
SOME GENERALIZATIONS OF FULL NORMALITY^)

BY

M. J. MANSFIELD

This paper deals with two hierarchies of generalizations of full normality:

m-full normality and almost-m-full normality, tn any cardinal number S2.

The notions of 2-full normality and No-full normality were introduced in

1955 by A. J. Goldman [8] in connection with some questions pertaining to

Cech fundamental groups. The concept of almost-2-full normality was intro-

duced in 1952 by H. J. Cohen [2] in answering a question of Dieudonne

[4, §12.111] concerning uniformities for normal spaces. The words "almost-2-

fully normal" are of the author's own invention; Cohen himself gave the con-

cept no name. The idea of generalizing these concepts to arbitrary cardinal

numbers was given to the author by M. Henriksen.

The first section of this paper contains a brief review of the terminology

employed in the sequel. §2 is devoted, for the most part, to establishing the

relations existing between m-fully normal spaces and more well-known types

of spaces (e.g. spaces X for which all neighborhoods of the diagonal in XXX

form a uniformity for X, collectionwise normal spaces, etc.). The results of

this section are due largely to Cohen. §3 is devoted to proving that every

linearly ordered space is No-fully normal. This is, perhaps, the most remark-

able result of the paper. It is shown incidentally that, for any ordinal a,

the linearly ordered space IF(coa+i) is N„-fully normal but not almost-Na+i-

fully normal. §4 deals with subspaces and products of m-fully normal spaces.

The main result, similar to [4, Theoreme 2], is that every closed subspace of

an m-fully normal (resp. almost-m-fully normal) space is itself tn-fully normal

(resp. almost-m-fully normal), and if each open subspace is m-fully normal

(resp. almost-m-fully normal), then every subspace is m-fully normal

(resp. almost-m-fully normal). Finally, in §5, some additional properties of

m-fully normal spaces are established. In particular, the questions of topo-

logical completeness and separation of arbitrary subsets by means of open

sets are investigated. The main result of this section is that every almost-N0-

fully normal space is countably paracompact.

1. Terminology. Let a and 03 be collections of subsets of a set X. The col-

lection d is said to be a covering of X it U {^4 : A £ ft} =X. The collection 03

is said to be a refinement of a if U {.B: 1? £ 03} = U {^4 : yl £ a} and each mem-

ber of 03 is a subset of some member of a. Thus a refinement of a covering
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of X is itself a covering of X. The star of a point xEX with respect to (B, which

is denoted by St (x, (B), is the set U {BE <$>■ x£5}. (B is a star refinement of

a if {St (x, <B): xEX] is a refinement of a. (Our usage of "star refinement,"

which follows [10, Exercise 5.U], differs from that of Tukey [16]. Tukey re-

fers to our "star refinement" as a "A-refinement," reserving the words "star

refinement" to describe a slightly different concept.)

Following J. W. Tukey [16], a topological space X is said to be fully

normal if each open covering of X admits an open star refinement.

Let (I be a collection of subsets of a topological space X. The collection

Q is said to be locally finite ii each xEX has a neighborhood meeting only

finitely many members of Ct. Following J. Dieudonne [4], a topological space

X is said to be paracompact if (i) X is a Hausdorff space and (ii) each open

covering of X admits a locally finite open refinement. Fully normal spaces

and paracompact spaces are related by the following well-known theorem due

to A. H. Stone. The reader is referred to [15] or [10, Exercise 5.U] for the

proof.

Theorem 1.1 (Stone). A topological space X is paracompact if and only

if X is a fully normal Tx-space.

2. Definitions and fundamental relations.

Definition 2.1. (a) Let Q and (B be collections of subsets of a set X, and

let m be any cardinal number =^2. (B is an m-star refinement of & if (i) (B is a

refinement of ft and (ii) for each CC® with | e| ^m and fl {C: CE&} 9^0

there is an A £ a such that U { C: CE ©} CA.
(b) Let m be any cardinal number ^2. A topological space X is said to

be m-fully normal if each open covering of X admits an open m-star refine-

ment.

A fully normal space is evidently m-fully normal for every nt^2. If X is

an nt-fully normal space for some m>2, then X is n-fully normal for each n,

2^n<m.
The next theorem is due to A. J. Goldman [8]. Since a proof is not in-

cluded in [8] we supply one here.

Theorem 2.2 (Goldman). If X is a k-fully normal space for some finite

cardinal k^2, then X is n-fully normal for each finite cardinal n = 2, 3, • • • .

Proof. It suffices to show that if X is &-fully normal for some finite k^2,

then X is 2&-fully normal.
Let <R be an open covering of X. Since X is a fortiori 2-fully normal, (R

admits an open 2-star refinement S. Let 3 be an open fe-star refinement of S.

Suppose that Tu • ■ • , 7;£3, jS2k, and n{r«:« = l, • ■ • ,j}^0. Let

/  be  the  largest  integer   Sj/2.  Then

f\{Ti-.i= l,---,l}*0,        C\{Ti-.i = l+l, ... ,j}*0,
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and | {1, •••,/} | Sk, \ {l+l, ■ ■ • , j}\ Sk. Since 3 is a &-star refinement

of S, there are sets Si£S and 52£S such that UJT;.- i=l, ■ ■ • , l}CSi

and U{T,:i = Z + l, • • • ,j}CS2. Moreover SiC\Si^0, so there is an ££01

such that TOSiUSOU { T,\ i—\, ■ ■ ■ , j}. Hence 3 is an open 2&-star re-

finement of 01. Therefore X is 2&-fully normal.

Definition 2.3. A topological space X is said to he finitely-fully normal

if for each open covering 01 of X there is an open covering S (depending only

on 01) such that S is an ra-star refinement of St for every finite cardinal raS2.

Such a covering S is said to be a finite-star refinement of (R.

It is clear that a finitely-fully normal space is 2-fully normal. The author

can at present neither prove nor disprove the converse of this statement; he

conjectures, however, that it is false.

