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1. Introduction. As is well known the fundamental theorem of the differ-

ential calculus states the following: /// is continuous in the closed interval

[a, b] and iff' = 0 in the interior of [a, b] then f is constant. A principal applica-

tion of this theorem occurs in the theory of primitive functions, for it implies

that the difference of any two primitives of a given function is constant and

so establishes the connection between the elementary indefinite and definite

integrals. This is known as the fundamental theorem of the integral calculus.

In one form this theorem states: /// has a continuous derivative in the closed

interval [a, b] then Jlf'(x)dx=f(b) —f(a).
On the one hand the concept of definite integrals can be extended to vari-

ous classes of real functions for example by use of the Lebesgue and Perron

integration and on the other hand the definition of primitive functions can

be changed from the classical definition at will. One is interested in such

generalizations of primitive functions for which the above connection between

primitives and definite integrals remains valid. This is the main reason for

trying to generalize the fundamental theorem of the differential calculus.

The best known among such generalizations is Dini's theorem [3, p. 204]

which follows from an interesting result of Zygmund [3, p. 203] and a recent

result in this direction is due to Aumann [l, p. 222].

The object of the present paper is to prove a generalization of the funda-

mental theorem of the differential calculus which includes all earlier results

as special cases. The hypothesis of the new result is a combination of one

condition given by Zygmund and another one given by Aumann.

2. Results. In order to state the theorems in a simple form we shall say

that a property holds nearly everywhere if it holds everywhere except pos-

sibly on a countable set of points. As usual the word countable means finite

or enumerable. It is also convenient to use the word interval to denote any

open, closed or half-open half-closed interval of nonzero length. The right

upper derivative will be denoted by D+f.

Occasionally we shall use the notations

A_(x) = lim sup/(Q    and    A+(x) = lim sup/(£).
{->z-0 {-*z+0

As is well known A_(x) ^/(x) is equivalent to the left upper semicontinuity of

/at x.

Received by the editors July 16, 1956.

309



310 ISTVAN S. GAL [November

Theorem 1. Let the real valued fbe defined in the finite closed interval [a, b]

and

1° let A~(x) ^f(x) ^A+(x) for every xC [a, b],

2° let D+f^O almost everywhere in [a, b],

3° let D+f> — oc nearly everywhere in [a, b].

Thenf(a)^f(b).

Condition 1° occurs in Zygmund's result and it implies the left upper semi-

continuity of / at the point x. Conditions 2° and 3° first occur in Titchmarsh

[4, p. 372]. Aumann assumes the left upper and right lower semicontinuity

of/in addition to 2° and 3°. Titchmarsh considers only continuous functions

and Bourbaki [2] assumes besides continuity the existence of a finite right

derivative nearly everywhere in the interval. Titchmarsh uses the theory of

Lebesgue measure, Dini's proof is based on the least upper bound property

of the reals. Aumann, Zygmund and Bourbaki work along the ideas of Dini

but Aumann freely uses the theory of the exterior measure.

The present method is based on the explicit use of the compactness of the

finite closed interval. It can be used also to prove various other results of the

above type among which we mention the following simple ones: If f is ab-

solutely continuous in [a, b] and if D+fSzO almost everywhere then fis increasing

in [a, b]. Of course it is well known that an absolutely continuous function is

differentiable almost everywhere but the point is that the above theorem can

be proved without any reference to this deeper result. Another simple appli-

cation of the present method will be given in the proof of a simple monotony

criterion: If <p is upper semicontinuous in the closed interval [a, b] and for every

x; a^x<b there is ay; x <y<b suck that <p(x) <<p(y) then <f> is increasing.

In the second part of this paper we shall use our method to prove the

following extension of the above theorem:

Theorem 2. Let the real valued f be defined in the finite closed interval

[a, 8] and

1° let A-(x) g/(x) gA+(x) for every xC [«, 8],

2° let p(t) (— oo g[/^0) denote the exterior measure of the set

S(t) = [x\a ^ x < 8   and   D+f(x) < t],

and suppose that p(t)—>0 as t—+— oo,

3° let 7>+/> — oo nearly everywhere in [a, 8}.

Then

f(B) -/(a) ^   f  tdp(t).
»   -00

The proof given in §4 is completely elementary and self contained. We

shall use only the simplest properties of open sets on the real line, the com-

pactness of a finite closed interval and the concept of the exterior measure.
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The integral can be interpreted as the Riemann integral of the increasing

function p(t). Since dpt(t) is non-negative the integral converges to a finite

negative value or is — <». If the integral is finite then the lower variation of/

over [a, fi] is finite.

