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Introduction. By "the space of continuous functions" we mean the Banach

space C of real continuous functions on a compact Hausdorff space X. C, its

first dual, and its second dual are not only Banach spaces, but also vector

lattices, and this aspect of them plays a central role in our treatment.

In §§1-3, we collect the properties of vector lattices which we need in the

paper. In §4 we add some properties of the first dual of C—the space of Radon

measures on X—denoted by L in the present paper. In §5 we imbed C in its

second dual, denoted by M, and then identify the space of all bounded real

functions on X with a quotient space of M, in fact with a topological direct

summand. Thus each bounded function on X represents an entire class of

elements of M.

The value of an element/ of M on an element p. of L is denoted as usual

by/(p.)- If/lies in C then of course f(u) =p(f) (usually written J fdp), and

thus the multiplication between Afand P is an extension of the multiplication

between L and C. Now in integration theory, for each pEL, there is a stand-

ard "extension" of ffdu to certain of the bounded functions on X (we confine

ourselves to bounded functions in this paper), which are consequently called

u-integrable. The question arises: how is this "extension" related to the multi-

plication between M and L. §§6—8 (and §12) are devoted to this question. We

show that given a bounded function / on X the equivalence class of M repre-

sented by /contains two distinguished elements, which we denote by/* and

/*, such that for every Radon measure p., f*(u)=f*fdp and f*(u)=f*fdp,

where /* and /* are the lower and upper integrals of / with respect to p.

Moreover, if/is integrable for every Radon measure, then/* and/* coincide,

and we have a unique element whose value on each p, is ffdp.

In §9 we study order-convergence in M. It is in this area that M offers

its most striking immediate gain in clarity over consideration of only the

bounded functions on X. We cite two examples. The first example: The char-

acteristic functions of finite subsets of the real interval O^x^l form a

directed system which order-converges to the constant function 1, while

their Lebesgue integrals, being all zero, do not converge to the Lebesgue

integral of 1. In M, however, this directed system order-converges to an

element different from 1, and the above unsatisfactory situation disappears.

In point of fact, order-convergence is perfectly well-behaved in M: if a dir-

ected system order converges, its values on every Radon measure converge
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to the value of the limit element. The second example: Every bounded func-

tion on X is the limit under order-convergence of some directed system of

continuous functions; thus, unlike sequences, general directed systems seem

to be useless for distinguishing "nice" functions (e.g. Borel) from completely

arbitrary ones. If we turn to M, however, the elements which are limits under

order-convergence of directed systems of continuous functions are precisely

the unique elements discussed at the end of the last paragraph above.

In §11 we examine a natural locally convex topology on M, first con-

sidered, to our knowledge, by Dieudonne [4; 5]. It is essentially the coarsest

topology on M which is related to the lattice properties of M [13]. M is com-

plete under this topology [4]. Our principal result is that under the topology

C is dense in M.

§12 makes a beginning on the detailed relationship between M and inte-

gration theory as it is usually carried out on the bounded functions on X.

Part of the work on this paper was done during the summer of 1955,

while the author was a guest of the Mathematics Department at the Univer-

sity of Chicago.
1. Ideals. We assume a knowledge of the basic definitions and elementary

properties of vector lattices [l; 2]. As we have stated in the introduction, in

this section and the following two sections we collect, without proofs, the

standard properties of vector lattices which we will require.

We will call a linear subspace / of a vector lattice £ an ideal if it satisfies

the condition

(1.1) a G 7, | b |   =  | a | implies b G I.

It follows immediately that for every aGI, \a\, a+, a~ are all in /; hence that

for every aGI, bGI, we have a\/bGI, a/\bGI- Thus / is itself a vector

lattice. We also have

(1.2) Given a collection of ideals in a vector lattice, the linear subspace gener-

ated by their set-union is again an ideal.

A linear subspace F of a vector lattice £ will be called closed if for every

subset A of F, b= VA or b = t\A implies bGF; it will be called a-closed if the

condition is satisfied for every countable subset of F. For an ideal / to be

closed it is sufficient that for every subset A of /+ (the positive cone of /),

b = VA implies bGI', and similarly for c-closed.

We will call two elements a, b of a vector lattice £ disjoint if | a\ A | b\ =0.

Given a set A in £, the set of elements of £ each disjoint from all elements of

A is denoted by A'. We have

(1.3) For any set A in a vector lattice E, A' is a closed ideal.

(1.4) Let a vector lattice E be the direct sum of two ideals /i, /2: /i-|-/2 = £,

IiC\Ii = 0. For each aGE denote the component of a in Ii by at (*=1, 2). Then:

(1°) For every aGE, bGE, a^b if and only if at^bu i=l, 2;

(2°) If b=VA, then bi=VAi, where Ai= {ai\aGA} (i=l,2);
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(3°)  For each a^0, a,- = VWbSa b (i=l, 2);

(4°) h=(Ii)',Il=(I2y.

Corollary. Under the above hypotheses, for every aEE, bEE, we have

(a\/b)i = ai\/bi and (aAb)i = atAbi (t=l, 2). In particular, (a+)i=(ai)+,

(a-)i = (ai)~, |a|,-=|fl<|.

A subset A of a vector lattice P is said to be bounded above (below) ii

there exists bEE such that a^b(a^b) for everyaEA. If it is bounded above

and below, it is simply called bounded. Alternatively, A is bounded if there

exists 6^0 such that \a\ ^6 for every aEA. E will be called complete if for

every set A bounded above, VA exists in P (and hence for every set A

bounded below, A A exists in P).

Given a subset A of a vector lattice P, the intersection of all ideals (closed

ideals) containing A is called the ideal (closed ideal) generated by A.

(1.5) (The Riesz theorem). Let E be a complete vector lattice. Then if A is

any subset of E,

(1°) (A')' is the closed ideal generated by A;

(2°) E is the direct sum of A' and (A')'.

A proof of this theorem can be found in [2, Chapter II, §1, Theoreme 1].

2. The bounded linear functionals. Given a vector lattice P, a partial

order is defined in the space of linear functionals on P as follows: For two

such linear functionals 0, 0, we have 0^0 if 0(a) ^ 0(a) for all aEE+. In

particular 0=^0 (the zero functional) if <p(a) ̂ 0 for all a£P+; such a linear

functional is called positive.

A linear functional 0 will be called bounded if supae.4 | 0(a) | < °° for every

bounded set A. Under the above partial order, the set Q(P) (or simply fi) of

bounded linear functionals forms a complete vector lattice whose positive

cone is the set of positive linear functionals [2, pp. 34-36]. The following two

theorems give the lattice properties of fi explicitly.

(2.1) Given 0Gfi, 0£fi, then for every aEE+,

(0V0)(a)= sup [0(6) + 0(c)].
4£E+, <:££+, »+c=o

In particular,

<b+(a) =   sup  0(6)    and    \ <b \ (a) =  sup 0(6).

This last in turn gives us that for any aEE, \<p(a)\ ^ |0| (\a\).

We will say a set A in a vector lattice is directed under ^ (^) if for every

aEA, bEA, there exists cEA such that a^c, b^c (a^c, b^c).

(2.2) Let A be a subset of fi and 0=VA. Then for every aEE+, <p(a)

^sup^gx 0(a)- If in addition A is directed under ^, then <p(a) =sup^ex 0(a).

