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1. Introduction. In a previous paper, [5], we investigated the behavior as

e—»0+ of the solutions of the system of real nonlinear differential equations

dx dy
(1.1) — = /(<, x, y, «), e — = g(t, x, y, e)

dt dt

where x and y are vectors of m and n components respectively, which satisfy

initial conditions (at / = 0) close to those of a known solution, x = p{t),

y = q(t)EC (Og/gT), of the system

(1.2) — = f(t,x,y,0),        0 = g(t, x, y, 0).
at

Here we shall show that those solutions of (1.1) whose initial y vector lies on

a certain "stable" initial manifold, which depends on e and the initial x vec-

tor, are very well approximated for small t and e by the corresponding solu-

tions of a boundary layer equation, in which the initial x vector enters as a

parameter, associated with (1.1). .Moreover, it will also be shown that as

e—>0+ the stable initial manifolds associated with (1.1) tend to the stable

initial manifold associated with the boundary layer equation.

Problems of this nature, i.e., problems in which there is a system of differ-

ential equations possessing the property that the setting of a parameter equal

to zero reduces the order of the system, have been treated under various

hypotheses by several authors, e.g., [2; 3; 4; 5; 6 ] and [7 ]. The same hypoth-

eses as in [5] will be assumed here. We now state these hypotheses as well as

the principal theorem of [5]; this will then serve to introduce the problem

and the results of the present paper.

Let fx=fz(t, x, y, e) be the matrix with dfi/dxj in the ith. row andjth col-

umn and let/x(<) be the matrix fx{t, p(t), q(t), 0). The matrices /„, gx, gy as

well as /„(/), gx{t), g„(t) are similarly defined.

HI:/, g, fx,fv, gx, gv are continuous in (t, x, y, e) for Og/gT if | jc — p (/) |

+ |y — q(t)\ +« is sufficiently small.

H2: There exists a real nonsingular matrix P(/)GC'(0^;gr) such that
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/Bit)       0 \
^« "( o    CM) (os,Sr)

where B(t) is an n\ by n\ matrix each of whose characteristic roots has a nega-

tive real part for 0 ^ / :£ T, and where C(t) is an m2 by ni matrix each of whose

characteristic roots has a positive real part for 0^t^ T. Thus n =«i+«2-

HSrg^WfxWGC'COg^r).

Theorem 1. There exists a positive constant 71 which is independent of e

and an n\ dimensional manifold, S(a, e), in y space which depends continuously

on (a, e) for \a\ ^yi, 0<e^7i, such that if the initial vector for x is p(0)+a

and for y lies on S(a, e) then the solution x = x(t, a, b, e), y = y(t, a, b, e) of (1.1)

(where b= \bi, ■ ■ • , bni} are curvilinear coordinates on S{a, e)) is unique, exists

over the interval O^t^T, and satisfies the inequalities

I x(t, a, b, e) - p{t) I   g K{ I a\  + e I b I   + «(«)) (0 ̂  t£ T),

I y(t, a, b, e) - q(t) \    g K( | a |   +e\b\   +   \b\ e-"'*' + w(«))

where K and a are positive constants independent of e, and where co(e) is a con-

tinuous function of e for 0 ^ e ̂  71 with w(0) = 0.

The manifold S(a, e) is defined by

(1.4) Sia, e) =   iy \ y = q(0) + P(0) ( ) - g~\o)gz(0)a\
(. \z(a, b, e)/ )

where b= {b\, ■ ■ ■ , bni) (as above), and where 2= fzi, • • • , z„2} is a con-

tinuous vector function of (a, &, e) for \a\ =£71, |fc| 2*71, 0<e^7i. The

S(a, e) are the stable initial manifolds referred to above.

In [5 ] it was also shown that for any e in 0 < e ̂ 71 the initial y vector does

not have to lie precisely on S(a, e) for the solution of (1.1) to exist over the

interval O^ttkT. On the other hand, it was shown that the initial y vector

corresponding to any solution of (1.1) which does stay for O^tST inside a

sufficiently small tube (\x— p(t)\ SsX, \y — qit)\ ^X where \>0 and inde-

pendent of e) surrounding the solution x = p(t), y = q(t) of (1.2) must be

"close" to S(a, e), and that, in fact, this "closeness" becomes exponentially

small as e—>0 + .

