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1. Introduction. In this paper we shall be concerned with the differential

equation

(1) y" + P(x)y = 0,

where p(x) is a continuous positive function for 0<x< oo. Equation (1) is

said to be nonoscillatory in (a, oo) if no solution of (1) vanishes more than

once in this interval. Because of the Sturm separation theorem, this is equiva-

lent to the existence of a solution which does not vanish at all in (a, oo). The

equation will be called nonoscillatory—without the interval being mentioned

—if there exists a number a such that (1) is nonoscillatory in (a, oo). The

equation (1) will be said to be oscillatory, if one (and therefore all) of its solu-

tions have an infinite number of zeros for x>0.

Our main concern will be to obtain oscillation criteria (or nonoscillation

criteria) for the equation (1), i.e. conditions on the function p(x) from which

conclusions may be drawn as to the oscillatory, or nonoscillatory, character

of (1). There exists an extensive literature on this subject [2-12, to name just

a few], which goes back to a classical paper by Kneser [5]. Considerable

progress was made in a relatively recent paper by Hille [4], who recognized

the relevance of the expression

p(x)dx

for the discussion of the oscillation problem (here it is, of course, assumed that

the integral exists; if it does not, (1) is known to be oscillatory [2; 6; ll]).

If the_quantities g* and g* are defined as

(3) g* = lim inf g(x),        g* = lim supg(x),
X—>« X—»°°

Hille showed that g*^l/4, g*Hl if (1) is nonoscillatory, and g*2il/4 if the

equation is oscillatory, where all the inequalities are sharp.

In the present paper we shall develop more general oscillation criteria

which will contain Hille's criteria as special cases. The basic idea used is the

fact that there exists an intimate connection between the oscillation problem
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for the equation (1) and the eigenvalue problem for the equation u" +\p(x)u

= 0 with suitable boundary conditions. While this connection is very simple

indeed, its bearing upon the oscillation problem does not seem to have been

noticed, and we state it therefore as a separate theorem.

Theorem I. 1/ X denotes the lowest eigenvalue of the system

(4) u" + \p(x) = 0,       u(a) = u'(b) = 0, a < b,

then (1) is nonosdilatory in (a, co) if, and only if, a> 1 for all b such that b>a.

If (1) is nonoscillatory in (a, co) and y(x) is a solution of (1) such that

y(a)=0, y'(a)>0 then, as pointed out by Hille, y'(x)>0 for all x>ja. Using

(1) and (4), we find

(yu" - uy")dx = (X - 1)  J    puydx.

Since p, u, y are non-negative in (a, b), it follows that X>1. The same identity

also shows, conversely, that y'(b) must be positive if X>1 and ygjO. y(x) is

certainly positive for values of x which are slightly larger than a. If we let b

grow, starting from values which are near a, y'(b) will remain positive as long

as y does not become negative. Since, however, y cannot become negative

unless y' has become negative at a lower value of x, this cannot happen. Hence

(1) is nonoscillatory in (a, oo) if X> 1 for all b>a.

In view of Theorem I it is natural to subdivide the class of equations (1)

according to the following definitions.

(a) The equation (1) is said to be strongly oscillatory ii the equation

(4') y" + \p(x)y = 0

is oscillatory for all positive values of X.

(b) (1) is strongly nonoscillatory if (4') is nonoscillatory for all positive X.

(c) (1) is conditionally oscillatory ii (4') is oscillatory for some positive X

and nonoscillatory for some other X>0.

From the Sturm comparison theorem it follows that in the case (c) there

must exist a positive number p. such that (1) is oscillatory for X>p. and non-

oscillatory for X <p~ This number p. will be called the oscillation constant of the

equation (1). The cases (a) and (b) may also be characterized by the condi-

tions p, = 0 and p.= =o, respectively.

Cases (a) and (b) can be easily disposed of by means of the results of Hille

quoted further above.