Similar statements hold for AA.
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We will also need the following.

(2.3) Let E be a complete vector lattice and I a closed ideal in E. Then IL

and (I')x are closed ideals in ft and (I')1 = (I1)'.

(IL is the set of elements in fi which have value zero on all elements of /).

3. Banach lattices. A Banach lattice £ is a linear space which is both a

Banach space and a vector lattice, and in which the norm and order satisfy

the relation

(3.1) \ a\   ^   \b\   implies \\a\\ ^ ||i||.

In particular ||a|| =|| \a\ || for every aGE.

Since \a\/c-b\/c\ ^\a-b\ and \aAc-bAc\ ^|a-i| [l, p. 220], the
above gives us

(3.2) In a Banach lattice, \\a\/c — b\/c\\^\\a — b\\ and ||aAc—bAc\\

^\\a — b\\. Thus the operations V and A are uniformly continuous under the

norm.

This continuity gives us in turn

(3.3) £+ is closed under the norm.

(3.4) // an upper (lower) bound b of a set A is a limit point of A under the

norm, then b = VA (b = l\A).
(3.5) A closed ideal of £ is closed under the norm.

(3.6) The closure under the norm of an ideal is again an ideal.

(3.7) If £ is the direct sum of two ideals, then it is their topological direct

sum.

Finally (via [l, p. 248] and (2.1))

(3.8) // £ is a Banach lattice, ft coincides with the Banach space dual of £,

and under this dual space norm, is itself a Banach lattice.

Henceforth, by the dual of a Banach lattice £, we will mean the above

Banach lattice.

4. The first dual, L. Throughout this paper X will be a fixed compact

Hausdorff space. We denote by C the space of continuous real functions on X

with norm defined by ||/||=supiex |/(x)| and order defined by/^g if f(x)

^g(x) for all xGX. Under these definitions C is a Banach lattice. In fact it is

an (Af)-space with a strong order unit [11 ]: /SO, 9SO implies ||/Vg||

= max (||/||, ||g||), and ||/||^1 if and only if |/| ST (the constant function

everywhere equal to 1).

We denote the dual of C by L. It is commonly called the space of Radon

measures on X. The existence of 1 in C gives immediately.

(4.1) For every p.GL, \\u\\ = |p| (1).

This in turn gives that L is an (L)-space [10]: uGL+, vGL+ implies

Hp-p-ell =||m||+||"||- As our interest in the present paper is in the dual of /,

we give here only those properties of / which we will require. The following

is a converse of (3.4); it is not true in a general Banach lattice (C, for example).
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(4.2) If a set A in L is directed under ^ and VA —p, then p is a limit point

of A under the norm.

Proof. From (2.2), p(l) = sup,ex v(l). Writing this in the form

initeA (pi — p)(1)=0 and using the identity (p — v)(l) = ||p — v\\, we have the

required conclusion.

(4.3) An ideal I in L is closed if and only if it is closed under the norm.

Proof. As we have remarked (3.5), the "only if" holds in any Banach lat-

tice. Now suppose 7 is closed under the norm, and consider a subset A of 7+.

with 6=VA. Let B be the set obtained from A by including the suprema

of all finite subsets of A. Then BEI+, B is directed under ^, and b = VP. It

follows from (4.2) that 6 is a limit point of B, hence of 7.

While it is not in general true that a subset of L which is bounded in the

norm is bounded, we have

(4.4) If a subset A of L is directed under ^ and bounded in the norm, then

VA exists.

A proof of this, or rather the more general theorem (11.6) is given in [5,

Theoreme l].

We will consider the space A7" as a subset of L by identifying each xEX

with the element of L defined by x(f) =/(x) for all fEC. It is immediate that

for each xEX, x>0 and ||x|| = 1. We will denote by L0 the linear subspace of

7, closed under the norm, which is generated by X.

(4.5) Z0 is a closed ideal in L.

Proof. From (4.3) we need only show 7.0 is an ideal; (3.6) says it is suffi-

cient to show this for the linear subspace generated by X; and finally (1.2)

says we can confine our attention to the one-dimensional linear subspace

generated by a single xEX. Suppose O^p^Xx, where X is a positive real

number. We remark first that for any two elements/, g of C, f(x) =g(x) im-

plies p(f)=p(g): for \u(f-g)\?*u(\f-g\)!Z(kx)(\f-g\)=\[x(\f-g\)]
= X[|/-«|(*)]=0. Then for any fEC+, u(f) =/(x)p[///(x) ] =/(x)p(l)
= p(l)x(/). Thus p=p(l)x. The argument is now easily carried through for a

general p such that |p| gx.

We will denote (L0)' in L by L\. Then (3.7) L is the topological direct

sum of Po and L\, 70 is the set of purely atomic (Radon) measures on X and

Li is the set of nonatomic ones. There is another characterization of Zo- Con-

sider p= zZl XiX,- (the X,'s real numbers). We can clearly think of p as a real

function on x with p(x.) =X,- (i= 1, •••,«) and p(x) =0 for all other xEX,

and with ||p|| = zZl |X.|. Since L0 is the completion under this norm of the

space of all such functions, we have

(4.6) Po can be identified with I1 on X, that is, the Banach lattice of all real

functions p on X satisfying zZ*e* I J"0*01 < °°, *"*tfA norm given by this sum and

order by v^p. if v(x) ^p(x) for all xEX.
5. The second dual, M, and the imbedding of C. We denote the dual of

L by M. Like C it is an (A7)-space [ll, Theorem 15]. We imbed C in M in
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the customary fashion (/(p)=p(/) for all uGL). This imbedding of course

preserves the norm. It also preserves the order; in fact

(5.1) For every fGC and gGC,f\fg — in — C=f\/g — in — Mandf/\g—in
-C=fAg~in-M.

Proof. It is enough to show that for every fGC, /+ — in — C=f+—in — M,

that is (2.1), for every p.GL+, u(f+ — in — C) =supos,Suv(f). Consider pG/+;

we can take ||p|| = l. Given e>0, let Y={x\f(x)^0} and V={x\f(x)>

—e). Then Y is closed, V open, and YQ V. Since X is normal, there exists

gGC such that O^g^l, g(x) = l on Y, and g(x)=0 on the complement of V.

Defining gf by (g/)(x) =g(x)/(x) for all xGA^, we have g/S (f+—in — C) —el.
Let v be the element of L defined by v(h) =p.(gh) for all hGC [2, p. 43]. Then

O^v^p. and v(f)^u(f+-in-C)-e.
As a result of the above theorem, we can henceforth write/Vg and/Ag

without ambiguity. In contradistinction, for a general subset A of C, VA

and A A will mean the supremum and infimum of A in M. These differ in

general from VA —in — C and A A —in—C.

(5.2) The strong order unit 1 of C is also the strong order unit of M: for

every fGM, ||/|| gl if and only if \f\ gl.
Proof. The "if" of course is true in any Banach lattice. To show the

"only if," suppose ||/||^1. Then for every MG/+, |/| (p) ^||/||||mNI|p||

=Ai(1)=Kp). Thus |/| SI.
Let Mo=(Li)x and Mi = (Lo)x in M. From the general properties listed

in §§1-3, Mo and Mi are closed ideals in M, with Mi = (M0)' and Mo=(Mi)',

and M is their topological direct sum. Moreover Mo is the dual of L0, hence

from (4.6),

(5.3) Mo can be identified with the Banach lattice of all bounded real func-

tions on X (11/11 =sup*6x |/(x) |, f^g iff(x) gg(x) for all xGX).
For each /G M, we will denote the components of / in M0, Mi by /o, /]

respectively; and for each subset A of M, we will denote the sets {/o|/GA },

{/i|/GA } by Ao, Ai respectively.