The behavior of the manifolds S(a, e) as e—>0 + , which was not investi-

gated in [5] and whose analysis seems to require essentially different tech-

niques from those employed there, will be obtained here as a by-product of a

more general result (Theorem 3) concerning the following boundary layer

equation (or, more accurately, system) related to (1.1):

A   *

(1.5) 6-7- = g(0, p(0) + a, y*, 0).
at
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The motivation for considering (1.5) in order to investigate the solutions of

(1.1) for small t and e is evident when one observes that g is continuous in its

arguments and that dx/dt is bounded. The latter follows from (1.3) and the

first equation of (1.1).

We remark at the outset that the constant K and the function co(e) will

be used generically, i.e., they may not be the same in each inequality, but

they will have the same properties as in (1.3). However, it may be assumed

without loss of generality that the constant 71 is the same throughout—as

well as the constant y2, which first appears in Theorem 2.

Setting r = t/e in (1.5) yields

(1.6) -j- = g(P,p(0) + a,y*,0).
dr

In §3 the proof of the following stability theorem for (1.6) will be indicated:

Theorem 2. There exists a constant 72 >0 and an n\ dimensional manifold,

S*(a), in y* space which depends continuously on a for \a\ ^71, such that if the

initial vector for y* lies on S*(a) then the solution y* = y*(r, a, b) of (1.6) (where

b={bi, • ■ • , bni} are curvilinear coordinates on S*(a)) is unique, exists for

0 ^r < 00 , and satisfies the inequality

(1.7) I y*(r, a, b) - q(0) \   ^ K( \ a \   +   \b\ e""'2) ^ y2     (0 g r <  00).

Furthermore, any solution, y*(r), of (1.6) however near S*(a) but not on S*(a)

at r = 0 cannot satisfy \y*(r) — q(0)\ ^Jzfor r^O.

The manifold S*(a) is defined by

(1.8) S*(a) =  jy* I y* = q(0) + P(0) (*     \ - g~\o)gx{0)a}

where z* has w2 components and is a continuous function of (a, b) for | a\ ^71,

\b\ ^71. It is important to note that S*(a) does not depend on e. Clearly

y*(t/e, a, b) is a solution of (1.5).

In the following theorem, whose proof is given in §4, the solutions of (1.1)

and (1.5) are related:

Theorem 3. Given any a>0 there exists a /3=/3(a)>0 such that for \a\ ^=71,

\b\ ^71 (where 71 is independent of a)

x(t, a, b, i) — *(0) — a\   ^ a,
(1.9) ,

I y(t, a, b, e) - f(t/e, a, b) \   ^a

if 0^/^/3, 0 <e ^/3, where x, y, and y* are the same as in Theorems 1 and 2.

From (1.9) we see that those solutions of the boundary layer equation

which start on S*(a) do indeed yield good approximations for small t and e
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to those solutions of the system (1.1) with initial y vector on S(a, e). More-

over, upon setting 2 = 0 in the second inequality of (1.9) and using (1.4) and

(1.8) one easily has that z(a, b, e)—>z*(a, b) uniformly in (a, b) as e—>0 + , and

hence that S(a, e)—>5*(a) as e—>0 + . It may be mentioned, however, that

while S*(a) is the limit of the stable initial manifolds for (1.1) it is in general

not itself a stable initial manifold for (1.1). In particular, one can construct

examples such that the solutions of (1.1) with initial y vector on S*(a) are

unbounded as e—>0 + .

2. Preliminaries. In this section we give that part of the machinery of

[5] that is used in the proof of Theorem 3. The proofs of all unproven state-

ments in this section may be found in [5].

Introducing the change of variables

(2.1) x = p(t) + f,        y = q(t) + P{t) (*\- g-\t)gx{t)l

where 77 and f have n\ and w2 components respectively, in (1.1) yields

-i = auk + ^(Ou + ^,(/)r + B(t, t v, r,«)
at

dr>
(2.2) e— =B(t)r, + R(t,t,V, f,€),

at

• t - cwr + so, f, v, r,«)
a/

where

Ait) = /,(<) - Mt)g~\t)gx(t),        Ayit) = Mt)P1(t),        At(t) = Mt)Pt{t)

and where P = (P1P2) —Pi and P2 have «i and «2 columns respectively. (The

5 of (2.2) is, of course, different from the manifold Sia, e)). H, R, and 5

have the following properties which for brevity are stated only for H: Given

any 5>0 there exists a7=y(j)>0 such that

(2.3)  I ho, j,q, r,«) - zra, £«,f,€) I s«(I«- f| + I v - v\ +1 r - f 1)

for 0^2^ P if |£|, |^|, \r]\, \rj\, |f |, |f|, e 5^7(8). Furthermore,

(2.4) I Hit, 0, 0, 0, c) I   £ «(«) (0 g / g r)

if € is sufficiently small.