. Each No-fully normal space is obviously finitely-fully normal. We shall

employ an example due to C. H. Dowker [6] to show that the converse of this

statement is false. Let X be a space whose points are the real numbers. Let

the open sets of X be the empty set, the whole space X, and the subsets

Ga= {x£X: x<a} for all real a. The space X is finitely-fully normal—each

open covering of X is a finite-star refinement of itself—but not fc$o-fully nor-

mal: the open covering {£?,■: * = 1, 2, ■ ■ • }, where G,= jx£X: x<i}, does

not admit an open X0-star refinement^). It would be pleasant to give an

example of a Hausdorff space which is finitely-fully normal but not N0-fully

normal; the author is, unfortunately, unable to do so. As we shall see later

(cf. Corollary 5.3), a normal Hausdorff space which is not countably para-

compact^) would be a likely candidate for such an example. It is remarked

in [8] that Morton Brown and Leonard Gillman have discovered an example

of a Hausdorff space which is finitely-fully normal but not N0-fully normal.

Messrs. Brown and Gillman have been unable to supply the author with the

details of this example.

Definition 2.4. (a) Let a and 03 be collections of subsets of a set X, and

let m be any cardinal number S2. 03 is an almost-m-star refinement of a if

(i) 03 is a refinement of a and (ii) for each set M with | M\ Svn. and J17

CSt (x, 03) for some x, there is an A £ a such that M(ZA.

(b) Let m be any cardinal number S2. A topological space X is said to

be almost-m-fully normal if each open covering of X admits an open almost-

m-star refinement.

It follows at once from the definitions that an m-fully normal space is

almost-m-fully normal. Once again the author must confess his ignorance as

to the validity of the converse, even for finite cardinals. Moreover, there is

(2) In fact, the covering {G<:i=l, 2, • • • } does not admit an open almost-^ o-star refine-

ment (see Definition 2.4).

(3) Following Dowker [6], a topological (not necessarily Hausdorff) space X is said to be

countably paracompact if each countable open covering of X admits a locally finite open re-

finement.
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no good reason at present to believe that the analog of Theorem 2.2 for al-

most-&-fully normal spaces is true. If X is an almost-nt-fully normal space

for some cardinal m>2, then, obviously, X is almost-n-fully normal for each

n, 2^n<m.

Proposition 2.5. If X is a topological space with \x\ Stn, and if X is

almost-m-fully normal, then X is fully normal. Consequently, if X is a Haus-

dorff space of power S tn which is almost-m-fully normal, then X is paracompact.

Proof. The assertions follow easily from Definition 2.4 and Theorem 1.1.

The next theorem and its corollaries are due to H. J. Cohen [2, Theoreme

2]. Since the proofs are not given in Cohen's original paper, they are supplied

here.

Theorem 2.6 (Cohen). Let X be a topological space and let A denote the

diagonal in XXX. In order that for each neighborhood U of A there exist an

open symmetric neighborhood V of A such that V o VC U, it is necessary and

sufficient that X be almost-2-fully normal^).

Proof. Suppose that X is almost-2-fully normal, and let U be a neighbor-

hood of A in XXX. We must find an open symmetric neighborhood V of A

such that Fo VCU- Since U is a neighborhood of A, for each xEX there

is an open set Wx containing x such that WXXWXCU. The family W

= { Wx: xEX} is an open covering of X. Let S be an open almost-2-star re-

finement of "W, and let F=U{5X5: 5,£§}. Obviously V is an open sym-

metric neighborhood of A.

If (u, v) E V o V, then there is a wEX such that (u, w) £ V and (w, v) £ V.

By definition of V this means that there is an Si£S such that uESi and

wESi, and there is an S2E§> such that wES2 and vES2. Hence {u, v}

CSt (w, S). Since S is an almost-2-star refinement of W, there is an xEX such

that \u, v}cWx. Therefore (u, v)EWxXWxCU. Hence Fo VCU.

Conversely, suppose that for each neighborhood U of A there is an open

symmetric neighborhood Fof A such that Fo V C U. Let (Rbe an open cover-

ing of X. We must show that (R admits an open almost-2-star refinement.

Now U = D{RXR: ££&} is a neighborhood of A in XXX. Choose an open

symmetric neighborhood Fof A such that Fo Fo Fo FC U. Then, for each

xEX, V[x] is an open set containing x. Moreover, for each x£X there is an

RXE& such thatx££*. If Wx= V[x]C\Rx, then W = {Wx:xEX} is an open

refinement of <R.

Suppose that {u, v} CSt (w, W) for some wEX. Then u, wEV[xi] and

v, wE V[x2] ior some xx, x2EX. Since V is symmetric, we then have (u, xi),

(xh w), (w, x2), (x2, v) E V. Hence (u,v)EV o Vo Vo VCU. From the defini-

tion of U it follows that there is an £U,„£(R such that (u, v)ERu,vXRu,v,

i.e., {u, v} CRu.v Therefore W is an open almost-2-star refinement of (R. It

follows that X is almost-2-fully normal.

(4) Our notation and terminology relevant to uniform spaces follow [10, Chap. 6].
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Corollary 2.7 (Cohen). Let (X, 3) be a topological space. The family

11a(3) of all ^-neighborhoods of the diagonal A in XXX is a uniformity for X

if and only if (X, 3) is almost-2-fully normal.

Corollary 2.8 (Cohen). If (X, 3) is an almost-2-fully normal Hausdorff

space, then 11a (3) is a uniformity for X whose topology is 3.

Proof. Since (X, 3) is almost-2-fully normal, it follows from Corollary 2.7

that 11a (3) is a uniformity for X. If Nx is a 3-open neighborhood of some

x£AT, consider the open covering {X— {x}, Nx} oi X(6). Let V=(NXXNX)

U((X-{x})X(X-{x})). Clearly 7E1l4(3), and V[x]QNx. Hence Nx is a

cU.A(3)-neighborhood of x.