Now each /G C is completely determined by its values on X, hence the

projection of C onto C0 is one-one. Moreover, from (5.3) and (5.1), it preserves

the norm and order. We thus have

(5.4) C is isometric and lattice-isomorphic with Co-

We also have

(5.5) Let A be a subset of C and fGC. Thenf=NA ifand only if'/o = V'A0.
(We recall that VA means VA—in — M and — M0 being a closed ideal

— VAo means VAo — in — Mo; cf. remarks preceding (5.2).)

Proof. The "only if" follows from (1.4); we prove the "if". Since including

the suprema of all finite subsets of A does not change VA or VA0, and does

not take us out of C (5.1), we can assume A is directed under =. Suppose

/o= VAo- This means that the directed set of functions A0 converges to/0 at

every xGX, hence A converges to/ at every xGX. It follows from the Dini
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theorem that A converges to / uniformly on X, that is, under the norm.

(3.4) now gives the desired conclusion.

It is important to keep clear the distinction between M and A70. In com-

mon practice C is identified with C0 and the (bounded) semi-continuous func-

tions, Borel functions, and u-integrable functions (p£P) are all defined in

MB. In the present paper, C is in general distinct from Co and does not lie in

Mo, and the above classes of functions, as we will define them, will likewise

in general not lie in M0. The ones commonly worked with will be the projec-

tions of ours.

6. The semi-continuous elements of M. We will call fEM a lower-semi-

continuous, or l.s.c, element if /= VA for some subset A of C; we will call it

an upper-semi-continuous, or u.s.c, element if/=AA for some subset A of C.

The standard properties of vector lattices give us immediately

(6.1) If f and g are l.s.c, then so are f+g, X/ (X a positive real number),

fVg.andfAg-
(6.2) If A is a set of l.s.c. elements andf= VA, then f is l.s.c.

We also have

(6.3) Iff and g are l.s.c, thenf^g if and only iffo^go; in particular f=g

if and only iffo=go-
Proof. The "only if" follows from (1.4). Now suppose /0ggo- Let/= VA,

g= MB, where A and P are subsets of C; from (1.4) again,/0= VA0, go= VPo.

For a fixed hEA, ho^VkeB ko ,hence h0= VteB (koAho) = Vagb (kAh)o (corol-

lary to (1.4)). It follows from (5.5) that h=Vk€B (kAh) ^ V*eB k. Since this
holds for any hEA, we have Vaca h^VkeB k.

We will call the linear subspace of M generated by the l.s.c. elements the

space of semi-continuous elements, and denote it by 5. It is easily shown that

every element of S can be written f—g, where / and g are l.s.c. elements. 5

can also be defined as the linear subspace of M generated by the u.s.c.

elements; and every element of 5 can be written as the difference of two u.s.c.

elements.

(6.4) If f and g are elements of S, then so are /Vg and fAg- In particular

f+,f~, and |/| are elements of S.

Proof. Let f=f-f, g = gl-g2, where fl, f, g1, g2 are l.s.c. Then /Vg

= (/1-/2)V(g1-g2) = (/1+g2)V(g1+/2)-(/2+g2). From (6.1) both terms in

the last expression are l.s.c. The proof for/Ag is the same.

(6.5) Given fES, gES, f^g if and only if fo^go; in particular, f=g if

and only if fo = go-
Proof. Let/=/'-Z2, g = g1-g2, where/1,/2, g\ g2 are l.s.c. Suppose fo^go-

Then (fi)0 - (P)o - (f1 - f)o g (g1 - g2)o = (g1)* - (g2)o! hence (f- + g2)0

= (/1)o + (g2)o^(g1)o+(/2)o = (g1+/2)o. Applying (6.3) gives/l+g2^g1+/2 and

finally fx-P^gl-g2.

(6.6) For every fES, \\f\\=\\fo\\.
Proof. Since ||/o|| =|| |/of|| =|| |/| o|| and ||/|| =|||/| ||, it is enough to prove
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the theorem for /SO. Now OS/oS||/o||lo, hence from (6.5), 0^/g||/„||l, and

thus ll/H S||/o||. The converse inequality is trivial.

The last two theorems above give us that, as with C, the projection of 5

on So is one-one and preserves norm and order. Thus we have

(6.7) 5 is isometric and lattice-isomorphic with S0.

In general an element of 5 does not lie in M0. However

(6.8) Iffis the characteristic function in M0 of a finite subset of X, thenfGS.

Proof. It is enough to prove this when the finite subset consists of a single

point x. Let A = {g|gGC+, g(x)Sl} and h = l\A. Since A is directed under

S, we have h(p) = infoS^ g(u) for all pG/+- This gives h(x) = \ and (from

normality of X) h(y) = 0 for all yj^x; thus h0=f. We show h(pi)=0 for all

pG(/-i)+. whence it will follow hGM0 and therefore h=f. Consider pG(/i)+.

pAx = 0, hence [2, p. 36] given «>0, there exist kGC+, IGC+ such that

k-\-l— 1, n(k) <e, and l(x) <e. We can assume e<l/2. Then k(x) = l(x)—l(x)

>l-e, whence (l/l-e)kGA and n[(l/l-e)k] = (\/\.-e)p.(k)<2e. Thus

h(p) <2e. Since e was arbitrary, we have h(p) =0.

(6.9) Every element of S is an infimum of l.s.c. elements and a supremum of

u.s.c. elements.

Proof. Consider f=g — h, where g and h are l.s.c. Then A=VA, where

AQC. It follows f=hk£A (g — k). A similar argument holds for the second

statement.

We give an example to show that the analogue of (5.5) is not true for 5.

Let X be the real interval 0 = x ^ 1. We note first that /_i is not empty (it

contains the Lebesgue measure, for example), hence that Mt^Mo and there-

fore 15* lo- Now let A be the set of all elements of Mo which are characteristic

functions of finite subsets of X. Then A QS, 1GS, and 10= VA = VA0. How-

ever l5*l0, hence l5*VA. (We do have 1 = VA — in — S, from (6.7)).

As we shall see later (8.5), the analogue of (5.5) is true under the addi-

tional condition that A be countable.

Before leaving S we establish a lemma which we will need later.

(6.10) If A is a countable subset of S and f= VA, then for every uGL+ and

e>0, there exists g l.s.c. such that gS/ and g(pi) ^f(p.)+e.

Proof. Let A ={/"}. Since/"can be replaced by Vi/;(« = 1,2, • • •) with-

out changing/, we can assumeZ1^/2^ ■ ■ • . We will obtain a bounded se-

quence g1^g2±s- • • • of l.s.c. elements such that g"S/n and g"(p) ^/n(p)+e

(» = 1, 2, • • •), and then V„ gn will be our required g (2.2). Let hl=fl,

A"=/"-/»-1 (n = 2, 3, • • • ). Then for each n, /»= £" h\ Since hnGS, we

can write h" = hn-1 — hn'2, where hn<1 and hn<2 are l.s.c. For each n, choose

knGC to satisfy kn^h"-2 and kn(p)^hn'2(n)-e/2n (2.2). Let ln = hn-x-kn.