Let Xit), U(t, «), F(/, e) be fundamental matrices for

d£ dn dt
— = Ait)i,       e - = 5(0u, 6 -f = C«)f (O^^T)
0/ at at

respectively, and let
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0(1, s) = X(t)X-Ks),

<t>(t,s,e) = U(l, e)U~Ks, c) (0 ^ t, s ^ T),

f«, s, e) = V(t, €)V~Ks, «).

Then

| 0(1, s) | g K                                  (Og.t,s£T),

(2.5) [<£(/, 5, e) | g £*-»<»-•>/«                 (Ogj^^r),

| ^(*, j, e) | ^ Ke-'^'-^i'                  (0 ^ t ^ s ^ T)

where tr is the same as in (1.3).

There exist positive constants 71 and 7» which are independent of e such

that for |a| ^71, \b\ ^71, 0<e^yi the system of integral equations

£(*, e) = 0(t, 0)a +  f 0(t, s){A1(s)rj(s, c) + ^2Wf(5, e)
•^ 0

+ H(s, %(s, e), ij(s, e), f(s, e), e)}<fc,

(2.6) 1    /•«
i?(/, e) = 4>(t, 0, e)H-I    <j>(t, s, e)R(s, £(s, «), 7j(s, e), f(j, e), e)<fs,

€  J0

1   rT
f(«, «) =-I    M, *. e)S(s, %(s, e), v(s, «), f(s, e), «)<fj

e J,

has a unique solution, £ = £(£, a, b, e), r] = ij(t, a, b, e), £ = f(t, a, b, e), which

satisfies the inequalities \l-(t, e)| ^72, \i)(t, e)| ^72, \$(t, e)| ^72- The func-

tions I, ij, f also satisfy the inequalities

I \(t, a,b,e)\   £K(\a\   +e\b\   + *(•)) g   7* (0 ^ / ^ D,

I ij(<, a, 6, 0 I ,   I ?(<, a, J, e) I   ̂  JST( I a I  + « | ft | +  | 6 | e"""2' + «(e)) g 72.

The solution x, y of (1.1) referred to in Theorem 1, is defined by setting

£ = £, 17 = ^, f = f, in (2.1). The function z(a, b, e) of (1.4) is defined by

1   rT
z(a, b,t) =-I    ^(0, s, t)S(s, l(s, a, 6, e), jj(s, a, ft, e), f(s, a, b, e), «)&.

e  J0

3. Proof of Theorem 2. Introducing the change of variables

(3-1) y* = q(0) + P(0) (M - g~v\0)gx(0)a

where rj* and f* have «i and «2 components respectively, in (1.6) yields, after

a little computation,

(3.2)     —- = B0V* + 12(0, a, ,*, r*. 0),      —- = C0f* + 5(0, a, „*,{■*, 0)
»r or
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where Po=P(0), Co = C(0) and where R and S are the same as in (2.2). We

have the following lemma concerning (3.2):

Lemma. There exist positive constants y\ and 72 and an «i dimensional mani-

fold, S'ia), in {t}*, f*} space which depends continuously on a for \a\ ^71,

such that if the initial vector for  {17*, f*}  lies on S'ia) then the solution 77*

= tj*(t, a, b), f * = f *(t, a, ft) 0/ (3.2) is unique, exists for 0 ^t < =0, arad satisfies

the inequalities

(3.3)   I jj*(r, a, J) I ,   | f*(r, a, &) |   g 2T( | a |  + | b | e""'2) ^ T2   (0 ^ t < «,).

Furthermore, any solution rj*(r), f*(r) 0/ (3.2) however near S'ia) but not on

S'ia) at t = 0 cannot satisfy | t>*(t) |, | f *(t) | ^.yifor 1 2^0.

The manifold S'ia) is defined by

S'ia) =  jQ I ,* - J, f* = !*(«, i)|

where

z*(a, i) = -   I    6-^5(0, a, rf (ir, a, b), ?*(t, a, J), 0)<fx.
J 0

The solution y* of (1.6), referred to in Theorem 2, is defined by setting

V* — v*i r* = F* m (3-1). Clearly Theorem 2 is an immediate consequence of

this lemma.