For continuous functions there is a sharper lower estimate iorf(fi)—f(a)

than the one given in Theorem 2. For we can prove the following:

Theorem 3. Let the real valued f be continuous in the finite closed interval

[a, b] and let D+f> — <*> nearly everywhere in [a, b]. Denote by p.(t) (— » <^t

^ 4- oo) the measure of the set

S(t) = [x \a g x < b and D+f(x) < t].

Then

f(b) - f(a) ̂   f     tdp(t)

whenever the integral /" „tdpt(l) converges.

It is well known that D+f is a measurable function whenever/is measura-

ble [3, p. 113] We need thio in the proof of the theorem.

3. Proof of Theorem 1. In order to keep the main idea of the proof from

getting lost among the details of the proof we first give an outline of the proof:

We assume that/satisfies the hypotheses of Theorem 1 and — co<a<6+00.

The object is to prove that/(a) ^f(b).

Let e>0 be given and let</> be defined by<p(x) =/(x)+e(x — a) for a^x^b.

We are going to determine a sequence of points

a = £i < h < ■ • • < £■ < • • • < {. < t,+i = b

in such a way that <j>(l~r) ̂0(£r+i)+er and ^er<e. Then <p(a) ^</>(6) + e, that

is to say/(a) ^f(b)+e(b — a + 1) and since e>0 is arbitrary/(a) ^f(b). To this

end we construct a suitable covering of the finite closed interval [a, b] by open

intervals Ix and apply the Heine-Borel theorem to select a finite subcovering

of the compact interval [a, b].

The covering of [a, b] by the collection Ix is assured if we define an open

interval Ix containing the point x for every xd [a, b]. The length of Ix will

be determined by the value of D+f at x and the modulus of upper semicon-

tinuity of/ at x.

We recall a simple lemma [3, p. 261] from the theory of arbitrary func-

tions of a real variable:

Lemma l.If<f> is any real valued function defined on an interval I then

lim sup 0(f) g lim sup 0(£)

nearly everywhere in I.
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This lemma has interesting implications concerning the continuity of <p

which unfortunately can not be found in the textbook literature. Of these only

two are relevant here. One relates to the condition given by Aumann: If <j> is

left upper and right lower semicontinuous nearly everywhere in 7 then <p is

continuous nearly everywhere in 7. This corollary implies immediately the

well known result about the continuity of increasing functions. The other

consequence of the lemma is needed in the present proof:

Lemma 2. If<f> is left upper semicontinuous nearly everywhere in I then <f> is

upper semicontinuous nearly everywhere in I.

Now suppose that/ satisfies the hypothesis of the theorem. Let e>0 be

fixed. We define <£ by </>(x) =/(x)+e(x —a) for agxgo. We can find a 5 = 5(e)

>0 such that <p(g) <<p(b)+e whenever o — 6<£go. We assume that 8<b — a.

A simple consequence of the left upper semicontinuity of <p will be used:

If <p(x) <<p(y)+ri for some x and y with a<x<y<6 then </>(£) <<p(y)+ri lor

every £gx which is sufficiently close to x. A similar statement holds at those

points x at which <j> is right upper semicontinuous: If <j> is right upper semi-

continuous at x and <j>(x) <<p(y)+i) with a<x<y<o then 4>(£) <(p(y)+r] lor

every £^x which is sufficiently close to x. Consequently we have the fol-

lowing:

Lemma 3. If 4>(x) <<t>(y)+i) for some x and y with a<x<y<b and <p is

right upper semicontinuous at x then there is an open interval Ix such that

xCIx, yG7x and <£(£) <<p(y)+r) for every £G7*.

Now we shall determine a collection {lx} of open intervals. For every

a^x<b exactly one of the following must hold:

Case 1. The point x is such that — oc < D+f(x) < e.

Case 2. / is upper semicontinuous at x and D+f(x) ^ e.

Case 3. / is not upper semicontinuous at x or D+f(x) = — oo.