Then /" is l.s.c, ln^hn, and /"(p) ^hn(u) +e/2n. Hence Ya I*is 1-s.c, £" /'S/B,

and (Xli ^)(p) =/n(p)+«- Now/^Xl for some real number X. Setting g"

= (2n I*) A(XI), we obtain our required sequence.

7. The star elements of M. With eachfGM we associate two elements
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/*,/* defined by

(7.1) /*=        V       g,        /*=        A       g.
s€S, sos/o oeS, »0i/o

Since/oSXlo for some real number X, the set defining/* is bounded above by

XI (6.7) and thus/* exists; and similarly for/*.

We have immediately

(7.2)  (1°) fES implies /=/* = f*.
(2°) fEM, gES implies (f+g)*=/*+g, (/+g)*=/*+g-

(3°)/*^/*.
(4°) /o^go implies /*^g*, /*^g*; in particular, f0 = go implies /*=g*,

/*=«*■
(5°) /gg implies/* ^g*, /*gg*; iw particular, /^0 implies/*^0, /*^0.

(6°) 7/X is a positive real number, (X/)* =X/* anrf (X/)* =X/*.

(7°)  (-/)*=-/*•
Also, from (6.9),

(7-3) /*=        V       g,        /*=        A        g-
0 use,   OoS/o 0  lsc,   OoS/o

(7.4) /* and/* lie in the same coset of Mx as f, that is, (/*)0 = (/*)o =/o-

Proof. Since we can always translate/to Af+ by adding a suitable multiple

of 1, it follows from (2°) above that we need only consider /^0. Let A

= {g|gGS, go^/o}; then VA =/*, hence VA0 = (/*)0. We show VA0=/0. It is

trivial that VA0^/o- To show the converse we note that if for each xEX,

hx is the element of Af 0 which is the characteristic function of x, then f(x)hxEA

(6.8), hence EA0. It follows (5.3) that VA0=/0. That (f*)o=fo follows from
(7°) above and the first part of the proof.

Corollary. Every coset of Mi contains exactly one lower-star element and

upper-star element (they may coincide).

Straightforward computation gives

(7.5) /* + g* ̂  (/+ g)* £U + g* = (f+g)* = /* + S*.

hence

U-g*^(f-g)*^f*~g  £ (/ - g)* 2£ j* - g*.
I* - g*

These inequalities cannot be replaced by equalities, as the following exam-

ple shows. Let X be the real interval 0 ^ x ^ 1. Let Y and Z be complementary

subsets of X such that the inner Lebesgue measure of each is 0, and / and g

be the elements of A7o which are the characteristic functions of Y and Z

respectively. Then/+g=l0, hence (/+g)* = (10)* = 1 (7.2 (1°)). We show

/*+g*<l. To do this it is enough to show that/*(p)+g*(p) <l(p) for one

pEL+. Choose the Lebesgue measure for p. It is not hard to show that/*(p)

and g*(u) are precisely the inner Lebesgue measures of Fand Z respectively.
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Since these are both 0 while 1 (p) = 1, we are through. This establishes the neces-

sity of the first inequality in the theorem; the same example can be used to

show the necessity of the remaining ones.

Straightforward computation also gives

(7.6) For any bounded subset A of M,

d°) (A/)*= A /*= v/,i(v/l.
V-/SA   / ft=A fSA \feA   /

(2°) ( A /)* = A f* =  V f* = ( V /Y.
\f€A   / feA JBA \feA   /

If A is countable, the first inequality in (1°) and the last inequality in (2°)

become equalities:

(7.7) For any countable bounded set {/"} in M,

(1°) (A /") = A (/•%,       (v /»)*= V (/»)*.
\ n        / # n \ n        / n

In particular, for any f£M and g£M,

(2°) (f A g)* = /* A g*.      (/ V g)* = /* V g*.

Proof. We prove the second equality in (1°); the first will follow by the

duality relations within M (cf. (7°) in (7.2)). From (7.6), we need only

show (V„/")*^V„ (/")*. Let /=Vn (/")*• Since/o=V„((/")*)0=VB(/»)o
= (VB/n)o, it follows that/* = (Vn/n)*. Hence what we need to show is that

/*S/- Consider pGL+ and e>0. From the definition (7.1), there exists a

sequence {g"} of elements of 5 such that g" S (/") * and gn(u) g (/") *(u) +e/2n

(w = l, 2, • ■ • ). Let hn = V"gi. Then it is not hard to show that hn(u)

S[VJ(/«)*](M)+«S/Gu)+e- Applying (6.10), there exists hGS such that

ASVnfenS/ and A(>0S(V„ /j")(M)-r-e = sup„ ^"(m)+€^/(m)+«. But e was

arbitrary and p. was any element of L+, therefore/* g/.

In contradistinction to (7.7), the last inequality in (1°) and the first

inequality in (2°) of (7.6) are not replaceable by equalities even in the case

of two elements. For, in the example following (7.5),/Vg= lo, hence (/Vg)*

= 1, but/*Vg*5*l, since if p is the Lebesgue measure, (/*Vg*)(ju) =0- How-

ever, see (8.13).
That (7.7) cannot be extended to uncountable sets is shown by the exam-

ple following (6.9).
Remark. The/*'s and/*'s can be defined independently of M0, as follows.

Let us call an ordered pair of disjoint sets (A, B) of 5 a Dedekind cut in 5 if

every element of A is < every element of B and the sets are maximal with

respect to this property. Then we can define the/*'s as the suprema of lower

members of Dedekind cuts and the/*'s as the infima of upper members.
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8. The universally integrable elements of M. If/=/*=/*, we will call/

universally integrable, and we will denote the set of all universally integrable

elements of M by U. Uo consists precisely of the bounded functions on X

which are integrable, in the common sense of the term, with respect to every

Radon measure on X.

(8.1) U is a linear subspace.

Proof. U feU, gEU, then from (7.5), /+g=/*+g*^(/+g)*g(/+g)*
gf*+g*=f+g; thus/-fgGP. If/GPandXisa positive real number, then

from (7.2), (X/)*=X/*=X/* = (X/)*; thus X/G U. Ii fEU and X is a negative
real number, (X/)*= -(-X/)*= -(-X)/*=X/*=X/, and similarly (X/)*=X/;

thus(X/)* = (X/)*, andX/GP.
(8.2) U is o-closed. Thus, in particular, it is a vector lattice.

Proof. Suppose {/"} C U and/= V„/". Then/= V„/"= V„ (/")*g(V„/")*
=/* ^/* = (V„/") * = V„ (/") * = V„ /" =/, where for the crucial third-from-Iast

equality we use (7.7).

(8.3) U is isometric and lattice-isomorphic with Uo-

Proof. That the projection of Pon Po is one-one follows from the corollary

of (7.4). The lattice-isomorphism follows from (4°) of (7.2), and this in turn

gives the isometry by the argument used in (6.6).

(8.4) U is closed (hence complete) under the norm.

Proof. Suppose/is a limit point of U. Then there is a sequence {/"{ in U

such that \\f-f\\^l/n (n=l, 2, • • • )• This says |/"-/| g(l/n)l (5.2),
whence -(l/ra)l g/n-/^(l/»)l or/-(2/w)l ^/»-(l/w)l ^/(ra = 1, 2, • • •).