Theorem II. Equation (1) is strongly oscillatory if, and only if,

/t so

p(x)dx =  oo.
x

Equation (1) is strongly nonoscillatory if, and only if,
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/i oc
p(x)dx = 0.

x

Indeed, if (1) is strongly-oscillatory and g* is the quantity defined in (3),

we must have Xg*2:l/4 for all positive X, which shows that g* = oo. Con-

versely, if g*= oo then Xg*>l for all positive X and (2) is oscillatory for all

such X. To verify the second half of Theorem II, we observe that if (1) is

strongly nonoscillatory, the inequality Xg*5=l must hold for all positive X.

Hence, g* = 0. Conversely, if g* = 0, we have trivially Xg*<l/4, and every-

thing is proved.

We are thus left with case (c), i.e., with equations (1) which oscillate

conditionally. It is clear that we cannot hope to obtain a simple necessary and

sufficient criterion for the nonoscillation of such equations. As Theorem I

shows, this would essentially amount to devising a method for finding the

lowest eigenvalue of the differential system (4) by means of elementary

operations.

In §2, we shall show by a number of examples how Theorem I can be used

to obtain necessary conditions for nonoscillation which go considerably fur-

ther than those found in the literature. The proofs will be based on the mini-

mum property of the lowest eigenvalue of the system (4). By its very nature,

this property can yield only necessary, but not sufficient, conditions for non-

oscillation. In order to obtain sufficient conditions, it seems to be necessary

to use procedures which involve some kind of comparison of the given equa-

tion with one whose oscillatory character is known. The theorems of §4 will

be based on comparison procedures of this type. By a proper utilization of the

minimum property of the first eigenvalue, the method used may be made to

yield sufficient conditions both for oscillation and nonoscillation. The com-

parison principle employed is also useful in the treatment of other problems

related to the equation (1), and we therefore state and prove it as a separate

comparison theorem in §3.

In §5, we shall derive formulas for the asymptotic estimation of the num-

ber of zeros of the solutions of certain classes of oscillatory equations (1).

These formulas generalize a result first proved by Wiman [10] and rediscov-

ered by Hartman and Wintner [3]. The proofs are again based on the con-

sideration of a suitable related eigenvalue problem.

2. Properties of nonoscillatory equations. If X is the lowest eigenvalue of

the differential system (4), then

/» 6 /» b
p(x)y2(x)dx g   I    y'2(x)dx,

a J a

where y(x)EDl in [a, b] and lim y2(x)(x—a)-1—>0 if x approaches a from the

right. The proof of this well-known minimum property of the lowest eigen-
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value is an immediate consequence of the identity

rh /      «'   \2       rb rb u' rh w2
0^1     ly'-y ) dx =   I     y'2dx - 2  I      — yy'dx +   I      •-y2dx

J a+t\ U       / J a+t J a+t   U J a+t    U2

/'b rb  u" fu'     ~\b
y'2dx +   I      — y2dx -    — y2\     ,

a+t J a+t   U \_U Ja+t

where u(x) may be taken to be any function of class C1 which does not vanish

in (a, b) and a<a + e<b. If we identify u(x) with the first eigenfunction of

the system (4) and let e tend to zero, we obtain (5).

By Theorem I, X will be larger than unity if (1) is nonoscillatory in (a, co).

In view of (5), such equations will therefore give rise to the inequality

/• 6 /» b
p(x)y2(x)dx <   I    y'2(x)^x,

a J a

where y(x) is a function of class D1 in (a, oo) for which (x— a)~1y2(x)—>0 if

x—>a+, and b is such that b>a.

We first illustrate the application of (6) in a very simple case. We choose

a point Xo such that a<x0<b, and sety(x) = (x — c)(x0 — a)-1 for a^xgx0, and

y(x) = 1 tor x^x0. This leads to

/.&                              r.b                                        i
p(x)dx ^   I    p(x)y2dx <-

x0                           Ja                                   X0  —  a

Since b may be taken arbitrarily large, this shows that f™p(x)dx exists if (1)

is nonoscillatory in (a, co)  [2; 6; ll] and that, moreover,

p(t)dt < 1.

Hille's result that g*^l [4], where g* is defined by (2) and (3), follows by

letting x tend to co.