For the point 6 we define Ib to be the interval b — o<£<o + 5. For the point x;

agx<o the open intervals 7X are determined in the following way:

Case 1. Let Sk denote the set of those points x<6 for which e — k^D+<f>(x)

<e—(k — l). Since D+<f> is finite <p is right upper semicontinuous at every xG Sk

and so <p is upper semicontinuous at every such point. By the hypothesis of

the theorem Sk is a set of measure zero for every k = l, 2, ■ • ■ . Let Sk be

covered by a system { Iki} of open intervals whose total length is so small that

k2Z\hi\<t2~K
If xCSk then xCIki for some index I and e — k^D+<j>(x). Hence using the

fact that Iki is open we can find a y; x<y<b such that yChi and k(x—y)

<<p(y) — <p(x). By the upper semicontinuity of <f> at x we can determine an

open interval Ix such that xCh, y&Iz and 0(£) <<t>(y)+k(y — x) for every

£G7*. We may choose Ix so that its length is at most 5.

Case 2. Now we consider the set of those points x; agx<o at which <p
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is upper semicontinuous and £>+<p^e. To every such point x there is a y;

x<y<b such that <f>(x) <<p(y). Since <p is upper semicontinuous at x we may

apply the above lemma and determine an open interval Ix containing x not

y and such that <p(£) <4>(y) for every ££/*. We may assume that the length

of Ix is at most 8.

Case 3. The set of those points x; a^x<b at which <f> is not upper semi-

continuous is countable because <j> is left upper semicontinuous everywhere in

/. By the hypothesis of the theorem the set of those points x at which D+f(x)

= — oo is also a countable set. Therefore the set of points x; a^x<b which

come under Case 3 is a countable set. Let xx, • • • , xn, • • ■ be an arbitrary

ordering of the set. By the definition of the limit superior of <f> on the one hand

there is a pointy; xn<y<b such that A+(x„) <<j>(y) + e2~(n+1) and on the other

hand <p(£) <A+(x„)-|-e2_(n+1, for every £>x„ whenever £ is sufficiently close

to x„. The above inequality holds also for £ = x„; in fact, by hypothesis 1° we

have <t>(xn) ̂A+(xn). Hence </>(£) <<p(y)-|-e2~n for every £^xn whenever £ is

close to x„. Therefore by the left upper semicontinuity of </> at x„ the inequal-

ity remains valid for every £^x„ which is sufficiently close to x„. Thus to

every x„ there is a y; x„<y<6 and an open interval IXn such that xnd!Xn,

y€Efs„ and </>(£) <<b(y)+e2~n for every ££./*„. Of course we may assume

that the length of IXn is at most 5.

The collection of all open intervals Ix; a^x^b covers the interval [a, b].

By the compactness of the finite closed interval [a, b] we can select a finite

subcollection of the system {lx} which also covers [a, b]. Let the intervals

of the subcollection be denoted by 1(1), ■ ■ ■ , I(m).

Now we construct a sequence of points

a = fi < h < ■ ■ ■ < fc < • • • < f. < Ui = b

as follows: Let £i = a. £i£Ei& because 8<b — a. Since £i is covered by at least

one of the intervals 1(1), ■ ■ ■ , I(m) there is a point y to the right of this

interval such that at least one of the following inequalities hold:

*(*i) < *(y),

*(&) < 4>iy) + Hy - SO,
*(fi) < <t>iy) + <2~ni.

We put £2 = y- Let us now assume that the points £i<£2< • • • <£r<&

are already determined. Then the point £r is covered by at least one of the

intervals 1(1), ■ ■ ■ , I(m). Either £r is covered by It in which case we define

r = s and £s+i = &, or else there is a y right of the interval covering £r such

that at least one of the following inequalities hold for y = £r+1:

*«,) ^ *(&+i),

*({r)   g tffc+l)  +  kr(Ul ~ fc),

*Glr)   ̂  0«r+l)  + •2-'.
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Here kr and nT denote the particular values of k and n which correspond to

the interval Ix covering £r. After at most m steps the procedure stops because

£r does not belong to any of the intervals which were constructed earlier and

we obtain the desired sequence such that at least one of the inequalities given

above holds for each r<s.

We have

<Kfl)   <  *(*.)   +   E   *r(fc+I  -  fr)   +  «  E  2"»'

where the summations are extended over some, not necessarily all indices r.