Thus/=V„ [f"-(l/n)l]. But f» - (l/n)lEU ior all n, hence fEU.
As we showed in §6, the analogue of (5.5) fails to be true in S, hence a

fortiori in U. However

(8.5) Let A be a countable subset of U and fE U. Then the following state-

ments are equivalent:

(1°)/=VA;
(2°) f=VA-in-U;
(3°)/„ = VA0.
Proof. (1°) of course implies (2°) and (3°). That (2°) implies (1°) follows

from (8.2). That (3°) implies (2°) follows from (8.3).

An easily verified property of C is that if fE M is the supremum of a sub-

set of C and the infimum of a subset of C, then fEC. We show U has this

property also.

(8.6) If A and B are subsets of U and /= VA = AP, then fE U.

Proof. From (7.6), /* = (A»GB h)*g. A„eB h* = /\heB h =/= V„ex g = Voex g*

^(V„^g)*=/*.
We will call the smallest <r-closed linear subspace of M containing C the

Baire subspace, and the smallest er-closed linear subspace containing S the

Borel subspace [8]. We denote the former by Ba and the latter by Bo. Since

U is <r-closed, we have immediately



1957] THE SPACE OF CONTINUOUS FUNCTIONS 81

(8.7) BaC Bo C U.

Also
(8.8) Ba and Bo are each a vector lattice; each is isometric and lattice-

isomorphic with its projection on M0; each is closed under the norm; and each

has property (8.5).

The only statement here possibly requiring proof is the norm-closedness.

But \GBa, hence the proof in (8.4) applies exactly.

Remark. In some ways U seems to be a more natural subspace of M to

work with than either 73o or Ba. For example its definition is more natural

in the sense that it does not require countability. Also it has the "semi-

Dedekind" closedness described in (8.6). Most important of all, as we shall

see in (9.6), U consists precisely of the elements of M which are limits under

order-convergence of directed systems in C.

In the remainder of this § we apply U to obtain additional properties of

the star-elements.

(8.9) For every fGM, /* = Vaec/,„„s/„ g,/* = A5ec/,ff„a/0 g-

This follows immediately from (4°) of (7.2).

(8.10)    fGM,gGU implies (f + g)* = /* + g, (/ + g)* = f* + g.

Proof. From (7.5), (/+g)*^/*+g*=/*+g=/*+g*^(/+g)*. Similarly for

the second equality.

(8.11) For every fGM, (/+)* = (/*)+, (/+)* = (/*)+,   (/-)* = (/*)-,   (/")*

= (/*)-•
Proof. The first equality is contained in (7.7); we prove the second. We

will assume for simplicity that |/| gjl. From (7.6) we need only show (/+)*

^ (/*)+. Now U = VASC/,*S/. h, hence (/*)+ = Vheu.kS/, h+. Also (/+)*

= Voer/,osBs(/+)* g- Therefore to obtain our inequality it suffices to show that

if gGU, 0 gg = (/+)*, then g = h+ for some hG U, h^f*. From (8.9) above and
the isomorphism of U with Uo, this reduces to proving that if gG U0, O^g

= (/+)o = (/o)+, then g = h+ for some hG Uo, h £/0.

Let k be the element of M0 which is the characteristic function of the set

{x|g(x)>0}. Since &=V,T=i (loA«g) and loA«gGc70 for each n, we have

kGU0 (U being <r-closed implies Uo c-closed). Then g—(l0 — k) is our required

h. The remaining two equalities in the theorem follow from the first two and

(7°) in (7.2).

As a corollary of (8.11) we have

I f*\
(8-12) |/|*g  V.     <  |/|*.

I 7* I

Proof. |/*| =(/*)++(/*)- = ('+)* + (/-)* and |/*| = (/*)++(/*)- = (/+)*
+ (/")*. The required inequalities then follow from (7.5).

That the above inequalities are not replaceable by equalities can be shown

by considering —/in the example following (7.5).
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Finally from (8.10) and (8.11), we have

(8.13) 7//GA7 and gEU, then (/Vg)*=/*Vg and (fAg)*=f*Ag-
Proof./*Vg = g+(f*-g)+ = g+[(/-g)*]+ = g+[(/-g)+]*=[g+(/-g)+]»

= (fVg)*. The second equality follows from the first.

9. Order-convergence in M. Given a vector lattice P, the notation {aa}

will always denote a directed system, that is, the superscripts run through a

partially ordered set fi, with the order denoted by ■<, say, such that for every

pair aG fi, /3Gfi, there exists yGfi satisfying a -<7,|3-<y. In a complete lattice,

if {aa\ is bounded, we define in the usual manner lim inf aa= VaA^>-aafl and

lim sup a" = AaV|3>-aas. If lim inf aa = lim sup a" = a, we will write lim a = a

and say that {a"} converges to a.

Since A7 = fi(7), it shares with all fi's the following basic property, which,

as can be seen, is Fatou's lemma in general form.

(9.1) Let E be a vector lattice and {<pa} a bounded directed system in fi(P).

Then for every a E P+, (lim inf <j>a)(a) g lim inf 0<*(a) g lim sup <ba(a)

g(lim sup0")(a).

Proof. Application of (both parts of) (2.2) gives (lim inf 0")(a)

= (VaA^>-a0s)(a) =supa (A/3>a0a)(a) g supa inf? >- a0s(a) = lim inf 0a(a). This

establishes the first inequality. A similar argument holds for the last.

Corollary. lim 0"=0 implies lim <p"(a) = <p(a) for every aEE.

This follows from the theorem and the fact that every element of P is the

difference of two positive elements.

Turning to M itself, we note first the following, which is limited to se-

quences because (7.7) holds only for countable sets.

(9.2) For any bounded sequence {/"} in M, we have

(1°)  lim inf (/")*g(lim inf/")*g(lim inf/")* glim inf (/")*;

(2°) lim sup (/")*g(lim sup/")*g(lim sup/")*glim sup (/")*.

Proof. Lim inf (/")*= V„Amin (/")* = V„(AmSn/»')* (from (7.7))

g(V„Am£n/m)* (from (7.6)) = (lim inf/")*. And similarly for the other in-

equalities

Combining (9.1) and (9.2), we obtain

(9.3) For any bounded sequence {/"} in M and pEL+, we have

lim inf (/")* (u);
(i°)       Hm inf (/-)*](p) g     .;;

(hminf/")*(p);

(2°) (lim inf /")*(p) g   [lim inf (/")*](p) g lim inf (/")*(p);

(3°) lim sup (/")*(p) g   [lim sup (/")*](p) g lim sup /»)*(p);

lim sup (/")*(p)
(4°) „.       P ]' ^g[limsup(/")*](p).

(hm sup f")*(p)
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We proceed to examine U with respect to convergence. The c-closedness

of U gives immediately.

(9.4) If {/"} is abounded sequence in U, then lim inif"G U and lim sup fnG U.

In particular, /= lim /" implies /G U.

We also have

(9.5) // {/"} is a bounded sequence in U andfG U, the following statements

are equivalent:

(1°) lim/»=/;
(2°) lim /»(M) =/(m) for all pGL;
(3°) lim fn(x) =/(x) for all xGX, or, equivalently, lim (/")o=/o.