More generally, we set y(x) = (x— a)?/2(x0 — a)-"'2 for a^x^x0 and y(x)

= (x — a)al2(x0 — a)-"12 for xS:x0, where 0>1 and 0ga<l. Inserting this in

(6), we obtain

1 rx* 1        rh
-        (x - a)»p(x)dx +-—        (x - a)ap(x)dx
(x0 — ayJa (xa — a)aJxl)

02 a2
<-H-[(x0 - a)"-1 - (b - a)"-1].

4(0 - l)(x„ -a)      4(1 - a)(x0 - a)" LV ; '     J

If we let b—> co, we obtain the following result.

Theorem III. If (1) is nonoscillatory in (a, oo) and 0>1, 0^a<l, then
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(x - ay-f> f (t- ayp(t)dt

(7)

+ (x - ay-jy - ayp(t)dt ,^[i + tf_1)(1_J.

Since both terms on the left-hand side of (7) are non-negative, this yields

the separate inequalities

(x - ay-»f'(t - ayp(t)dt g     /_      , j8>1,

(for a = 0), and

c* (2 - ay
(8) (x-a)1-"        (/ - a)'p(t)di g —--, 0£a<l,

Jx 4(1 — a)

(for P = 2). Letting x—>», we obtain

(9) lim sup x1-*3 f  /^(/)<ZZ ̂      /        , d > 1,
*->» J0 4(/3 — 1)

and

C° (2 - a)2
(9a) lim sup x1-" |    tap(f)dt ^-, 0 g a < 1.

i-» J x 4(1 — a)

(8) also contains the fact that x"p(x) (0^a<l) is integrable in (a, oo) if (1)

is nonoscillatory [4].

If the quantity a(x) is defined by

(t - a)*p(t)dt, 0 g a < 1,
X

Theorem III may be cast into the following form.

Theorem Ilia. If (1) is nonoscillatory in (a, oo), d> 1, and a(x) is defined

by (10), then

(11) (x - ay-" f'(t- ay-2a(t)dt g 1 + ———- •
J a 4       4(P - 1)(1 - a)

(11) follows from (7) by the use of the identity

f *(/ - a.yp(t)dt = -  f   (Z - a)*—[(/ - a)"-lo-(t)]'dt
J a J a

= - (x - ay-'o-(x) + (p - a)  f   (t- ay-2a(t)dt
J a
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and some elementary manipulation.

As an application of Theorem Ilia, we prove

Theorem IV. If (1) is nonoscillatory, then

/I
tap(t)dt g -■-, 0 g a < 1.

x 4(1 — a)

This bound is sharp, as shown by the nonoscillatory equation

4x2

We choose a point x0 such that a<x0<x and write (11) in the form

/»I0 cx

I   (t - ay-2cr(t)dt     I  (/ - a.y-2a(t)dt
" a J Xn 1 1-1-?-g _ +-

(x - ay-1 (x - a)"-> 4      4(0 - 1)(1 - a)

The first term tends to zero if x—>co and x0 is kept fixed. If m = min <r(t) for

Xo^^x, the second term can be estimated from below by wi(0 —1)_1. This

leads to

0- 1 1
inf   a(t) g-1-

i,sk« 4 4(1 — a)

The left-hand side is independent of 0 and we may therefore let 0—>1. Since

the resulting inequality holds for arbitrarily large values of x0, this proves

Theorem IV. It may be remarked that for a = 0, (12) reduces to the result of

Hille mentioned further above.

For 0 = 2, (11) yields

I       Cz                    2 - a
-   I     cr(t)dt g -,
x — a J 0 4(1 — a)

which is a sharper bound than that obtainable by integrating the inequality

(8). For

/OO

p(x)dx

we find, in particular,

1      rx 1
- I   <r0(t)dt g —,
x — aJa 2

which should be compared with the fact, proved above, that a<>(x) itself

satisfies the sharp inequality cro(x) <1.
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As a further example, we prove the following result.