The Mr's are distinct positive integers so that E2~"r<l. Moreover according

to the construction in Case 1 £r and £r+i belong to the same interval hri and so

E   Mfc+l   -  fr)   =   E   E   *r(fc+l  -  fr)      ̂    Jt   til    | /« |     ̂    E «2"A.
fc_l fcr=A: 4=1 >=1 fc=l

Consequently <A(£i) <<£(£.,)+2e. Since £i = a and fsG7& we have, by the defini-

tions of lb and o,0(£s) <</>(&)+e and so we proved that <p(a) <<£(o)+3e where

e>0 is arbitrary. Thus/(a) g/(6) and the theorem is proved.

4. Proof of Theorem 2. First let us recall that given a set S on the real

line and e>0 there is a countable set of disjoint open intervals {7„} such that

the union of these intervals covers 5 and El ^»| <A* + e where p denotes the

exterior measure of S. For let a system of open intervals with total length less

than p + t be given such that it covers S. The union of all open intervals of

this covering is an open set and hence it is the union of countably many dis-

joint open intervals 7„. We may also assume that the disjoint open covering

{7„} oi S does not contain adjacent open intervals. If a covering of a set 5 by

disjoint open intervals has this additional property we say that {7„} is a

normal covering of the set 5.

Another simple remark concerns the covering of a set and any one of its

subsets: Let 5 be a set on the real line and let {7„} be a covering of S by open

intervals. If S*QS and if p* is the exterior measure of S* then for any

e*>0 there is a covering {7*} of 5* such that El-£n| <P* + t* and each 7*

is a subinterval of some 7„. In fact S* can be covered by a system of open

intervals J$ whose total length is less than p* + e*. Hence 5 is covered by the

intersection of the two open sets U„ J* and U„ 7„ because 5*C5. The inter-

section is also open and so it is the union of countably many disjoint open

intervals 7* with EU*| = Ek*| <ju* + e*.
If J7„} and {ln} are systems of open intervals such that every 7^ is a

subinterval of some 7„ then we say that {im} is a refinement of {7„}. If the

intervals of the system {7„} are disjoint then {i*} is a refinement of {7„}

if and only if \JlZQl)In-
Using these remarks we can easily prove the following

Lemma 4. Let So^Si^. • ■ ■ 7J5r2 ■ • • be a sequence of sets on an interval

and let pT denote the exterior measure of Sr. Then given any sequence of errors
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er>0 there is a sequence of normal coverings {l„r} such that ^„ |/nr| <pr + er

awd {fn.r+i | M a refinement of {InT} for every r.

A similar statement holds for the interior measure of an increasing se-

quence of sets on the real line which is a direct consequence of the foregoing

lemma. However the use of this statement in the proofs can be easily avoided.

Now comes the proof of the theorem: Let ta = 0 and let {/r} be any

strictly increasing sequence or real numbers /0 = 0</i< • • • <tr< ■ • ■ such

that tr+i — tr>(>0 ior every r. For every value of r = 0, 1, • • • we consider

the set

Sr = S(-tr) = [x\a g x < fi and D+f(x) < - lr[.

li no confusion can arise we shall use the simpler notation Sr. Clearly we have

So^Si^ • ■ ■ 2-SV3 • • • • According to the definition of u(t) given in the

text of the theorem the exterior measure of Sr is p(—/r)=pr. We choose

e(t) =e(/3+/~3)~1 where e>0 and apply the above lemma to the sequence

{S'1 ■        l       ,By the lemma we can find a sequence of normal coverings {/n,r} of the

sets Sr such that each covering system is a refinement of its predecessor in the

sequence of coverings. For every r = 0, 1, • • • let {/m,r} denote a countable

set of open intervals which together cover the set U„ In,T — U„ 7„,(r+i) and sat-

isfy

(1) E   U",r|     < fli-tr)  ~ Pi-tr+l) + ti-lr)
111

The set 5=Dr U„ In,r has measure zero because p(S) ^p(U„ In,r) <pr + «r

and by hypothesis p,.—»0 as r—><*> . Therefore the set of those points x£5 for

which —tr+i^D+f(x)< —tr form a set of measure zero. We can enlarge the

covering system {/m,r} such that the enlarged system covers these points

and its total length still satisfies (1). Denote the new covering system again

by {Jm.r} ■ Then we have

If a^x<fi and — oo <D+f(x) <0 then x£/m,r for some indices m, r.

Our next object is to cover [a, fi] by a suitable system of open intervals.

We shall construct for each x; agx^/3 an open interval Ix which contains x

and so [a, fi] will be certainly covered by the union of the intervals Ix. We

distinguish three different cases:

Case 1. The point x is such that — oo <D+f(x) <0.