Proof. That (1°) implies (2°) is contained in the Corollary to (9.1). That

(2°) implies (3°) is of course trivial. That (3°) implies (1°) follows from the

isomorphism theorem (8.3) and (9.4) above.

Remark 1. The statement that (3°) implies (2°) contains the essence of

the Lebesgue bounded convergence theorem, at least, for norm-bounded

sequences.

Remark 2. That (9.5) does not hold for a general directed system is shown

by the example following (6.9).

Finally, we prove that U consists of the elements of M which are limits

under convergence of directed systems in C.

(9.6) Given fGM, fG U if and only if f=limf" for some directed system

{f-}cc.
Proof. It is enough to establish the following two properties.

(I) // [f"\CC, g = lim inf/a, and h = lim sup/a, then g^g* and h^h*.

(II) For any fGM, there exists |/aJCC such that lim inf /"=/* and

lim sup /"=/*.

We show first that the theorem follows from (I) and (II). If/=lim /",

then from (I), /S/*S/*S/; hence/=/*=/*. Conversely, if /=/*=/*, then

from (II), there exists {/"} CCsuch that/= lim inf/a = lim sup/".

Now (I) follows directly from the fact that for each a, A^>a/3G>S' and

Vp>afPGS. We proceed to prove (II). Let &={(g, h)\g u.s.c, h l.s.c,

go^fo^ho}. Under the partial ordering (g\ hl)<(g2, h2) if g^g2, h^h2,

(J is a directed set. By a standard property [9, p. 72], for each a—(g, h)GQ>,

there exists faGC such that g^fJ^h. It follows from (7.3) (and (I)) that

lim inf/"=/* and lim sup /"=/*.

10. Weak topology. Given a vector lattice £, we will denote the weak

topology on ft(£) defined by £ by w(ft, £). Three basic properties of w(ft, £)

are the following.

(10.1) Given {<f>a\ Cft. iflim <pa=<p, then lim <p"=<p under w(Q, £).

(10.2) ft+ is complete under w(ft, £).

(10.3) For every 4>Gtt+, the "cube" {^| |^| =§</>} is compact under w(Q,, E).

(10.1) is the corollary to (9.1); while the arguments in [2, pp. 62, 63] can

clearly be applied to show (10.2>) and (10.3) (also cf. [13]).
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Applying the above to M, we have

(10.4) An ideal I in M is closed if and only if it is closed under w(M, L).

Proof. Suppose 7 is closed. We remark first that the component lj of 1

in 7 is the strong order unit for 7, since /G7, ||/|| g 1 implies |/| g 1 hence

|/| g lr. This says that the intersection of 7 with the unit ball of M is pre-

cisely the "cube" {/| |/| glj}, which from (10.3) above, is compact under

w(M, L). It follows from a theorem of Banach [3, Theoremes 22, 23] that 7

is closed under w(M, L).

Suppose 7 is closed under w(M, L) and /= VA, A EI- Then /=lim/a for

some directed system {/"} in 7. It follows from (10.1) that/=lim/a under

w(M, L), hence/G7.
11. The Dieudonne topology. Given a vector lattice P, we consider the

locally convex topology defined in fi(P) by the polars of the bounded sets

of P. Equivalently, if for each aGP+ we define a semi-norm || ||„ on fi by

IMI« = |0| (a)> the above topology is that defined by the family of all such
semi-norms [4; 5; 12; 13]. Following Nakano, we will denote this topology by

I w\ (fi, P). It is clearly finer than w(fi, P) and has the nice property [4; 13]:

(11.1) fi is complete under \w\ (fi, P).

Each semi-norm in | w\ (fi, P) clearly has property (3.1), hence also (3.2),

that is

(11.2) For every aEE+ and elements 0, 0, p of fi, ||0Vp—0Vp||og||0—0||o
and ||0Ap— 0Ap||og||0— 0||a. Thus the operations V and A are uniformly

continous under \w\ (fi, P).

In addition each semi-norm has the (7)-space property:

(11.3) For every aEE+ and elements <p, 0 o/fi+, ||0+0||o = ||0||a+||0||o.
Consequently, the properties which followed from this in  §4 hold also

here:

(11.4) If a set A in fi is directed under g and VA =0, then 0 is a limit point

of A under \w\ (fi, P).
(11.5) An ideal in fi is closed if and only if it is closed under \w\ (fi, P).

(11.6) 7/a subset A of fi is directed under g and bounded under \w\ (fi, P),

then VA exists.

This is proved in [5, Theoreme l].

We can strengthen (10.1):

(11.7) Given {<p"\ C^, if lim 0"=0, then lim 0a=0 under \w\ (fi, P).
Proof. For simplicity assume 0 = 0. The statement lim 0" = 0 is equivalent

to the existence of a set {0a}, directed under ^ such that A„0a = O and

0a| g0a for all a. It follows from (the dual of) (11.4) that lim 0" = O under

w\ (fi, P), hence lim0a = O under \w\ (fi, P).

In L, \w\ (L, C) coincides with the norm topology, hence offers nothing

new. In M, however, the situation is different. We remark first that from

(10.4), (11.5), and (11.7) we have

(11.8) If I is an ideal in M, the following statements are equivalent:
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(1°) / is closed under w(M, L);

(2°) I is closed under \w\(M,L);
(3°) I is closed under order-convergence;

(4°) / is closed.

We now proceed to prove the principal theorem of this section.

(11.9) C is dense in M under | w\ (M, L).

Proof. It is enough to show that for each pGL+, \\p\\ = 1, C is dense in M

under the semi-norm || ||„. The proof will be carried out by the now common

technique of introducing an appropriate Hilbert space. We define an inner

product in C by (f, g)=p(fg), where fg is the usual multiplication: (fg)(x)

=f(x)g(x). This inner product in turn gives us a Hilbert seminorm, ||/||2

= [(/>/)]1/2 = ImC/2)]1'2- (I11 this proof, unlike the remainder of the paper, a

superscript is a power, not an index.) Since f2= |/|2 and \\p\\ = 1, we have im-

mediately that 11/11, = || |/| ||, and || l||,= 1.
We note first that for every fG C,

(i) 11/11, = 11/11* = 11/11-
For, ll/H, =M(|/|)=M(11/| ) = (l,  |/|)^||l||2||/||2 (Schwarz inequality)   =||/||2
= LM(f)]1/2^[||M||||/2||]1/2=[||/2||]I/2=[||/||2]1/2 = ||/||.

If we denote the unit balls of C under ||  ||„ ]|  ||2, []  || by 2„(C), 22(C),

2(C) respectively, (i) can be written 2(C)C22(C)C2„(C). It follows 2„(C)°

C2,(C)0C2(C)°, where ° denotes the polar in L. Taking the polars of these

latter sets in M, we obtain

(ii) 2(C)00 C S,(C)00 C 2„(C)°°.

Now 2(C)00 is the unit ball of M under || ||, hence spans M, and thus all

three of these second polars span M and therefore determine semi-norms on

M. The first of these semi-norms is of course the norm || ||. As for the second,

the dual of C under || ||2 is contained in L (from (i)), hence 22(C) is closed

in C under w(C, L), hence 22(C)°°nC = 22(C). It follows that the semi-norm

determined on M by 22(C)°° is an extension to M of || ||2, and we therefore

denote it by the same symbol ||  ||2. Let N be the null-space of ||  ||2 in M. Then

||, is a Hilbert norm on C/NC\C, and it is easily seen that M/N is contained

in the second dual of C/NC\C. It follows that C/N(~\C is dense in M/N under

||2, hence C is dense in M under || ||2, hence from (ii), C is dense in M under

the semi-norm defined by 2„(C)°°.

