim l?^hdR£.
But the reverse inequality is given by 1.6, so the proof is complete.

Proposition 3.6. Let 0—>£'—>£—>£"—»0 be an exact sequence of R-modules.

If codimRE" <codimRE, then codimRE' = 1 +codimRE".

Proof. We may clearly assume that R is a factor ring of a regular local ring

F. In that case, we have hdT£<hdT£", hence hdT£" = 1+hdT£'. But then

codimr£' = l-r-codimr£" and since codimr£ = codimfl£ for all l?-modules £,

we obtain the desired result.

Using arguments similar to those used in establishing 2.3, we obtain the

following analogous result:

Theorem 3.7. Assume codim R=n (R a local ring), hdRE< oo, and

Xi, • ■ ■ , x. is an E-sequence. Then we have

(a) s+hdRE^n,

(b) s + hdRE = n if and only if Xi, ■ ■ • , x, is a maximal E-sequence.

Corollary 3.8. Let R' be a factor ring of the local ring R, and £ an R'-

module. If hdRR' and hdR-E are finite, then

hdRE = hdRR' + hdR>E.

By [3, XVI, Exercise 5] we have

hdR£ ^ hdRl?' + hdR-£

and so, in particular, hdR£ is finite. By 3.7, we have codimR£ = codim R —hdR£,
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codimfl-E = codim R'— hdR-£, codim E —codim E,=hdRE', which, combined

with the fact that codimje£ = codimB'£, yields the desired result.

Proposition 3.9. Let Rbe a (not necessarily local) ring, and let t be an ideal

of rank greater than zero. If hdRt < oo , then t contains at least one nonzero divisor.

Proof. Suppose t consists only of zero divisors. Then f is contained in some

prime p belonging to (0), of rank greater than zero. Since rank f >0, and rank

Epf^rankf in Ep, Epf^O. Now, Epp belongs to (0) in Ep, so codim Ep = 0.

Therefore, by 1.6, we have that hdRpEp/Epf = oo, since Ep/Epf is not projec-

tive. But then we have hdRE/f = co, which is a contradiction.

4. Regular rings. In this section, we assume that E is a commutative

noetherian ring with identity element.

Definition. An ideal f in E is said to be regular if Ep is a regular local ring

for each prime p belonging to f. R is said to be regular if every ideal of E is

regular.

Proposition 4.1. R is regular if and only if each maximal ideal in R is

regular.

Proof. The necessity follows from the definition. To prove sufficiency, we

remark that it suffices to prove that Ep is regular for every prime p. Therefore,

let p be a prime, and p' a maximal ideal containing p. Since Ep= (Ep')tfp'p, and

since Ep- is regular by hypothesis, the result follows from 2.14.

Proposition 4.2. A regular integral domain R is integrally closed.

Proof. Since E = Dp Ep where p runs through all maximal ideals, and since

each Ep, being regular, is integrally closed, E is the intersection of integrally

closed rings. But then E is integrally closed.

Proposition 4.3. E is the direct sum of a finite number of integral domains

if and only if Ep is an integral domain for every prime p.

Proof. Suppose Ep is an integral domain for every prime p. Let (0)

= qiC\ • • • T\an be a normal decomposition of (0), and let pi, • • • , p„ be the

primes belonging to cn., • ■ • , q„ respectively. We will show that q< = pi for all

i, and hence each p,- is minimal, due to the irredundancy of the decomposition.

Suppose q.-^p,-. Then Rfi contains zero divisors, contrary to assumption. Thus

qi = p< for all i.
If w = 1, we are finished. Suppose, then, that n> 1. If (p,-, py) =^E (i^j), let

p be a proper prime ideal containing (p,-, pj). Then in Ep we have zero divisors,

again contrary to assumption. Thus, for all pairs (i,j), i^j, we have (p;, pf)

= R. Applying the Chinese Remainder Theorem, we have E=E/pi + • • •

+E/p„ (direct sum).
Now let E = Ei+ • • • +E„ (direct sum) with each E,- an integral domain.

Let d denote the ith natural base elements and let pj be the ideal generated
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by all ej,J9^i. It is easy to see that each p,- is a prime. Let p be a proper prime

in R. Then since Ee» = 1< P does not contain e,- for some i. If p does not con-

tain pj, then there is an ey, j?*i, such that ejEp- But this is impossible since

eie, = 0 for j^i. Thus every prime contains some pi. Furthermore, if pDp,-,

then p = pt-f pf~\Ri (direct sum). Therefore Rn ~ (Ri)tr\Ri and hence Rn is an

integral domain for each p.

Corollary 4.4. A regular ring is the direct sum of regular integral domains.

Proposition 4.5. A ring R of finite global dimension is regular.

Proof. For each prime p, Rn has finite global dimension, hence is regular.