Case 2. The point x is such that f is upper semicontinuous at x and D+f(x)

= 0.
Case 3. The point x is such thatf is not upper semicontinuous at x or D+f(x)

=   —   00 .

The point fi does not belong to any of the above groups. Since / is left

upper semicontinuous at fi there is a 5>0 such that/(£) <f(fi)+e ior every £;

fi — S<£</3. We assume that S<fi—a. We define Ip to be the interval fi — 5

<£</3+5.
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Case 1. If — oo <D+f(x)<0 then there is a unique index r^O such that

xCJm.r for some index m and so — tr+i^D+f(x). Consequently we can find a

y; x<y<8 such that yCJm,r and/(x) <f(y)+(tr+i+e)-(y — x). Hence /being

upper semicontinuous at x there is an open interval IxCJm.r such that xCh,

yG7, and

/(f) < f(y) + (/r+i + *)(y ~ f) for every f G /,.

We may choose Ix so small that its length is less than 8.

Case 2. If x comes under this case then a^x<8 and — e<D+f(x). Hence

there is a y such that x<y<8 and/(x) </(y) + e(y — x). By the upper semi-

continuity of/at x we can select an open interval Ix such that xCIx, yG7* and

/(f) < f(y) + <y - f) for every f G 7,.

We assume again that the length of Ix is less than 5.

Case 3. There are at most enumerably many points which come under

this case. For / is left upper semicontinuous everywhere and so it is upper

semicontinuous nearly everywhere in [a, 3]. Let xi, x2, • ■ • , x„, • • • be any

ordering of this enumerable set. By the hypothesis of the theorem /(x„)

gA+(x„) for every m = 1, 2, • • • . Hence there is a point y;xn<y <8 such that

/(x„)gA+(x„)</(y) + e2-<"+1>. Moreover /(f)<A+(x„) + e2-<"+1> for every

f >x„ whenever f is sufficiently close toxn. Therefore/(f) </(y) + e2_n when-

ever f = x„ or f>x„ but is close to x„. By the left upper semicontinuity of/

at xn the inequality remains valid for every f <xn which is sufficiently close

to x„. Thus to every x„ there is a y; x„<y<3 and an open interval IXn such

that x„G7In, yG7x„ and/(f)</(y) + e2~" for every fG7x„. We choose IXn so

that its length is less than 5.

The system of all open intervals IX: agxg/3 covers [a, 8]. Hence by the

Heine-Borel theorem we can select a finite subcovering of [a, 3], Let

7(1), ■ • • , I(m) denote the intervals of this finite covering. Now we select

a sequence

a = f i < f2 < • • •  < fr < ■ ■ ■  < f, < f8+1 = 8

as follows: We put fi = a. Then fiG7p. We consider the point y such that

/(fi) </(y) + «(l) + <)(y-fi),

/(fi) <f(y) + <y-tt,

or

/(fi) < f(y) + t2-»

according as the interval 7(&i) which covers fi comes under Case 1, 2 or 3.

Here r(l) denotes the value of tp+x which corresponds to the interval I(ki)

covering fi = a. Similarly Mi is the exponent which corresponds to the point

x = xni if x comes under Case 3. Let us assume that the points fi< • • • <fr</3
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are already determined in a suitable way. Then £r belongs to at least one of

the intervals 1(1), • ■ • , I(m). If £r is covered by Ip then we define r = s and

£,+i = /3. If £rdlp then there is a y right of the interval I(kT) covering £r

such that

Mr) < fiy) + itir) + «)(y - £r),

f(£r) < /(y) + e(y - £,),

or

Mr) < fiy) + t2-»<

according as I(kr) belongs to Case 1, 2 or 3. The number t(r) denotes that

particular value of tp+x which corresponds to the interval I(kr) covering £r.

We put y = £r+i.

After a finite number of steps this process stops because the number of

intervals I(k) is finite and the point £r does not belong to any of the intervals

I(kx), • ■ ■ , I(kr). According to the construction for each index r<s at least

one of the following inequalities holds:

Mr) </(|r+i) + (/(r) + e)(£r+i-£r),

Mr) < Mr+l) + e(£r+1 - £,),

Mr)   < Mr+l)   +  *2-"'.