We complete the proof by showing that this last semi-norm is precisely

||„. Let A = [v\vGL, \v\ ^p}. Then its polar A0 in M is the unit ball of

M under || ||„ and 2„(C) =A°r\C. It follows that 2„(C)° is the closure of A

under w(L, C). But from (10.3), A is compact under w(L, C), hence A

= 2„(C)°. We thus have 2„(C)00=A°.

Corollary. 2(C) is dense in 2(Af) under \w\(M, L) (2(M)=the unit

ball of M under || ||). Infact Af+n2(C) isdensein M+C\Z(M) under \w\ (M,L).
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Proof. Suppose/GA7+nS(M), pEL+ and e>0. From (11.9), ||/-g||„<e

for some gEC. Then from (11.2), ||/-g+Al||„ = ||/Al -g+Al||,g||/-g+||„

= ||/V0-gV0||Mg||/-g||M<e.
As we know from (10.3), the "cubes" in L are compact under w(L, C).

(11.9) enables us to strengthen this considerably:

(11.10) For each pEL+, the "cube" {v\\v\gu} is compact under w(L, M).

Proof. By the Dixmier-Grothendieck theorem  [7], C and Af determine

the same weak topology on each such cube.

Denoting, as usual, the relatively strong topology of Mackey by t(M, L)

[6], (11.10) gives us

(11.11) w(M, L)E\u>\ (M, L)Er(M, L) (Edenotes "coarser than"). Thus

a linear functional on M is continuous under | w\ (M, L) if and only if it is an

element of L.

12. Relation to integration theory. In this section we confine ourselves to

a fixed pEL+, \\u\\ =1. We will denote by 7„ the closed ideal in 7 generated

by p, and by M„ the (closed) ideal ((7^)x)' in M. It is easily shown that M„

is a topological direct summand of M, and hence is the dual of 7„. As is known

[4; 5] P„ can be identified with £l(p) on X, and thus M„ can be identified

with £°°(p). Note that M„ does not in general lie in MB; in fact if p. is non-

atomic, M„r}Mo = 0.

A development of integration theory in the context of M (rather than M0)

would be a large task, and is not undertaken here. We content ourselves with

giving some definitions and theorems showing how such a theory can be

related to ordinary integration theory.

We first give the standard absolute continuity characterizations of L^.

(12.1) Let ~2,(M) denote the unit ball of M under || ||. Then given vEL, the

following statements are equivalent:

(1°) "G7„;
(2°) v is uniformly continuous on S(A7) under ||   ||„;

(3°) f(v)=0 for every fEM satisfying \f\ (p) =0.
Proof (After [5, p. 205]). Suppose v is an element of the ideal 7 generated

by p, that is, \v\ gXp for some positive real number X. Then for every fEM,

gEM, |K/-g)|=|(77g)(")|^|/-g|(|"|)=^l/-g|(M)=X||/-g||,.Thusvis
uniformly continuous in M under || ||„. Now 7„ is the closure of 7 under the

norm ((3.6) and (4.3)), therefore each element v of 7,„ is a uniform limit on

2(A7) of a sequence of elements of 7. From the above each element of the

sequence is uniformly continuous on S(A7) under || ||„, hence v is also. Thus

(1°) implies (2°). That (2°) implies (3°) is obvious. Now suppose v satisfies

(3°). Then vE(L,i)1L. Since L„ is closed under the norm, Lli=(L,i)LL, and the

proof is complete.

Corollary. (7,,)x in M is the set [f\ |/| (p) =0}.

Proof. (LM)X is of course contained in this set. The statement: (1°) implies
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(3°) means that the set is contained in (Z,„)x.

We now turn to M„. For each\ fGM, we will denote the component of/in

M„ by/,; and for each subset A of M, we will denote by A, the projection

{/,|/<EA} of A into if,.
We note first that from the Corollary to (12.1), (L,)x is precisely the null-

space of the semi-norm || ||, and therefore || ||, is a norm on M„. Moreover,

from (2°) of (12.1), the topology defined by this norm coincides on 2(Af,)

( = M^r\1,(M)) with \w\ (M, L) (they do not coincide on all of My).
The Corollary to (11.9) gives us

(12.2) 2(C,) is dense in 2(Af„) under ||  ||„.

A stronger statement is:

(12.3) Given fGM„, f=limfn for some sequence {/"} in C,.

Proof. We can assume |/| g 1,. From the above, there exists a sequence

{/"} in Csuchthat |/B| g 1, for all n and |/n-/||,^l/2" (« = 1, 2, • ■ • ). Let

g" = Vman/- (n = \, 2, • • • ). Then ||g"-/|, = ||Vma„/*-/||, = ||Vmi„ (f-/)||,

= ||V«. |/- -/|||, = ||V,(.Vi_, |/" -/ )||, = suPp ||V£_. |/" -/IH, (4.2)
^supp ||Zm=n|/"-/|||^suP!, E»-n||/n-/ll,= l/2'-1. Thus lim, ||g»-/||,
= 0.

Now lim sup /" = A"g", hence (4.2) limn ||lim sup /" — g"||, = 0. Since

||lim sup/"—/||M^!|lim sup/"-g"||^+||g"-/|U, it follows that ||lim sup/"-/||,

= 0. But |[ ||, is a norm on M„ hence lim sup/" =/. Repeating the entire argu-

ment gives us lim inf /"=/, which completes the proof.

(12.3) in turn gives us

(12.4) M, = Z7, = (Bo),, = (73a),.

Proof. This says that 73a, 73o, and U all project onto M„. We need of course

only show this for 73a. Consider fGM,,, and for simplicity suppose |/| i£l.

By (12.3)/=lim/n for some sequence {/"} in C,. Since this convergence still

holds if we replace each/" by (/nAl)V(— 1), we can also assume |/"| ^1 for

all n. Now, for each n, choose gnGC having (gn),=/n, and again we can as-

sume |gn| ^1. Let g = lim sup gnGBa. It follows easily that g, = lim sup/"=/.

We now come specifically to the relationship between il/, and integration

theory. In the following, (/,,)x will be denoted by its equivalent symbol (M^)'.

(12.5)  The following two ideals in M are identical:

(a) the ideal generated by (M„)T\U;

(b) the ideal generated by the /*'s lying in ((il/,)')+.

We will denote this ideal by N, and call its elements ^-negligible.

Proof. Suppose/§0 is an element of the first ideal. Then/^g for some

gG(M»)T\ U. Since g=g*, it follows/ is an element of the second ideal. Con-

versely, suppose/^ 0 lies in the second ideal. Then/^ g for some g = g*G (Af,)'•

Now g = hhes,hzoh, hence 0=g(u) = 'mihes.hia h(p). It follows there exists a

sequence [hn] such that hnGS, h"^g, hn(p)^l/n (« = 1, 2, • • • ). Setting

h = An h", we have hG(M^)'C\U and f±=h; thus / is an element of the first
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ideal. We have shown the positive cones of the two ideals are identical; it

follows the ideals are also.