Lemma 4.6. If £ is an R-module, then hdRE = sup (hdRK(Rn®RE)) where p

runs through all maximal ideals of R. Hence gl. dim l? = sup. (gl. dimRn),

where p runs through all maximal ideals of R.

Proof. The first statement is found in [3, VII, Exercise 11 ]. To prove the

second, we again make use of [l, Theorem l], and restrict our attention to

the modules l?/f, where f is any ideal of R. Thus we have gl. dim R

= sup (hdRl?/f) =sup (sup (hdRn(Rp®rR/1))) gsup (gl. dim Ep). On the other

hand gl. dim It^sup (hdRl?/p) =sup (gl. dim Rn), and so we are done.

Theorem 4.7. In a regular ring R, gl. dim R = dim R.

Proof. In a regular ring, gl. dim Ep = dim Rn. Since dim l? = sup (dim Rn),

4.6 gives us the result.

Corollary 4.8. A ring of finite dimension is regular if and only if it has

finite global dimension.

Proposition 4.9. Let R be the quotient of a regular ring. Then R satisfies

the saturated chain condition (see 2.11).

Proof. Let R = T/t, where T is regular ring. Let piCte be two primes in R,

and suppose that p2 is the image of p' in F. Then Rn2~Tn>/Tp<t. Hence Rn,

is the quotient of a regular local ring. Since there is a 1-1 correspondence be-

tween primes of R contained in p2 and primes in £„2, the result follows from

2.10.

Proposition 4.10. If t is a regular ideal in R, then hdRR/t^rank p, where

p is any prime belonging to t. Thus, if hdRR/t = rank t, then t is unmixed.

Proof. We know that if p is a prime belonging to f, then hdRR/f

^hdRn(Rn®RR/t) =hdRnRn/Rnt. Since Rnp belongs to £„f in Rv, we have

hdRl?/f ̂ gl. dim l?p = dim Ep = rank p.

Proposition 4.11. Let R be a regular ring, and t=(xi, • • • , x,) an ideal

of rank r. Then X\, • • •, x, is an R-sequence. Hence hdRl?/(xi, • • • ,xr)=r, and

t is unmixed.
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Proof. Since E is a regular ring, it satisfies the saturated chain condition

by 4.9. Hence, applying 2.11, we see that (xlt • • • , xr_i) has rank r—1. Sup-

pose the proposition true for r — 1. Then, as in 2.12, we have that Xx, ■ • • , xr

is an E-sequence. Since rank (xi, • • • , xT) =r, we know that hdRE/(xi, • • ■ ,xT)

^r. Hence we need only show that hdRE/(xi, ■ • • , xr)^r. However, this

follows from the general fact that if E is an E-module, and x is an E-sequence,

then hdR£/x£ ^ 1 +hdR£. For from the exact sequence

0 -> £ -L E -> £/x£ -> 0

where/ is multiplication by x, we obtain the exact sequence

-> Ext«(£, C) -> ExtT\E/xE, C) -> Extfi+1(£, C) -> • • •

for every E-module C. Hence if Ext|(£, C) =0 for all p>s, then Ext£+1(£/x£,

C)=0 for all p>s.

Now we must prove the proposition for r = l.

Let k = (x) be of rank 1. If x were a zero divisor, it would be contained in

some prime belonging to (0). But 0=hdRE/(0) = sup rank p where p runs

through all primes belonging to (0). Hence all the primes belonging to (0) are

of rank zero, and therefore cannot contain an ideal of rank one.

Since x is not a zero divisor, hdRE/(x)^l. But hdRE/(x) 3:sup rank p

where p belongs to x. Hence hdRE/(x) gjl, thus hdRE/(x) = 1, and rank p = 1

for all p belonging to (x). Thus our proposition is established for r = l, hence

for all r.

Proposition 4.12. In a regular integral domain R of dimension less than

or equal to two, all minimal primes are invertible.

Proof. Let p' be a minimal prime, i.e., a prime of rank 1. Then hdRE/p'

= sup (hdRp/?p/7\pp') where p runs through all maximal ideals containing p'.

Since all maximal primes have rank = 2, Ep/Epp' has codimension 1 as an

Rp-module, hence hdRpEp/Epp' = 1. Thus hdRE/p' = l,hdRp'=0, p' is projective

and hence invertible [3, VII, 3.2].

Proposition 4.13. A ring is hereditary if and only if it is the direct sum of a

finite number of Dedekind rings.

Proof. A ring E is hereditary if and only if gl. dim E^l. Thus the result

follows from 4.4, and the fact that if E = Ei+ • • • +E„ (direct sum), then

gl. dim E = sup gl. dim E,-.

Appendix (added in proof). Some recent work of the authors (to appear)

has shown that 3.4 can be proved without using the structure theorems of

Cohen. These techniques also yield the result of 2.13 for an arbitrary local

ring.
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It can also be shown that 3.9 holds without the hypothesis that rank

f>0.
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