It Z7£<UA(3), consider U[x] tor any fixed x£JT. There is a 3-open set Nx

containing x such that NXXNXQ U. If y€LNx, then (x, y)£.NxXNxC U, i.e.,

y£(7[x]. Hence NxQU[x], and therefore U[x] is a 3-neighborhood of x.

Thus the uniform topology is 3.

A collection a of subsets of a topological space X is said to be discrete if

each x£X has a neighborhood meeting at most one member of a. Following

R. H. Bing [l ], a topological space X is said to be collectionwise normal if for

each discrete collection {Ap: 8(E;B} of subsets of X there is a collection

{Gp: j3££} of pairwise disjoint open sets such that AaQGp tor each /3££.

A collectionwise normal space is normal, since two disjoint closed sets con-

stitute a discrete collection.

The next theorem is also due to Cohen [2, Theoreme l]. The reader is

referred to Cohen's original paper or our Theorem 5.2 for the proof. It is

comforting to observe that an almost-m-fully normal space is, indeed, nor-

mal.

Theorem 2.9 (Cohen). If X is an almost-2-fully normal space, then X is

collectionwise normal.

The converse of Theorem 2.9 is false: In [2] Cohen gives an example,

due to R. H. Bing, of a collectionwise normal Hausdorff space which is not

almost-2-fuIly normal.

3. Linearly ordered spaces. In this section we show that every linearly

ordered space is N0-fully normal, and that for any ordinal a, the linearly

ordered space W(ua+i) is N„-fully normal but not almost-Na+1-fully normal.

We recall briefly some facts concerning linearly ordered sets; the reader

is referred to Hausdorff [9] for a more detailed discussion. The set of all

ordinals less than a given ordinal <j> is denoted by W(<p). The least ordinal <p

such that W(<p) has power K„ is denoted by coa (co0 =co) and is called the initial

ordinal of power Ka.

Let Y he a subset of a linearly ordered set X. We say that X is cofinal

(resp. coinitial) with Y if for each x£X there is a y£ Ysuch that ySx (resp.

(6) This is the only place in the proof where the hypothesis that X be a Hausdorff space is

needed.
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y ^x). An initial ordinal coa is said to be regular ii W(u>a) is cofinal with no sub-

set of type <«a. The ordinal w=a>o is regular, and so is every initial ordinal

of the form w^+i.

Let X be a linearly ordered set. A Dedekind cut (.4 | B) oi X such that

A has no last element and B has no first element will be called, following

Gillman and Henriksen [7], an interior gap of X. Such a gap may be regarded

as a "virtual" element u such that a<u<b ior all aEA and &£73. If X has no

first (resp. last) element, we shall introduce a virtual element u such that

u<x (resp. u>x) for all x£X, and refer to u as a left (resp. right) end-gap of

X. The linearly ordered set consisting of all elements and all gaps (end-gaps

as well as interior gaps) of X will be denoted by X+.

li u denotes the order type of a set X linearly ordered by <, then u* is

used to denote the order type of X when ordered by >. A linearly ordered

set X is said to be cofinal with wa (resp. coinitial with co*) if X is cofinal (resp.

coinitial) with a subset of type coa (resp. a>*). If X is an infinite ordered set

having no last (resp. first) element, then there is a unique regular initial

ordinal ioa such that X is cofinal (resp. coinitial) with wa (resp. «*).

Let Jbea linearly ordered set. By the linearly ordered space X we shall

mean the set X provided with the topology which has as a subbase the family

of all sets of the form {xEX: x<a} or {xEX: x>a}, aEX. Every linearly

ordered space is a normal Hausdorff space.

The symbols ( ), [ ], etc. will be used in the usual way to denote intervals

(open, closed, etc.) of X. The indicated boundaries of the interval will be in

X+, but they need not be in X itself. The word proper will be used to describe

intervals whose boundaries He in X.

Let X be a linearly ordered space having no interior gaps. If X is not co-

final (resp. coinitial) with o> (resp. w*), then every strictly increasing u- (resp.

decreasing w*-) sequence in X converges in X. A linearly ordered space hav-

ing no gaps is compact (cf. e.g. [7, Lemma 9.2]).

The following lemma is a generalization of a result due to Dieudonne

[5, no. 3].

Lemma 3.1. Let X be a linearly ordered space with the property that every

strictly increasing co- (resp. decreasing «*-) sequence in X converges in X. Then

for each open covering (R of X there is a point x*((R)£X such that Jx£X:

x>x*((R)}CSt (x*(<R),  (R)   (resp. such that

{x£X:x<x*((R)}CSt (x*((R),(R)).

Proof. Suppose that the conclusion of the lemma is false. Then there is

an open covering (R0 of X such that for each x£X there is a yEX, y>x

(resp. y <x), such that y£St (x, (R0). Choose Xi£X. Then there is an x2EX,

x2>xi (resp. x2<xi), such that x2£St (xi, (R0). Proceeding inductively, there

is an xn+i£Z, x„+i>x„ (resp. xn+i<x„), such that x„+i£St (xn, <R0). By

hypothesis, l\mk<01 xk exists, say Zo = \imk<„ xk. Since (R0 is a covering of X,
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there is an 7?0£01o such that z0£7?0. Since R0 is open and z0 is not the first

(resp. last) element of X, there is an a0£Af, a0<Zo (resp. a0>Zo), such that

(a0, z0]C£o (resp. [z0, a0)C£o). By definition of z0, there is a k0<o) such that

&S&0 implies that xA£(a0, z0] (resp. x*£ [z0, a0)). In particular, xko, x*0+i

£(a0, Zo]C£o (resp. xko, xi-0+i£ [z0, a0)C£o). Therefore xto+i£St (x*0, 0l0).

This contradicts the choice of x*„+i- The lemma follows.