U^=P(X) =m2, and (1) is nonoscillatory, in (a, oo) then there exists auni-

versal constant c0 such that the inequality

p(x)dx ^ cm

holds for c = Co but not, in general, for c = cQ — e, e>0. Cq satisfies the inequalities

1
— ^ co < 3*ii2-1i2 = 1.61....
2

The lower bound for c0 follows from the consideration of the equation (13)

which is nonoscillatory in (a, °o), a>0. To obtain the upper bound, we set

y(x) = (j    p(t)dt\ , a g x g x0, v > 1/2,

y(x) = ( J    p(t)dtj , xo ̂  x^ b,

in (6). This leads to

—(j7«y<)   +(£ tm)- }jm

g v2 I    p2l   I    p(t)dt\     dx ^ v2m2 I    pl   I    p(t)dt)      dx

v2m2   /  rx" V'-1

Letting b—> oo and choosing x0 such that

/.xo               2i< + 1   /»M                     /*<°                2v — 1   /•M
j(/)<f< = —-        p(t)dt, p(t)dt = —-        p(t)dt,

lv        J a J x„ lv        J a

we obtain

Setting v = 3ll2/2, we arrive at the upper bound for c0.

These examples may suffice to illustrate the use of the inequality (6). An

arbitrary number of other necessary conditions for the nonoscillation of (1)

can be obtained by different choices for the function y(x) in (6).

3. A comparison theorem. Let p(x) and q(x) he continuous in an interval

[a, b], and consider the differential equations
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(14) u" + p(x)u = 0,

(15) v" + q(x)v = 0.

According to the Sturm comparison theorem all solutions of (15) must change

their sign in (a, b) if u(a) =u(b)=0 and p(x)^q(x) (but not p(x)=q(x))

throughout the interval. The theorem of this section is based on the com-

parison of the integrals of the functions p(x) and q(x), rather than that of the

functions themselves. We shall prove the following two different versions of

this result.

Theorem V. Let p(x) be non-negative and continuous and let q(x) be con-

tinuous in [a, b]. Further, let

(16) f p(t)dt S   f  q(t)dt
J a J a

for a<x<b. 2/X and u denote, respectively, the lowest eigenvalues of the differen-

tial systems

(17) d," + \p(x)<p = 0,        <b'(a) = <b(b) = 0,

(18) i" + p.q(x)+ = 0,        V(a) = +(b) = 0,

then

u ^ X

where equality is excluded unless p(x) and q(x) coincide.

Theorem Va. Let p(x), q(x) (p(x)^q(x)) be continuous and p(x)^0 in

[a, b], and let the equation (14) have a solution u(x) for which u'(a) =u(b) =0.

If (16) holds for a<x<b and v(x) is a solution of (15) for which v(a)>0,

v'(a)^Q, then at least one of the functions v(x), v'(x) must change its sign in

a<x<b.

To prove Theorem V, we multiply the equation (17) by <f> and integrate

from a to b. We obtain

/* 6 n b r, b /* br~     n x ~\t

I   <b'2dx = -  I   4>d>"dx = X I   piJdx = X |        I    p(t)dt   <p2dx

= X L2(x) J 'p(t)dt\    - X J      j Xp(t)dt\ (<b2)'dx

= ~xj      f'p(t)dt\(4>*)'dx.

Since X is the lowest eigenvalue of the system (17), <b(x) does not vanish in

a<x<b, and we may therefore assume that <b(x) ̂ 0. In view of (17) and the

fact that p(x) ^0, it follows therefore that <p"(x) ̂ 0. Because of <j>'(a) =0, we
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may thus conclude that (p'(x)gO throughout the interval. Combining this

with (16), we find that

- j       j   P(t)dt\ (cb2)'dx = - J"      J 'q(i)dt\ (<p2)'dx

= \<p\x) J q(l)dt\   + j q(x)cp2dx = j q(x)<p2dx.

Hence

/b n b
4>'2dx ̂  X I   q(x)cb2dx.

On the other hand, it follows from the minimum property of the lowest eigen-

value of the system (18) that

/• 6 /% b
q(x)4>2dx <        cp'2dx (p(x) f£ q(x)).

a J a

We thus find that p,<X, which is the assertion of Theorem V.

Theorem Va would be an immediate corollary of Theorem V if we had the

additional hypothesis q(x)}^0. In order to avoid this assumption, we use a

slightly different argument. From (14) and (15), we obtain

v(b)u'(b) + u(a)v'(a) = [vu' — uv']a =        (vu" — vu")dx =        (q — p)uvdx
J a J a

=   | I    (g(t) - P(t)dl   uvdx.