For a = 0 the lemma is a specialization of a well-known theorem on con-

ditional stability, see e.g., [l, p. 330]. The general case, i.e., a not necessarily

zero, requires a separate proof as it is not in general true that P(0, a, 0, 0, 0)

= 0, 5(0, a, 0, 0, 0) =0. We shall not give this proof, however, as only rather

minor changes are needed in the proof just cited for a = 0 in order to extend

it to the general case.

It is necessary for our present purposes to state that rj*ir, a, b), f *(r, a, b)

is the unique solution of the system of integral equations

,*(T) = eB°*b +   \    e^-^RiO, a, tj*(tt). f*(ir), Q)dir,
•J 0

f*(r) = - J    <rc°<—'5(0, a, ,•(*). f*W, 0)d*

such that if |a| ^71, \b\ ^71 then |i?*(r)| , |f*(r)| ^72 for r^0.

4. Proof of Theorem 3. The first inequality of (1.9) is an immediate con-

sequence of the boundedness of dx/dt which we have mentioned earlier in

connection with (1.5). In order to prove the second inequality of (1.9) we

shall obtain a similar one for pit, a, b, e) = | rjit, a, b, e) —r/*(//e, a, b)\

+1 fit, a, b, t) —f*it/e, a, b) \ and then use the changes of variables (2.1) and



1957] MANIFOLDS OF NONLINEAR DIFFERENTIAL EQUATIONS 363

(3.1). Upon setting r = t/e, iv = s/e and replacing rj*, f* with fj*, f* in (3.4) one

obtains

i r'
fj*(t/e, a, b) = eB°'i'b -\-I   eB»('-«"«i?(0, a, fj*(s/e, a, b), £*(s/e, a, b), 0)ds

6    Jo

f*(//e, a, 6) =-f   e-c>l-'>l>S{0, a, fj*(s/t, a, b), f*(s/e, a,b), 0)ds.

The abbreviated notation

l(t,e) = Ut,a,b,e),        fj(t, e) = f,(t, a, b, «),        ?(<, e) = ?(/, o, i, f)

**(*/.) = fj*(t/e, a, b),        f*(t/e) = f*(t/e, a, b)

and p(t, e) =p(t, a, b, e) will be used in the following. From (2.6), with £, fj, f

replacing £, v, f, and from (4.1) one has

V(t, e) - **(*/e) = Ei + £2 + £3 + £4,

f(<,«) - ?*(</«) = £6 + £e + £7 + £8

where

„  „ ,    £1-f «J"('-"'{J2(0I a, Us, e), f(*. «), 0)
(4.3a) « Jo

-U(0, a,v*(s/e),f*(s/e),0)}ds,

(4.3b)   £2 = — f  {*«, 5, e) - ««•<—>/.} jj(o, a, $(,, e), f(5, .), 0)*,
« ^o

£3 = — f 0^, 5, «){*(*, $(5, «), fj(s, e), ?(*, e), e)
(4.3c) e J0

-i?(0, a, fj(s, e),f(s, e),0)\ds,

(4.3d)    £4 =  {4>(l, 0, e) - eB°">}b,

,A      ',    £5 = - f   e-c»(-'>/«{5(0, a, #•(,/«), r*(5/e, 0)
(4.3e) e J 1

- ^(O, a, i?(5, e), ?(*, «,) 0) }<fc,

(4.3f)     £6 = - f   {«-*<-0/. - *(/, 5, 6) }S(0, a, fj(s, e), f(*. e), 0)<fc,

(4.3g)   £7 = - f  *(/, 5, 6) {S(0, a, v(s, «), f(», e), 0)

- 5(5, |(5, e), rj(5, e), f(s, e), «) }<f5,

(4.3h)   £8 = — f   e-c°('-<»<S(Q,a,v*(s/e),f*(s/e),0)ds.
t   J T



364 J. J. LEVIN [July

The hypothesis on the characteristic roots of Bit) and Cit) imply the well-

known inequalities

(4.4) |eS("|- |e_Co'|   £ Ke~« it ^ 0)

where without loss of generality we may assume that a is the same as in (2.5).