Lemma 3.2. Let K= (a, b) be an interval of a linearly ordered space X, and

suppose that there is an ordinal a such that K is cofinal (resp. coinitial) with no

subset of power S^a- If 3 is a covering of K with the property that 7£# implies

that there is an x/£X, a<xi<b, such that I=(a, xj) (resp. I=(xi, b)), then

d is an i^a-star refinement of itself.

Proof. Let 3 be a covering of K such that each member 7 of S is of the

form (a, x{) (resp. (xr, b)) tor some Xi^X, a<xj<b. We must show that $

is an N„-star refinement of itself.

Suppose that $££ and | $\ S&a- By hypothesis there is an x(<0)£i£ such

that x($) >Xi (resp. x($) <xj) for all 7£$. Since $ is a covering of K, there is

an 70=(a, xj0)£# (resp. 70=(x/0, o)£tf) such that x($)£7o. Hence

U{7: 7£$} C7o- Therefore S is an Na-star refinement of itself.

Theorem 3.3. For any ordinal a, the linearly ordered space W(aa+i) is

i^a-fully normal but not almost-Ha+i-fully normal.

Proof. Let 01 be an open covering of W(ua+i). We must show that 01

admits an open Ka-star refinement S.

Let 70={0} = [0, 1). For x£IF(co„+i) - {o}, choose £,£01 such that

x££x. Since Rx is an open set, there are ordinals £I? r]x, %x<t)x, such that

x£(£x, yx)CRx- Let Ix= (£*, t}x) and 8= {lx: x£W(a>a+i)}. Evidently $ is an

open refinement of 01.

Now W(coa+i) is a well-ordered set. Therefore IF^cOa+i) has no interior

gaps. Since co„+i is regular, it follows that IF(co„+i) is not cofinal with co. There-

fore every strictly increasing co-sequence in IF(coa+i) converges. Hence, by

Lemma 3.1, there is an x*(#)£IF(co0+i) such that {x£ JF^cOa+i): x>x*(d)}

CSt(x*(0), d). Let di={lf\[0, x*(3)]:I<E0}. Then gt is an open (in

[0, x*(0)]) covering of [0, x*(d)]. Since [0, x*(tf)] has no gaps, it follows

that [0, x*(&)] is compact, hence paracompact, hence fully normal. There-

fore Si admits an open (in [0, x*(S)]) star refinement Si. Since [0, x*(0)]

= [0, x*(8) + l) is open in W(ua+i), the sets 5£Si are open in W(coa+i).

Now, by definition of x*(8), for each x>x*(S) there is an interval 7£#

such that x*(#)£7and x£7. Therefore the interval Jx=(x*(S), x) is con-

tained in 7. Let S2= {jx: x>x*(S)}. Since co„+i is regular, it follows from

Lemma 3.2 that S2 is an Na-star refinement of itself.

LetS = SiWS2. It follows that S is an open N„-star refinement of 3 and hence

of 01. Therefore W(wa+i) is N„-fuIly normal.
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We shall now show that W(o)a+i) is not almost-Na+i-fully normal. Let (R

be the open covering { [0, a): a£TF(wa+i) — {o} }, and let S be any open re-

finement of CR. It follows from Lemma 3.1 that there is an x*(S)£JF(wa+i)

such that |x£IF(wa+i): x>x*(S)} CSt (x*(S), S). Now the set {xEW(a)a+i):

x>x*(S)} has power Na+i. But each E£(R has power <Na+i. Thus there is no

££(R such that {xEW(b)a+x): x>x*(S)} CR- Hence S is not an almost-

Na+i-star refinement of GI. Therefore W(ua+i) is not almost-Na+i-fully nor-

mal.

Let J be an interval of a linearly ordered space X. Following Gillman

and Henriksen [7], a gap u of 7 is said to be covered in 7 by an interval

K= (x, y) of X if either x<u<y, or one of x, y is an end-gap of 7 and coin-

cides with u. The gap u is covered in J by an open subset R of X if there is an

interval K of X, contained in R, such that u is covered in 7 by K. The gap u

is covered in J by a family CR of open subsets of X if it is covered in 7 by some

member of CR.

Theorem 3.4. Each linearly ordered space X is tAo-fully normal.

Proof. If X has at most one point, then the assertion is trivial. Therefore

we assume that X contains at least two distinct points.

Let CR be an open covering of X. We must show that CR admits an open

No-star refinement Q.

Now CR admits an open refinement S such that each member of S is a

proper interval of X; i.e., each member of S is of the form (a, b) for some

a, bEX such that a<b, with the obvious modifications to take care of the

first element and/or last element of X, in case such elements exist.

We now employ a construction due to Gillman and Henriksen [7, Proof

of Theorem 9.5 ]. Denote by F+ the set of all gaps of X which are not covered

in X by S. Note that since the boundary points of the members of S are points

in X, a gap u of X is covered in X by S if and only if there is an I=(a, b)ES

such that a<u<b.

We shall show that F+ is closed in X+. If x£X+ — F+, then either x is a

point of X or x is a covered gap. In either case, there is an Ix = (a, b)ES such

that a<x<b. If yEX+ and a<y<b, then either yEX or y is a covered gap.

Hence {yEX+: a<y <b}C\F+ = 0. Therefore £+ is closed in X+.

Since X+ — F+ is open in X+, there is a family {Kt: aEA } of pairwise

disjoint open intervals of X+ such that X+ — E+ = U {Kt: aEA }. Now each

K^, in the relative topology of X+, is a linearly ordered space having no in-

terior gaps. Assume for the moment that such a space is N0-fully normal,

and notice how the theorem follows.

For each 7= (a, b)E$, let 7+= \xEX+: a<x<b}. Then, since each point

oi X+ — F+ is either a point of X or a covered gap, S+ = {l+:IE$} is an open

(inJ+) covering of X+-F+. For each aEA, let dt = {l+r\Kt: IEs} - Obvi-

ously st is an open covering of Kt- Hence, by the assumption of the preced-
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ing paragraph, each st admits an open (in Kt and hence in X+) No-star re-

finement gt- Since the Kt are disjoint, g+ = ii {gt'.aEA } is an open No-star

refinement of S+. Therefore g = {j+f~\X: J+Eg+] is an open (in X) No-star

refinement of S and hence of CR.