Integrating by parts and noting that the integrated part vanishes, we find

that

v(b)u'(b) + u(a)v'(a) =   f        f   (p(l) - q(f))dt\(vu' + uv')dx.

We now assume that neither v(x) norz/(x) change their signs in a <x<b. Be-

cause of v(a)>0, v'(a)^0, we will then have t>(x)S;0, v'(x)^0. As shown

above, we have also u'(x) <0 if u(x) is non-negative in a<x<b. This may be

assumed to be the case, since otherwise we could replace b by the first zero

of u(x) at the right side of a. Utilizing (16), we thus find that v(b)u'(b)

+u(a)v'(a) >0 unless £(x) and (?(x) coincide. But this is absurd, since v(b) >0,

u(a) >0, u'(b) <0, v'(a) <0. At least one of the functions v(x),v'(x) must there-

fore change its sign in (a, b), and Theorem Va is proved.

To illustrate the application of Theorem V, set q(x)=p(x)+a(l—3x2),

a = 0, 6 = 1, a>0, p(x) =p( — x). Since
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q(t)dt =   I    p(i)dt + ctx(l - x2),
o Jo

(16) holds, and we have p<X, where X and u are, respectively, the lowest

eigenvalues of the systems

u" + \p(x)u = 0, u(±l) = 0,

v" + p.[p(x) + a(l - 3x2)]v = 0, (v±l) = 0.

In particular, if we set p(x) =x2, a = l/3, we have q(x) = 1/3. Hence, p = 37r2/4

and we obtain X>3/4ir2, where X is the lowest eigenvalue of u"+\x2u = 0,

u(±l)=0. This is considerably better then the estimate X>7r2/4 obtained

from x2Sl and the Sturm comparison theorem.

4. A general oscillation criterion. We recall from §1 the definition of the

oscillation constant p of the equation

(19) u" + q(x)u = 0, q(x) 5; 0,

where q(x) is continuous for x>0. p is defined by the condition that

(20) u" + \q(x)u = 0

is oscillatory for X>p and nonoscillatory for X<p. We shall also refer to u

as the "oscillation constant of the function q(x)". As pointed out in §1, the

cases in which p= oo or p = 0—the strongly oscillatory and the strongly non-

oscillatory case—can be completely characterized by the conditions given in

Theorem II. We may therefore restrict ourselves to equations with finite

positive u, i.e., conditionally oscillatory equations.

In the following theorem, the oscillatory behavior of the equation (1) is

compared with that of a conditionally oscillatory equation whose oscillation

constant is known.

Theorem VI. Let p(x) and q(x) be continuous and non-negative for 0 gx < oo

and denote by u (0 <p < oo) the oscillation constant of q(x). If A and B are defined

by

(21) ,4 = lim sup f  j    p(t)dt I    I    q(t)dt\

and

(22) B = lim inf (  f   p(t)dt /   j    q(t)dt),

then the equation (1) will be oscillatory if B>u and nonoscillatory if A <u.

Since A=B = 1 if p(x)=q(x), both bounds are evidently sharp. If q(x)

= x~2, then m = 1/4, fHq(t)dt = x-\ A =g*, B=g* (as defined in (2) and (3)),

and Theorem VI reduces to the result of Hille [4] quoted further above. We
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remark that Theorem VI may, in turn, be deduced from Hille's Theorem VII

the proof of which is based on the consideration of a certain nonlinear integral

equation. The direct proof given here employs linear methods.

Suppose (1) is nonoscillatory. There exists a positive a such that (1) is

nonoscillatory in (a, co) and, as shown in §2 (formula (6)), we have

/. 6 /» 6p(x)w2dx <   I    w'Hx,
a J a

where w(a) =0, w(x)ET>1 in (a, oo) and w(x) is otherwise arbitrary. With the

notation

(24) cr(x) = (f~p(()dt/ f~q(()dt),

we have

p(x)w2dx = -   I       cr(x)   I    q(t)dt    w2dx

/% oo /% 6 r~    /»oo

=   - d(b)w2(b)   I     ff(«)<a+    I    cr(x)\     I     $(«)<&    (w2)'<fx.