Let 8>0, we shall define 8 precisely later, then from (2.3), (4.3a), (4.3e),

and (4.4) we obtain

KS   r'
(4.5a) \El\   g- I    e-°u-')i'Pis,t)ds,

e   Jo

KS    rT
(4.5b) |E,|   g-       e-'t'-'V'pis, t)ds

€     J t

for O^t^T, 0<e^7i if \a\, \rj\, \v*\, |f|. |f*|^7(S). Expressing the
integral in (4.5b) as the sum

K8   /*'+<1/2 KS   rT
- I e-'(a-'u'pis,t)ds ^-I        e-"<«-"/«p(s, e)ds

e    J t t   J t+clli

and observing that (2.7) and (3.3) imply that the second of these integrals is

bounded by w(e) for t^T/2 and e^min (71, P2/4), one has

,      ,       KS   f'+<1/2
(4.5c) |£B|   ^- I er°i'-r>i*p(s,t)ds + wie)

e    J t

for 0g/gP/2, 0<«^min (71, P2/4) if \a\, \f,\, \rj*\, \f\, \f*\ ^7(8).
In the following hit) will be used generically to denote a continuous func-

tion of / which is defined for 2 3:0 and sufficiently small and which vanishes

at 2 = 0.

We shall now obtain two inequalities, (4.8) and (4.12), which are similar

to the inequality

(4.6) I (j>it, s, e) - eB«K<-.)/. I   ^ <„(€)e-'C-*"' (0 ^ s ^ I ^ T)

obtained in [2] as a by-product of the proof of the second inequality of (2.5).

The definition oi<j>it, s, e) and the variation of constants formula readily imply

that

1   r>
(4. 7) <f>it, s, e) = e*»c«-«>/« + —       eB»('-w/<(P(X) - P„)4>(X, s, e)d\

e  J s

which, together with (2.5) and (4.4), yields (or Of^s^t^T

I <pit, s, e) - e3^-^'' I  ^ — I    «r*(«-«/« [ B{\) - B01 e-^-'^'dX
e J,

2K
g-   max    I B(\) - B0 | e-*«-<)/2«.
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Thus

(4.8) | 4>(t, s, e) - eBo((-«)/« I   g h(t)e-°('-')i2' (0 g j S < | 2).

From (2.7), (4.3b), and (4.8) we obtain

(4.9) I £21  ^ — I    I <t>(t, 5, «) - e*'11-'"' I ds g h(t) (0 ̂  t g J).
e Jo

Similarly from the definition of \p(t, s, e) and the variation of constants

formula one has

(4.10) $(t, 5, e) = e-Co(»-0/«-f e-Co(x-»/.(c(\) - C„)rA(X, 5, e)<fX
« J <

which, together with (2.5) and (4.4), yields for O^t^s^T

(4.11) I $(t, 5, «) - e-coc*-!)/. I   ^ — I    «-»»-«)/«I C(X) - Co I e-°<-'-»'2<d\.
€   J t

Making the restriction O^t^T/2, 0<e£P/4 in (4.11) yields

|^, 5, e) - e-c»(8-()/'|  ^—    max     | C(X) - C01   | ^(x-o/««-»(•-»/*«d\

_|-I e-<r(X-()/«g-1T(.-X)/2,(/X

e J H..W

if < + e1/2^5, which, together with a similar argument for t^s^t + e1'2, implies

that

(4.12) I f(l, 5, e) - e-Co(.-»/« I   g { h(l) + co(e) } e-"<«-<>/2«

for OS.t^T/2, 0<e^£2/4, *£s£7\
From (2.7), (4.3f), and (4.12) we easily obtain

(4.13) I £e I   ^ — I     I W, s, e) - e-Co(.-()/« | ds g A(/) - co(e)

for 0^gr/2, 0<e^min (r2/4, 7O.
It follows from (2.5) and (4.3c) that

I £31   =g — f e-*«->" I £(5, £(5, «), $(*, e), ?(5, e), e)
e  Jo

(4-14)
- i?(0, a, fi)(s, e), f(s, «). 0) I «fc.

Using the continuity of R and

(4.15) I Its, e) - a |   g *(*) (0 ^ 5 ^ T)
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which follows from (2.7) and the first equation of (2.6), we observe that the

term involving R in (4.14) is bounded by &(s)+w(e). Hence

| Pa |   ^—       e-"^-'~>l'his)ds + «(«).

If O^ge1'2, then

1   r< 1
_  I    e-°{-t-*)l*his)ds ^ —   max    his) ^ co(e).
e  J0 a ogjge1'2

If 0<e1/2^, then

_ I   e-"<-t-')l'his)ds g — I er't'-^i'ds
(Jo (Jo

1   r'
_|-I        e-"«-«)/<{^) + co(e)}<fe g /?«) + co(e).

e J t-.in

Thus

(4.16) | Et |   g &(<) + «(€) (Oglgr,0<e^ 71).