Thus, in order to complete the proof of Theorem 3.4, it suffices to prove the

following lemma.

Lemma 3.5. If X is a linearly ordered space having no interior gaps, then X

is Ho-fully normal.

Proof. If X has at most one point, then the assertion is trivial. Therefore

we assume that X contains at least two distinct points. We shall denote the

first element, or left end-gap, as the case may be, of X by u, and the last

element, or right end-gap, by v.

Let CR be an open covering of X. We must show that CR admits an open

No-star refinement. First of all, we observe that CR admits an open refinement

S such that each member of S is an interval of X. We now proceed by cases.

Case I. Suppose that both u and v are gaps, and that X is neither cofinal

with co nor coinitial with co*. Then every strictly increasing co-sequence and

every strictly decreasing co*-sequence in X converge in X. Therefore, by

Lemma 3.1, there are points r and I in X such that {x: x>r} CSt (r, S) and

{x:x<7}CSt (/, S). There is no loss of generality in assuming that l<r,

because X has no last element: If r'>r and x>r', then, by definition of r,

there is an interval 7£# such that x£7 and r£7. Since r<r'<x, it follows

that r'£7, and so x£St (r', S). Hence {x:x>r'}CSt (/', S). Similarly, if

l'<l, then {x: x<l'} CSt (/', S).

Choose /*, r*, p, q, s, tEX such that r<s<r*<t and l>q>l*>p. This

can be done because X has neither a first nor a last element. As shown above,

r* and /* have the properties that {x£X: x>r*} CSt (r*, S) and {xEX:

x</*}cSt (/*, S). For each x>r* (resp. x</*), then, there is an interval

IXES such that r*, x (resp. /*, x)£7I. Let Jx=(r*, x) (resp. (x, /*)). Then

JxCLx- Let gr' = {Jx: x>r*} and gf = {jx: x<l*}. Evidently gr* is an open

(in X) covering of (r*, v) and gi* is an open (in X) covering of (u, I*).

Since X has no last (resp. first) element and is not cofinal (resp. coinitial)

with co (resp. co*), it follows that X is cofinal (resp. coinitial) with no subset of

power ^N0. Hence, by Lemma 3.2, gr* and gc are No-star refinements of

themselves.

Let So = ([\p, g)})U({/n(/*, r*): IEs] )VJ({ (s, t}}). Since r<s<t and

p<q<l, it follows from the definition of r and / that (s, t]CL± and [p, q)C^2

ior some intervals 7i, 72£tf. Now So is an open (in [p, t]) covering of the

linearly ordered space [p, t]. Since [p, t] has no gaps, it follows that [p, t]

is compact, hence paracompact, hence fully normal. Therefore So admits an

open (in [p, t]) star refinement 3C0 whose members are intervals of [p, t].

Let g0= {K-({p}U{t}): KEK0}. Then go is a covering of (p, t) such
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that St (x, g0) is contained in some member of So for each x£(p, t). More-

over, each nonempty 7£#o is a proper open interval of X: If, for example,

/£7C£X0l then K=(a,t] tor some a, p<a<t. Consequently K-({p}*U{t})

= (a,t).

Let g = gf\Jg<]Ugf. Evidently g is an open refinement of S. Suppose that

{(ak, bk): k = 1, 2, ■ ■ ■ } is a countable collection of members of g such that

C\{(ak, bk): k = l, 2, ■ ■ - }^0. We must find an 7£0 such that U{(a*, bk):

k = l, 2, • ■ • }C7.  If (at, bk)ESi', k = l,   2, ■ • • ; or if (ak, bk)Ego, k =
= 1, 2, • • • ; or if (ak, bk)(Egf, k = l, 2, ■ ■ ■ ; then, by construction of gf,

go, and gf, there is an 7£0 such that U {(ak, bk): k = l, 2, ■ ■ ■ } C7. If

{(ak,h):k= 1,2, ■ ■ • } = ({(amr,bmy.v= 1, 2, ■ • • })

V({(an»,bn„):u= 1, 2, •• • })

where (am„, bmJ)Ggo, v = l, 2, ■ ■ ■ , (a„„, 0„„)£#,*, p=l, 2, - • • , then, since

n{(a,„,, bm/):v=l, 2, • • • } H(ani, 6„,) ^0, there is a w£AT, w>an, = r*,

such that w £ D{(am„, bmj):v =1, 2, • • • }. By construction of $0,

U {(amy, b„h):v = l, 2, ■ • ■ } is contained in some member 70 of do- Since

w£70 and w>r*, it follows from the definition of So that I0 = (s, t]. More-

over, since gf is an K0-star refinement of itself, there is a b>r* such that

(r*, o)"3U {(a71„, bn„): ju = l, 2, • • • }. Let c = max {t, b}. Then, by the choice

of r, there is an interval 7£# such that r£7 and e£7. Since r<5<r*<c, it

follows that U{(a*, bk): k = l, 2, ■ ■ ■ } £7.

Similarly, if (am„, bm/)£g0, v = \, 2, • • • , and (am„, bmfl)Egf, P

= 1, 2, • • • , then there is an 7£4 such that U {(ak, bk): k = l, 2, ■ ■ ■ } QI.

Since !*<r*, no member of gf can meet a member of gf. Therefore g is

an open K0-star refinement of S, and hence of 01. Hence X is fc$0-fully normal.

Case II. Suppose that both u and v are gaps, and that X is not cofinal

with co but is coinitial with co*. Define r<5<r*</ and gf as in Case I. Let

Zi, z2, ■ ■ • be an co*-sequence coinitial with X such that z,<i, i=l, 2, ■ ■ • .