If a is taken large enough, we will have a(x) ^B — e, where B is defined in (22)

and e is positive and arbitrarily small. If w(x) is a function which increases

with x, it follows therefore that

I    p(x)w2dx ̂ - a(b)w2(b)   I    $(/)* + (F - e)   I I    g(0«ft   (w2)'(fx

/» oo r» 6

?(0^+   I    q(x)w2dx.
b "a

This relation holds for any 6 which is larger than a. As (22) shows, there exist

arbitrarily large values of 6 for which <r(6) ̂ B + e. For such 6, we obtain

.»6 /»oo f* b

I    p(x)w2dx ^ - 2ew2(6)   I    ?(/)<*/+(£ - «)   I    q(x)w2dx.

We now identify w(x) with the first eigenfunction of the system

(25) w" + vq(x)w = 0,        w(a) = w'(b) = 0.

We then have w'(x)^0 (a^x^b),

/» b /» 6
q(x)w2dx =        w'2dx

a Ja

and
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wi(b) = ( f w'dxj   £ (b - a)  f w'2dx,

whence

/,b                                       /.»           pb              B — t  rh
p(x)w2 ^ - 2c(b - a)  I    q(t)dl I    w'2dx -\-■ I    w'2dx.

a                                                                 J b                   J a                                 V        J a

Combining this with (23), we are led to the inequality

/B - eq(t)dl H-
J                             v

If X=p —e, the equation (20) is nonoscillatory. In view of (8), we thus have

Ox - e)(b -a)  f   q(t)dt g 1,
J b

and therefore

2e B -e
1 ^-+-

p — t v

For X=p + e, the equation (20) is oscillatory. Writing the system (25

in the form

w" + (——) (m + e)q(x)w = 0, w(a) = w'(b) = 0,

we may therefore conclude from Theorem I that v (p. + e)_1 g 1 if b is taken large

enough. It follows that

2e B-€
1=-+ -T--

p.  —   t p + €

Since e may be taken arbitrarily small, this shows that, for a nonoscillatory

equation, the quantity B defined in (22) cannot exceed p. This establishes the

first part of Theorem VI.

The truth of the second half of our assertion becomes apparent if we ex-

press our result in terms of the oscillation constant p0 of the function p(x).

By the definition of p0, the equation u" + (jjt0 — S)p(x)u = 0 will be nonoscil-

latory if 5 is an arbitrarily small positive constant. The preceding argument

will therefore remain valid if the quantity B is replaced by (p.o — b)B, and we

may reformulate our result in the following manner.

Theorem Via. Let p(x) and q(x) be continuous and non-negative in (0, oo)

and let p0 and p, denote the oscillation constants of p(x) and q(x), respectively.

2/^05^0,00,  p^0,oo, and B is defined by (22), Z^ew
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(26) u0B g p.

To establish the second half of the assertion of Theorem VI, we exchange

the roles of p(x) and q(x). Since, in view of (21),

lim inf [   I    q(x)dx I    I    p(x)dx) = —,

(26) yields the inequality p^p0A. If (1) is oscillatory, we must have p.o = l

and, therefore, u^poA ^A. This completes the proof of Theorem VI.

5. Asymptotic estimates for the number of zeros. If the equation (1) is

oscillatory and

(27) (-^ -»0
\(p(x)yi2J

as x—>oo, and N[a, b) denotes the number of zeros of a solution y(x) of (1) in

the interval (a, b) then, as shown by Wiman [10] (for a different proof, see

[3]),

(28) N[a,b]-f   (p(x)yi*dx,
ir J a

where the symbol ~ means that the ratio of the two quantities tends to 1 as

6—»oo. In the present section we shall develop a procedure for the derivation

of more general estimates of this type. Again, our treatment will be based on

the eigenvalue problem for the equation (4') with suitable boundary condi-

tions. Our basic result is stated in the following

Lemma. Let a = ao, ai, • • ■ , a„ = b (a0< ■ ■ ■ <an) be consecutive zeros of

a solution of (I) and let X =X„ be the nth eigenvalue of the system

(29) u"(t) + \q(t)u(t) = 0, «(0) = u(T) = 0,

where q(t) is non-negative and continuous in [0, oo). If t = t(x) and T are defined

by

(30) f\q(s)yi2ds = [x(p(t)y'2dr,
J 0 J a

(3i) [T (q(s)y2ds = fb (p(t)y»dt,
J o J a

and we have

\dV      1      "I       dV      1      ll
(32) —-W^M fora^x^b,

\dxl(p(x)yi*A    dtl(q(t)yitM
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then

(33) | (Xn)1'2- l|   £ —M.