(12.6) N is a-closed.

Proof. Since (!/„)' and Pare both cr-closed, (Af„)T\P is also. Consider a

countable subset {/"} of N+, which is bounded above by 1, say. Now for each

n, /"gg" for some gnE(M,i)'r\U. Since gnAlE(M,i)'r\U also, we can as-

sume for simplicity that g"gl (w = l, 2, • • • )• We thus have Vn/"gVngn

E(M„)'nU, hence VnfnEN.
(12.7) Given f EM, the following statements are equivalent:

(1°) foEN;
(2°) f*EN;
(3°) f*EN;
(4°) Some element of the coset f+ Mi lies in N.

Proof. We need only show that (4°) implies (1°), (2°), and (3°). For sim-

plicity of notation, assume f E N. Suppose first that / =? 0. Then / g g

E(M,)T\U. Applying (7.2), we have 0g/„g/*g/*gg*=g, whence/0,/*,/*

all lie in N. For a general fEN, we have f+EN and f~EN, hence by the

argument just used, (/+)„, (/+)*, (/+)*, (/-)0, (/")*, (/")* all lie in N. It fol-

lows from the corollary to (1.4) and (8.11) that/0,/*, and/* lie in N.

Corollary. N0 = Nr\M0.

We will denote by 3TC the linear subspace U+N, and we will call its ele-

ments p-integrable. From (12.4) each element of U differs from an element

of Ba by an element of (A7„)', hence by an element of N. It follows 911

= Ba + N.
Remark. In the last statement we used the fact, true by definition, that

an element of U which lies in (M„)' lies in A''. We note for later reference that

the same is true for any element of 9H, as is easily verified.

(12.8) Given f EM, the following statements are equivalent:

(1°) /oG3Tlo;

(2°) /*G3TC;

(3°) /*G3TC;

(4°) f*-f*EN;
(5°) /*-/*G(W;
(6°) /*(p) =/*(p).

And if any (hence all) of these conditions hold, M.C\(f+Mi) lies in a single

coset of N.
Proof. (1°) implies (2°) and (3°): We can suppose /G9TC. This says

f=g+h, gE U, hEN. From (12.7), h*EN, h*EN, hence (8.10)/* = g+fc*G3H
and/* = g-rP*G3TC. That (2°) and (3°) each imply (1°) is trivial. (1°) implies

(4°): In the notation just used, /*— /*=A* — h*EN. (4°) of course implies

(5°), and (5°) implies (6°). We complete the equivalence by showing (6°)

implies (3°). By the same argument as was used in (12.5), there exist gE U,
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hEU such that gg/*^/*gA and g(u) =/*(p) =/*(p) = h(u). Then from the

Corollary to (12.1), h-gE(M,i)T\U. Now Ogf*-ggh-g, hence f*-gEN.
Writing f* = g+(f* — g), we have f*EU+N. To prove the concluding state-

ment we need only show that if/G3TC, f—f*EN. In the notation used at the

beginning of the proof, /—f* = h — h*EN.
(12.9) 311 is a-closed.

Proof.

Lemma 1./G3TC implies f+E^d.

We note first that (/*)+G3TL For, from (8.11) 0^(/+)*-(/+)* = (/*)+

~(/*)+^(/*-/*)+=/*-/*• From (12.8) the last expression lies in N, there-

fore also the first, and from (12.8) again, (/+)*G9TC. Turning to/+, — (r*—/)+

g/+-(/*)+g(/-/*)+• Since f-f*EN (12.8), we have -(/*-/)+ and (/-/*)+
both in N. Thus/+—(/*)+ lies between two elements of N, hence is itself an

element of N. Writing/+= (/*)+ + (f+-(/*)+), we have/+G9TC.

Lemma 2. Given fEW, 0^/^l, we can write f=g+h, gEU, hEN such

that O^g^ 1. It follows that if \f\ £1, we can write f=g+h, gEU, hEN such

that \g\ £1.

Since/G3TI, f=gl+h1, glE U, hlEN. We show (gx)+Al is the required g.

Writing/=(g1)+Al + (A1+g1 — (gx)+Al) we see we need only show g1 — (gl)+

A1E(M,)'. (glW„ hence ((g1)+Al), = ((g1)+),Al,= Og%)+Al^ (/,)+
Al„=/,Al„=/„. It follows (g1-(gl)+Al)li=L-L = 0. The last part of the
lemma follows easily by applying the first part to/+ and/- separately.

We proceed to prove the theorem. From Lemma 1, 9TC is a vector lattice,

hence it suffices to show that if {/**} C9H+,/1^/2^ • • • £1, then V„/"G9TL

By Lemma 2, we have for each n,fn = gn+hn, g"EU, hnEN, where 05Sg"5£l.

We show first that we can also assume glgg2g • • • . Writing/2 = g2Vg1

+ (h2+g2-g2Vg1), we have (g'-g'Vg1)^ (g2),-(g2),V(gi)li= (f2),-(f2),

V(f1)li=(r)^-(P)» = ^, and hence h2+g2-g2\Jg1EN. Thus we can replace

g2 by g2\Jgl if necessary; and the same argument applies to all the/" by in-

duction.

Now let/=V„/n and g=Vngn; since {/"} and {g"| are ascending se-

quences,/= lim/" and g = lim g". It follows from hn=fn—gH that {hn} con-

verges and lim h" = lim /" — lim g"=f—g. Denoting lim hn by h, we have

f=g+h. Now U and N are <r-closed, hence gE U, hEN. This gives/G3TL

Our final theorem gives the equivalents of convergence almost everywhere

(for bounded sequences).

(12.10) Let {/"} be a bounded sequence in 3H. Then the following statements

are equivalent:

(1°)  {(/")*} converges;

(2°) lim sup/"-lim inf/ne(A7J';

(3°) lim sup/"-lim inf/" G-/V;
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(4°) lim sup (/")0-Iim inf (fn)0GN.

Proof. That (1°) and (2°) are equivalent is obvious. That (2°) and (3°)

are equivalent follows from (12.9) and the Remark preceding (12.8). Since

(3°) of course implies (4°), we need only prove that (4°) implies (3°). For each

n,fn = gn+hn, gnGU, hnGN, and from Lemma 2 of (12.9) we can assume the

sequences {gn} and \hn] are bounded. Now lim inf g" + lim inf h"

glim inf (gn + hn) glim sup (gn+hn) glim sup gn+lim sup h"; hence 0

= lim sup /" — lim inf /" g (lim sup g" — lim inf g") + (lim sup h" — lim inf h").

To obtain the desired conclusion it suffices to show lim sup gn — lim inf gnGN.

(lim sup g" —lim inf g")0 = lim sup (g")0 —lim inf (g")o- This last expression

lies in N, as can be verified by writing (gn)o= (/")o— (hn)o and applying the

same kind of inequalities we have just run through. Further, lim sup gB

— lim inf g" = (lim sup gn — lim inf gn)*, since it lies in U; hence applying (12.7),

we have lim sup gn —lim inf gnGN.

The implication: (4°) implies (1°), together with the corollary to (9.1)

gives us the

Corollary (Lebesgue bounded convergence theorem). Given a bounded se-

quence {/"} in M, if lim sup (/n)0 —lim inf (fn)oGN, then {fn(p)} converges.
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