Then (u, /]=U{ [z,-, t]:i=l, 2, • • • }. Since X has no interior gaps, it fol-

lows that each interval [z,-, t] is compact. Therefore (u, t] is a-compact, i.e.,

the union of countably many compact subspaces. It is well-known that

every regular a-compact space is fully normal (cf. e.g. [10, Exercise 5.Y]).

Therefore the linearly ordered space (u, t] is fully normal.

Let So={lC\(u, r*):7£*f}U({(5, *]}). £0 is then an open (in (u, t})

covering of (u, t] and hence admits an open (in (u, t]) star refinement K0

whose members are intervals of (u, t}. Let g0= {K— {t}: 7C£5C0} and

g = g0KJgr*. It follows, by an argument analogous to that employed in Case I,

that g is an open N0-star refinement of S, and hence of 01. Hence X is N0-

fully normal.
Case III. Suppose that both u and v are gaps, and that X is cofinal with

co but not coinitial with co*. The argument in this case is analogous to that

in Case II: the subspace [p, v) is a-compact, hence fully normal.
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Case IV. Suppose that u is not a gap, v is a gap, and X is not cofinal with

co. The proof is the same as in Case II: the subspace [u, t] is compact, hence

fully normal.

Case V. Suppose that u is a gap, v is not a gap, and X is not coinitial with

co*. The proof is the same as in Case III: the subspace [p, v] is compact.

Case VI. Suppose that none of the hypotheses of Cases I-V holds. Then

X is either compact or er-compact, hence fully normal. This completes the

proof of Lemma 3.5.

Corollary 3.6. If X is a linearly ordered space, then the family of all

neighborhoods of the diagonal in XXX is a uniformity for X whose topology is

the interval topology.

Proof. The assertion follows at once from Theorem 3.4 and Corollary 2.8.

4. Subspaces and products. J. Dieudonne [4, Theoreme 2] has shown

that each closed subspace of a paracompact space is itself paracompact, and

that if each open subspace of a paracompact space is paracompact, then every

subspace is paracompact. The first two theorems in this section establish the

analogous results for m-fully normal and almost-nt-fully normal spaces. The

proofs which we give are similar to those used in [4].

Dieudonne [4, Theoreme 5] also proved that the cartesian product of a

compact Hausdorff space and a paracompact space is paracompact. We give

an example in this section to show that the analogous statement for No-fully

normal spaces is false.

Theorem 4.1. If Y is a closed subspace of an m-fully normal (resp. almost-

m-fully normal) space X, then Y is m-fully normal (resp. almost-m-fully nor-

mal).

Proof. Let CR be a relatively open covering of F. We must show that (R

admits a relatively open m-star refinement (resp. almost-nt-star refinement).

There is a collection CR*of open subsets of X such that CR= {R*C\Y:R*E CR*}.

Let CR** = CR*W({X- Y}). Evidently <R** is an open covering of X. There-

fore (R** admits an open m-star refinement (resp. almost-m-star refinement),

sayS*. LetS={5*HF:5*£S*}.

Evidently S is a relatively open covering of F. We shall show that S is

an m-star refinement (resp. almost-m-star refinement) of CR.

Suppose that 3C§, H{S: 5£3} ^0, and f C3j gm (resp. suppose that

If CSt (y, S) for some y£F and \ M\ gm). For each S£3 there is an 5s£S*

such that S = S*sr\Y. Now n{S|:S£3}^0 (resp. MCSt (y, S*)). Since

S* is an m-star refinement (resp. almost-m-star refinement) of CR**, there is

an i?**£cR** such that U {S*s: SE3JCR** (resp. such that MCR**)- Since

each S* contains points of F (resp. since MCF), R**^X— Y. Hence R**

£CR*. Hence U {S: 5£3J =U {S*s: 5£3J =U {S*s: 5£3}n FC#**nF£(R
(resp. Jl7C7^**nF£(R). Therefore S is an open m-star refinement (resp. al-

most-m-star refinement) of (R.
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An arbitrary subspace of an m-fully normal space need not be almost-m-

fully normal: Let X be a non-normal, completely regular, Hausdorff space(6).

The Stone-Cech compactification(7) $X of AT is a fortiori m-fully normal for

every mS2, but X is, of course, not even normal.

Theorem 4.2. If each open subspace of an m-fully normal (resp. almost-m-

fully normal) space X is m-fully normal (resp. almost-m-fully normal), then

every subspace of X is m-fully normal (resp. almost-m-fully normal).

Proof. Suppose that Y is a subspace of X, and let 01 be a relatively open

covering of Y. Then there is a collection 01* of open subsets of X such that

St={R*r\Y:R*Q(St*}. Let G = U {R*: i?*£(R*}.
Now G, with the relative topology of X, is an open subspace of X, and

01* is a relatively open covering of G. Hence, by hypothesis, 01* admits an

open (in G and therefore in X) m-star refinement (resp. almost-m-star re-

finement) S*. Let S= {S*C\Y: 5*£S*}. It is easily seen that S is an open (in

Y) m-star refinement (resp. almost-m-star refinement) of 01. Therefore Y is

m-fully normal (resp. almost-m-fully normal).

Theorem 4.3. Let (X, 3) be an almost-2-fully normal Hausdorff space, and

let Y be a closed subset of (X, 3). Let 3y be the relativization of 3 to Y, 11a the

uniformity for X consisting of all ^-neighborhoods of the diagonal in XXX,

HAy the family of all 3y-neighborhoods of the diagonal in YX Y, and Vy the

relativization of 11a to YX Y. Then Haj, is a uniformity for Y whose topology is

3r, and cUAr = tUr.

Proof. Since Y is 3-closed in X, we conclude, by Theorem 4.1, that (Y, 3r)

is almost-2-fully normal. Since (F, 3y) is obviously a Hausdorff space, it

follows from Corollary 2.8 that %ay is a uniformity for Y whose topology is

3r-

Now Vr is also a uniformity for Y whose topology is 3y (cf. [10, p. 182]).