This result has the character of a comparison theorem. To obtain from

(33) a useful estimate for the number of zeros it is, of course, necessary to

solve the eigenvalue problem (29), and there are not many cases in which this

can be done explicitly. On the other hand, each function q(t) for which the

problem (29) can be solved leads to an estimate for the number of zeros of the

class of oscillatory equations (1) for which (32) holds. For the sub-class of

equations for which Af—>0 for a—>oo, (33) will yield an asymptotic formula

for the number of zeros.

To prove the lemma, we consider the Rayleigh quotient

(34) J = J(y) =  f y'Hx /  f p(x)y2dx,

where y(x)EC1 in [a, 6]. Writing y = wp and introducing a new variable

t = t(x), we obtain

I   (d>u' + ud>')2dx

J = —h-

f p<p2u2dx
J a

rTY /dt\li2 du /dxyin2

ililj   7, + ̂ (lJ ]"'
CT       dx
j    pd>2 — u2dt

J o dt

where /(a)=0, t(b) = T, u(t)=v(x), and d>' = d4>/dx. We now identify t = t(x)

with the transformation given by (30) and we set <j>2 = dx/dt (<b>0). An ele-

mentary computation shows that

2       dd> dx      d r      1      ~[      d T      1      "I

(q(t))112 Tx~dt~ dx\_(p(x)yi2i ~~ 111 (?(/))1/2-T

We thus have the identity

,a   , j.y+?[®'-(p)j-)''
(35) / =-1

|    qu2dt



442 ZEEV NEHARI [July

where primes denote differentiation with respect to the variable on which the

function depends explicitly.

Using (32) and the Schwarz inequality we obtain

J ^    l    u'2dt j   j    quHl + m( j    q1'2 \uu'\dt /   j    qu2dtj 4-M2

g    f   u'2dt j   f   qu2dt + M (  f   u'Hl I   f   qu2dl\     + — M2

((  CT I   CT        V'2     M\2

or, with the notation

(36) Jx = Jx(u) =   f  u'2dt /   )    qu2dt,

(37) (J(y))ll2^(Ji(u)yi2 + M/2-

To show that we have also

(/(y))1'2^ (Ji(u)y>2- M/2,

and thus

(38) |(/(y))1/2-(/i(«))1/2|   = M/2,

we remark that we may assume (Ji)ll2> M/2, since otherwise the relation

holds trivially. We then have

0 = (A)1'2-M ^ (Ji)1'3 - ( f  $\u2dl j   f   qu2dtj    ,

where d> denotes the quantity estimated in (32). Hence

((Jiy<>-jM)2

g 7i- 2(Jx)ll2(  f   <p2qu2dt I   f   qu2dtj      +   f   <p2qu2dt /   \    qu2dt

g Ji - 2  f   91'21 <puu' \dt /   f   quHt +   \    d>\u2dl I   \    qu2dt
J q /Jg Jo I       J o

=   f   (\u'\   - qV2\u<p\)2dt /   f   qu2dt

g   f   (u'+ qll2<pu)2dt /   j    quHt.
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In view of (35) and the definition of cp, we thus find that (Ji)1l2^Jl'2 + M/2.

Together with (37), this proves the inequality (38).

According to a well-known result of Courant [l], the Mth eigenvalue of

the problem (29) is given by

(39) X = sup\(gi, • • • , gn-i),

where

(40) \(gu--- ,gn-l) =MJi(w),

w(t)ECl[0,T],g,EC1[0,T](v = l, ■ ■ ■ ,n-l),w(0)=w(t)=gr(0)=gv(T)=0,
Ji(w) is defined by (36), and

(41) f   w(t)g,(t)dt = 0, v = 1, •••,»- 1.
Jo

In (40), the gi, ■ ■ • , gn-i are given and w ranges over all admissible functions

which satisfy (41), while in (39) the gi, ■ • ■ , gn-i range over all possible sets

of « — l admissible functions.