Similarly it may be shown that

(4.17) | Ei |   g ft(/) + w(«) (0g(^ T/2, 0 < e ^ min (Tl, P2/4)).

From (4.3d) and (4.8) for 5 = 0 one has

(4.18) |p4|   g AW (0g(g P).

From (3.3), (4.3h), and (4.4) one has

,i K  f°
\Ei\   ^ — I    e-'<-'-»i'ds.

t   J T

Hence

(4.19) |£8|   ^ «(«) (0|(g r/2).

It is now clear from (4.2), (4.5a, c), (4.9), (4.13), (4.16), (4.17), (4.18),
and (4.19) that there exists a h>0 and an €i>0, where both tx and t\ are in-

dependent of € and 8 and where <i + el/2S P, such that

(4.20a)      | rj(t, () - ij*(t/t) |   £ -        «-»<«->'«p(s, «)& + A(0 + «(e),
e   Jo

(4.20b)      | fit, e) - f*it/e) |   g - e-'<-,»'p(j, 0& + *(0 + «(«)
e   J t

if 0^/^/i; 0<e^et; |a|, | rj\ , | rj*|, |f| , |f*| ^7(8). In the inequalities that

follow the maxima are functions of t. From (4.20a) one has
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(4.21)        | ij(t,e) - fj*(t/e) |   ^ K8 max  p(s, e) +  max  h(s) + w(«).
OSsSf OSsSi

The left hand side of (4.21) may now be replaced by the maximum over

O^s^t and the right hand side increased as indicated by

max)a,s,  | ij(5, e) - fj*(s/e) | ^ K8 maxo^zt+t1'2 p(s, e)
(4-22)

+ maxoS8£( h(s) + co(e).

Similarly, (4.20b) yields

(4.23) max   \f(s,e)—l*(s/e)\   ^ K8     max     p(s, e) +  max   h(s) + <o(e).
0£sg< 0gsg/+el/s 0£sg<

From (4.22) and (4.23) it follows that

(4.24) max p(s, e) ^ K8     max     p(5, e) -+-  max h(s) + co(e)
OgsgJ OSsgi+e1'2 Ogsgf

if0g^<i;0<eg€i; \a\, \fj\, \fj*\, \f\, \f*\ ^y(B).
We now define 5 = 1/2K where K is the same as in (4.24). This determines

a value for 7(5). From (2.7) and (3.3) it is evident that the conditions | f)\,

\v*\, | ?| i | ?*| =7(5) may be satisfied by taking | a|, \b\, and e sufficiently

small. The e part of this requirement may be satisfied by taking t\ sufficiently

small.

It may be shown by induction that for any positive integer n

/1\"
(4.25) max p(s, t) g    —I        max       p(s,e)

0£s£< \ 2 /     OgsgH-neVs

+ £(V) i max + *(*) +«(«)!
ju,o\2/    (o£jS(+*«W )

where k and w are as in (4.24), if 0^+(»-l)e1/2g/i, 0<e^ti. Note that for

n = \ (4.25) reduces to (4.24), where .£5 = 1/2. After assuming that (4.25) is

true for n = m, it is an easy matter to show that it is true for n = m + l. We

omit the details. From (4.25) one has

(4.26) max p(s, e) ^ I — 1       max      p(s, e) + 2 <        max h(s) + co(e)>
OgsSt \2/    0SsS<+ne1/2 (,0SsSt+(n-l)e1/a J

ii0£t+(n-l)61t*g.t1, 0<e^€!.

Let £>0, as in the statement of Theorem 3. Let w~ be the smallest posi-

tive integer such that (\)~^<x/5K, where K satisfies p(t, e)^K for O^t^T,

0<€^7i. From the continuity of w(e) and h(t) there exist /3i(S)>0 and

/32(5)>0 such that 0gco(e)^a/5 if 0<eg/3i and 0^h(t)^a/5 if Og/gft.
Define /3(a) by
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fl.)-,,.^^,—,—,.llAJ.

It then follows from (4.26) that

(4.27) pit, () ^ a (if 0 g / ^ 3(a), 0 < ( ^ Via)).

However, from (2.1), (2.7), (3.1), (3.3), (4.15), and the definition of pit, e) one

easily obtains

(4.28) | yil, a, b, c) - f(t/e, a,b)\   ^ hit) + Kp(t, e).

The conclusion of Theorem 3 is obvious from (4.27) and (4.28).
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