Since ItAy is the largest (finest) uniformity for Y with this property, we have

I0y£1tAy. Therefore, in order to prove the last assertion of the theorem it

suffices to show that 'U.AyCVy-

If C/£cUAr, then for each y£ Y there is a 3y-neighborhood Ny ol y such

that NyXNy<Z U. For each y(EY there is a 3-neighborhood N* of y such that

Ny = N*^Y. Let W* = (U{N*XN*:yeY})KJ((X-Y)X(X-Y)). Since F
is 3-closed, it follows that W* is a 3-neighborhood of the diagonal in XXX,

i.e. W*£Ui. Therefore W= W*C\(YX F)£1V.
If (p, q)E.W, then (p, q)£-W* and p, qEY. Hence (p, q)<£(X-Y)

X(X— Y). Therefore, by definition of W*, there is a y£ Y such that (p, a)

<EN*XN*. Hence (p, q)E(N*r\Y)X(N*nY)= NVXNVCU. We conclude

that WCU, and therefore UE.Vr. Consequently cU.Ar£I0r.

The cartesian product of two m-fully normal spaces need not be normal:

In his paper [14], R. H. Sorgenfrey gives an example of a space 5 (the set of

(6) See, for example, [10, Exercise 4.E].

(') See, for example, [10, p. 152].
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non-negative real numbers with the "half-open interval" topology) with the

property that S is paracompact—and hence m-fully normal for any m—but

SXS is not normal.

The cartesian product of an No-fully normal space and a compact space

need not be normal: The space W(ux)XW(ux + l) is not normal (cf. e.g. [10,

Exercise 4.E]). As we shall see later, the cartesian product of an almost-No-

fully normal space and a compact metrizable space is normal.

5. Properties. In this section we derive several properties of m-fully nor-

mal and almost-m-fully normal spaces. Most of these properties have analogs

in the theory of paracompact spaces.

Definition 5.1. Let m be an infinite cardinal number. A collection a of

subsets of a topological space X is said to be locally-m if each x£X has a

neighborhood meeting at most m members of a.

Our first theorem is a generalization of a result due to J. L. Kelley [10,

Lemma 5.31 ].

Theorem 5.2. Let X be an almost-2-fully normal (resp. almost-^o-fully

normal, resp. almost-^a+x-fully normal) space. If a is a discrete (resp. locally

finite, resp. locally-^ a) collection of subsets of X, then there is an open sym-

metric neighborhood V of the diagonal in XXX such that the family { V[A]:

AE&} is discrete (resp. locally finite, resp. locally-^„).

Proof. Let (J be a discrete (resp. locally finite, resp. locally-N„) collection

of subsets of X. Then there is an open covering CR of X such that each member

of (R meets at most one member (resp. only finitely many members, resp. at

most N« members) of a. Let § be an open almost-2-star (resp. almost-No-

star, resp. almost-N«+i-star) refinement of (R, and set 77=U {5X5: 5£§}.

Since X is almost-2-fully normal, there is an open symmetric neighborhood

V of the diagonal in XXX such that Fo FC U (cf. Theorem 2.6).

We shall show that { V[A ]: A £ a} is a discrete (resp. locally finite, resp.

locaIly-N„) collection. If F[x]P\ V[A ]t^0 for some xEX and some A £ a,

choose zE V[x]C\V[A]. Then there is a PaEA such that (pA, z)EV. Since

(x, z)E V and V is symmetric, we conclude that (x, Pa)E V o VC U. Hence,

by definition of U, there is an Sx,aE& such that xESx,a and PaESx,a-

Suppose that there is an xEX such that V[x] meets more than one mem-

ber (resp. infinitely many members, resp. more than Na members) of { F[.4]:

^4£a}. Then there is a (BCa such that | CB| =2 (resp. | (B| =N0, resp. | (B|

= N„+i), and such that 75£(B implies that F[x]H V[B] j±0. Hence, by the

preceding paragraph, for each 7i£(B there is a PbEB and a set Sx,bE& such

that xESx,B and PbESx,b. Hence {pB: 7S£CB} CSt (x, S). Since S is an

almost-2-star (resp. almost-No-star, resp. almost-Na+i-star) refinement of CR,

there is an i?£(R such that {pB~. BE<$>} CR- This contradicts the definition

of CR. Hence, for each x£X, the open set V[x] meets at most one member

(resp. only finitely many members, resp. at most N« members) of { F[.4]:

^£a}.
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Corollary 5.3. If X is an almost-^,o-fully normal space, then X is counta-

bly paracompact^).

Proof. It is shown in [ll] that a normal space X is countably para-

compact if (and only if) for each countable locally finite collection

{Ail i=l, 2, • • • } of subsets of X there is a countable, locally finite collec-

tion JG,: 1=1,2, • • • } of open subsets of X such that AiCLd, i=l, 2, ■ ■ ■ .

The converse of Corollary 5.3 is false. R. H. Bing [l, Example H] has

given an example of a perfectly normal space F which is not collectionwise

normal. Since F is perfectly normal, F is countably paracompact (cf. [6,

Corollary to Theorem 2]). On the other hand, F cannot be almost-2-fully

normal, since F is not collectionwise normal (cf. Theorem 2.9).

The example due to Dowker following Definition 2.3 shows that we can-

not replace "almost-X0-fully normal" by "finitely-fully normal" in the

hypothesis of Corollary 5.3. As remarked before, Dowker's space X is finitely

fully normal. The space X is not countably paracompact because the counta-

ble open covering {G»:*=l, 2, • • • }, where d= {x£Af: x<i], does not

admit a locally finite open refinement. It is an open question, of course, as

to whether every finitely-fully normal Hausdorff space is countably para-

compact.

Observe that Theorem 5.2 contains Theorem 2.9.

It has been shown by Dowker [6, Lemma 3] that the cartesian product

of a countably paracompact normal space and a compact metrizable space is

normal. Hence it follows from Corollary 5.3 that the cartesian product of an

almost-No-fully normal space and a compact metrizable space is normal.