Similarly, the nth eigenvalue of the system

(42) xp" + Ap(x)+ = 0, +(a) = «K6) = 0

is given by A„ = sup A(Ai, • • • , h„-i), where

A(hu ■ • • , h„-i) = inf J(cj>),

(43) r"
I   cp(x)h,(x)dx =0, v = 1, ■ ■ ■ , n — 1,

" a

tp(x), hi(x), ■ ■ ■ , hn-i(x) are admissible functions and J(cp) is defined by (34).

(43) may be written in the form

J $[x(t)]\ h,[x(t)]-^\dt = 0, v= 1, •••,»- 1,

where the variables x and / are related by means of (30), and (41) may be re-

placed by

J    w[<(*)][«,[/(*)]— jdx = 0, v= 1, •••,»- 1.

Since the transformation x—rt carries admissible functions in a^x^b into

admissible functions in O^t^T and vice versa, this shows that there exists

a (1, 1) correspondence between the totality of functions g„ which are used in

the side conditions (41), and the class of functions h, used in (43). The same

is true of the class of functions w and the class cp, and it follows therefore from

(38) and a standard argument [l] that
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(44) |(A„)1/2- (Xn)1/2|   g M/2-

By a classical result, the wth eigenfunction of the system (42) has precisely

w + 1 zeros in [a, b], including those at x = a and x = b. By our assumption,

the same is true of one of the solutions of (1). Since there cannot exist two

different values of A for which (42) has a solution with these properties, we

must have A» = l. In view of (44), this completes the proof of the lemma.

As stated above, the usefulness of the lemma depends on our ability to find

the eigenvalues of the system (29). The two simplest cases are those in which

q(t) = l and q(t) = /32(Z + l)~2. If q(t) = l, (29) reduces to u"+\u = 0, w(0)

= u(T) =0, and the corresponding eigenvalues are

(7rw \2       f          irn )2

T)- T'- '
.J a

where (31) has been used. Since (<p1/2)'=0, an application of the lemma will

thus give the following result

Theorem VII. Let p(x)>0, p(x)EC'(0, <x>), and let a0 = a, alt • ■ ■ ,an = b

(0<ao<ax, ■ ■ ■ , <a„) be n + 1 consecutive zeros of a solution of (1). If

\(    i   VI
(45) (-)    ^ 22?, a^x^b,

I W(x))"2/ I

then

1 - R rb 1 + R rb
(46) -  I    (p(x)y>2dx ^ n ^-        (p(x)y2dx.

TT J a IT J a

This contains the above-mentioned result by Wiman as a special case. In-

deed, if (p~1/2)'—->0, we may take R = t, where e is arbitrarily small for x^c,

provided c is taken large enough. Taking &>c and letting b—><*> for fixed c

we obtain (28), provided (p(x))112 is not integrable in (a, oo). This is indeed the

case since, as (46) shows, (1) is nonoscillatory if Ja°p1,2dx< oo and the condi-

tion (45) holds with a finite R.

In the second example we set q(t) =/32(Z + l)~2 (fi>2). By (31), we have

piog(T+ 1) =  f (p(x)y2dx,
J a

and the eigenvalues of (29) are

1        / ttw \2 1 ten 12

.J a
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Since (<71/2)'=0_1, this proves the following result.

Theorem Vila. Let n, p(x), a, b have the same meaning as in Theorem VII.

If

I-)   - 2a   < 2R 0 < a < 1, a< x< b
\(p(x)y<2J

then

(d _ i?)2_a2)/lJ (P(x)yiHx\

S n2 = ((1 + R)2 - a2) (— f (p(x)y2dx\ .

If C*_1/2)'—>2a, this reduces to the asymptotic formula

(1 - a2)1'2   r b

n~--— I    (p(x)y<2dx
IT J a

which can also be obtained by applying Wiman's formula (28) to a suitably

transformed equation (1)  [9].
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