Choosing the right inequality for each index r and adding these inequalities

we obtain by £i = a

/(«)   < M-)   +   E  (*M   + «)(t+l  - fc)  + « E  ttr+l  -  £r)  +   Z «2-r

where the positive integers wr are all distinct. Hence

/(«) < M.) + E <W(t+i - fc) + 2e E (fe+i - W + «.

Since the sequence £r is increasing the sum E(£r+i —£r) does not exceed

fi — a. Moreover according to the construction under Case 1 £r and £r+i be-

long to the same interval Jm,p whenever £r comes under Case 1. Therefore

by(l)

E <to(£r+l - ?,)   <T,tpT,   \J».p\
p m

< E'pk-O - ni-tp+d] + E tx-tp).
p p

Hence by the definition of e(/)

/(«) < /(«.) - f ^m(0 + «
•^ -oo

where c depends on the sequence {tp} but is independent of e. We have ^dh
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and so by the definitions of 1$ and o>0, /(f8) <f(B)+e. Consequently we

proved that

f(a) < f(B) -   f   tdp(t) + Ce
J -00

where e>0 is arbitrary and C is a constant which is independent of e. Thus

the theorem is proved.

5. Additional results and applications. Theorem 1 in its present form is a

montony criterion. In fact if the hypotheses 1°, 2° and 3° are satisfied for an

interval [a, 6] then they are satisfied as well for any subinterval [a, 8] ol

[a, b] and so f(a) g/(/3). If we are interested only in the inequality/(a) g/(6)

then it is possible to generalize Theorem 1 as follows:

Theorem 4. Let f be defined in the interval [a, b] and

1°. let \-(x) g/(x) gA+/(x) for every xG [a, b\,

2°. let lub-2:0 for almost all xC [a, b],
ki      y—x

3°. let D+f(x)> — oo nearly everywhere in [a, b],

Thenf(a)£f(b).

The proof of this result is identical with the proof of Theorem 1. For con-

dition 2° of Theorem 1 was used only to show the existence of a y; x<y<6

such that <p(x) <4>(y). ll f satisfies the present condition 2° the same conclu-

sion holds for <t>(x) =f(x)+e(x — a).

The third condition in Theorems 1 and 2 is necessary in the following

sense: Let any nonenumerable subset 5 of [a, o] be given. Then there exist

real functions / satisfying conditions 1° and 2° and such that D+f(x)> — oo

for every x(£S but nevertheless /(&) —/(a) <fL„tdp(t). For as is well known

there exist singular decreasing functions such that/' = 0 on the complement

of S and /(a) — /(&) >c where c is any positive value given in advance.

Theorem 1 has a few applications to Perron integration. For let any

real valued function/ in [a, b] be given. We say that <p is a minor function of

f if (b(a) =f(a) and
1°. A_(x) = <£(*) ̂ A+(x) everywhere in [a, b],

2°. D+<p(x) g/(x) almost everywhere in [a, b],

3°. D+cp(x) < + oo nearly everywhere in [a, b].

Similarly \p is a major function of f if \p(a) =f(a) and

1°. A~(x) ^\p(x) =A+(x) everywhere in [a, b],

2°. f(x) ^D+\p(x) almost everywhere in [a, b],

3°.  — oo <D+\p(x) nearly everywhere in [a, b].

The difference ip— <p satisfies conditions 1°, 2° and 3° of Theorem 1 for any
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subinterval [a, fi] of [a, b]. Consequently \j/(fi) —<p(fi)^\p(a) —<b(a) and also

\p(a) -<p(a) ^ip(a) -0(a) =0 so that

(5) 0 =§ i(a) - 4>(a) =g +(fi) - <f>(fi)

ior every subinterval [a, fi] of [a, b].

The rest follows a simple pattern of reasoning: For every/which has both

minor and major functions we can define its lower and upper Perron integral

over the range [a, b] as

/ = lub <t>(b)    and    ((P") J    / = gib +(b)

where the supremum and the infimum are understood over all minor and

major functions of / respectively. The existence of these values follow from

the inequality <A(6) —<A(») =0 which was established by using Theorem 1.

The function/is called Perron integrable over [a, 6] if (®i)fbaf= ((?")/?/= Wfaf.

According to (5) if/is Perron integrable over [a, b] then it is Perron integrable

over every subinterval [a, fi] of [a, b].

The function Pf defined by the integral (<P)J«f for every xd [a, b] is the

Perron indefinite integral or Perron primitive of / in [a, b]. In the usual

definition of the Perron integral and the Perron primitive it is either required

that the upper and lower functions be continuous in [a, b] or else one uses

stronger differentiability conditions than the present ones. (See [l, 239] and

[3, 191].) The continuity of Pf under the present conditions follows immedi-

ately from hypothesis 1° for major and minor functions.

As usual we obtain an immediate necessary and sufficient condition for

Perron integrability from the definition of the integral: A real valued function

f is Perron integrable over [a, b] if and only if there exist minor and major func-

tions <p and ip such that ip(b) —<j>(b) <e where e>0 is given in advance.

Using this definition of the Perron integral one can give several extensions

of Theorem 3 to noncontinuous functions. For instance we have: Let f be

such that A~(x) ^/(x) ^A+(x) everywhere and D+f(x) > — oo nearly everywhere

in [a, b]. If g is Perron integrable over [a, b] and D+f(x)^g(x) almost every-

where thenf'b) —f(a) ^ (<P)fag- In fact \p with \p(x) =f(x) —f(a) +g(a) is a major

function of g and so the inequality follows immediately.

Stronger consequences can be derived by assuming that / is continuous

everywhere and D+f(x) > — oo , D+f(x) < + <x> nearly everywhere in [a, b].

For instance (a) if there is a Perron integrable function g such that D+f(x)

^g(x)^D+f(x) almost everywhere then f(b)—f(a) = Jig. Also (b) if f exists

almost everywhere then f is Perron integrable and f(b) —f(a) = (<P)faf- (See

[3, p. 205].) The proofs of these statements are immediate.

The following proof of Theorem 3 is based on the measurability of the

Dini derivatives of a measurable function [3, p. 113]: Let us suppose that

/ satisfies the condition A~(x) ^f(x) gA+(x) everywhere in   [a, b] and let
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D+f(x) > — oo nearly everywhere. The same conditions hold good also for

the function g defined by g(x) =/(x) —/(a) — T(x — a). Moreover since D+g(x)

= D+f(x) — T the measure p0(t) of the set S(t) where D+g(x)<t is the same

as the measure pf(t + T) of the set Sg(t + T) where D+f(x) <t+T. By Theorem

2 we obtain g(b) -g(a) ^/° xtdps and so/(6) -/(a) ^ T(b-a) +/° Jdp,(t + T).

Theorem 3 follows from the additivity of the measure.

In §2 we promised to give a simple proof for the following lemma:

If f is absolutely continuous and if D+f(x) ^0 almost everywhere in [a, 6]

then f (a) g/(6). Hence f is increasing in [a, b].

Indeed let e>0 and let <t> be defined by <f>(x) =/(x)+e(x — a). We denote

by S the set of those points xG [a, b] where D+<f>(x) <e. By the hypothesis S

is a set of measure zero, and so it can be covered by a system of open inter-

vals { 7(m) } such that the variation of <j> over U7(m) is less than e.

For every xGU7(m) let Ix be determined as follows: D+tf>(x) — e and so

there is a y; x<y <6 such that <p(x) <<p(y). Hence 0(f) <(p(y) lor every f CIX

provided xCIx, yCIx and the length of Ix is sufficiently small. If xG7(m) for

some index n then let Ix be an open subinterval of 7(m) containing x and let y

be the right end point of Ix. We may assume that the length of each interval

Ix is less than 5 = 5(e) >0 given in advance.

By the Heine-Borel theorem we can select a finite subsystem of the system

of open intervals Ix (agx = 6) which covers [a, b]. Using induction on r<s

we determine as usual a sequence

a = fi < f2 < • • • < f, < < f. < f.+i = b

such that f,G7D and

r>(fr) < d,(Ui)    or    «*>(£,.) < <£(fr+1) +  | 0(f,+O - 0(fr) |

for every r<s according as fr is covered by the interval for which <£(fr) <<f>(y)

or is covered only by one of the intervals 7(m).

Therefore summing over r we obtain

<Kfl)   < *(«.) +  E   I *(fc+l)   ~ *(fr) |

where the summation is over such r's that f, and fr+i belong to the same

I(n). Since the variation of/over U7(m) is less than ewe have0(fi) <<£(f,) + e.

Moreover fsG70 where the length of 70 is less than 5(e). So if 5(e) is chosen to be

sufficiently small then it follows that <£(£i) <0(f,+i)+2e, i.e. <p(a) <<p(b) + 2e.

Hence f\a) g/(6).
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