It follows from Corollary 5.3 that Theorem 3.4 is a stronger result than

[7, Theorem 9.5], which states, in part, that every linearly ordered space is

countably paracompact.

Definition 5.4. Let m be any cardinal number S2. A covering 01 of a

topological space X is said to be m-even if there is a neighborhood U of the

diagonal in XXX such that if MC.U[x] tor some x£X and \M\ gm, then

there is an 7?£01 such that Af£7?.

Our next result is similar to [10, Theorem 5.28(d)]. which says that a

regular Hausdorff space is paracompact if and only if each open covering is

even.

Theorem 5.5. A topological space X is almost-m-fully normal if and only

if each open covering of X is m-even.

Proof. Suppose that each open covering of X is m-even. Let 01 be an open

covering of X; we shall show that 01 admits an open almost-m-star refine-

ment. By hypothesis, there is a neighborhood U oi the diagonal in X XX such

that MC. U[x] for some x£X and \M\ gm imply that there is an i?£(R with

(8) See footnote 3.
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the property that MCR-

For each xEX there is an open set Wx containing x such that WXXWXCU.

The family { Wx: xEX} is then an open covering of X. Therefore there is a

neighborhood V of the diagonal in XXX such that if {p, q} C V[x] ior some

xEX, then there is a z£X such that {p, q} CWZ. Let F' = Int V and V"

= VT\V'-1. Now if (u, v)EV" o V", then there is a wEX such that

(u, w)EV" and (w, v)EV". Since V" is symmetric, this means that

u, vE V"[w]C V'[w]C V[w]. Hence, by the choice of V, there is an xEX

such that {u, v} CWX. Hence (u, v) £ Wx X Wx C U. Therefore V" is an open

symmetric neighborhood of the diagonal such that V" o V" C U.

For each x£X choose RXE<& such that xERx, and let Sx= V"[x]f~\Rx.

Then S= [Sx: xEX} is an open refinement of CR. Suppose that y£St (x, S)

for some x£X. Then there is a z£X such that x, yESzC V"[z]. Since V" is

symmetric, this means that (x, y)£F"o V"CU. Thus y££/[x]. Hence

St (x, §)CU[x]. It follows that S is an open almost-m-star refinement of CR.

Conversely, suppose that X is almost-m-fully normal. Let <R be an open

covering of X. We must show that (R is m-even. By hypothesis, CR admits an

open almost-m-star refinement S. Let C7 = U{SXS: 5£§}. Evidently U is a

neighborhood of the diagonal in XXX.

Suppose A/"Cl/[x] for some xEX and | il71 gm. Then, by definition of

U, ior each y£M there is a set S„E& such that x, y£Sj,. Therefore

M C St (x, S),

and so there is an i?£CR such that MCR- Hence CR is m-even.

Definition 5.6. (a) A net(9) {Sn, nED, = } is called an m-net (m any

infinite cardinal number) if for each «£T> the set Dn= {pED: p^n} has

power at most m.

(b) A uniform space (X, 11) is said to be m-complete if each Cauchy

m-net in (X, ll) converges in X relative to the uniform topology.

J. Nagata [13] and Alice Dickinson [3] have shown (independently)

that if X is a paracompact space and 11a is the family of all neighborhoods of

the diagonal in XXX, then (X, 11a) is a complete uniform space(10). Our

next theorem describes the situation for almost-m-fully normal spaces.

Theorem 5.7. If (X, 3) is an almost-m-fully normal Hausdorff space for

some infinite cardinal number in, and if 11a denotes the uniformity for X con-

sisting of all ^-neighborhoods of the diagonal in XXX, then the uniform space

(X, HA) is m-complete.

Proof. We first observe that, in virtue of Corollary 2.8, the uniform topol-

ogy and 3 are identical. Suppose that {Sn, nED, S; } is a Cauchy m-net in

(X, 11a) which does not converge in X. Then {Sn, nED, 2; } has no cluster

points in X. Therefore for each xEX there is an open neighborhood Gx of x

(9) See [10, Chap. 2].

(10)See [10, Chap. 6].
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and an rax£7J such that raSra* implies that Sn(E:X — Gx. The family

{Gz: z£X} is then an open covering of X. Since X is almost-m-fully normal,

there is, according to Theorem 5.5, a (7£cU.a such that if MQ U[x] for some

x and \M\ gm, then there is a zQX such that MQGZ.

Now, since {S„, n^D, S } is a Cauchy net, there is an Wr/£T) such that

pSra,/ implies that (Snu, SP)(E.U. Hence if pSray, then S,£ L7[Sn[f]. Since

the set Jp£T): pSrar/} has, by hypothesis, power at most m, it follows from

the choice of U that there is a z£X such that {Sp: pSrac/} QGZ. Choose

po£T> such that poSraa and po = nz. Then SP0£Gj, and, by choice of nz,

SP0(EX — GZ. This is impossible. Therefore each Cauchy m-net in (X, 11a)

converges in X. Consequently (X, 11a) is m-complete.

Corollary 5.8. If (X, 3) is an almost-Ho-fully normal Hausdorff space,

then each Cauchy sequence in (X, 11a) converges in X.

Proof. A Cauchy sequence is evidently a Cauchy N0-net.

A covering 01 of a set X is said to be point-finite if each x£X is contained

in only a finite number of members of 01.

Definition 5.9. Let m be an infinite cardinal number. A covering 01 of

a set X is said to be point-m if each x£X is an element of at most m members

of 01.

E. Michael [12, Theorem 2] has shown that if X is a collectionwise nor-

mal Hausdorff space such that each open covering of X admits an open point-

finite refinement, then X is paracompact. Our next result is of the same na-

ture as Michael's theorem.

Theorem 5.10. Let m be an infinite cardinal number. If a topological space

X is m-fully normal, and if each open covering of X admits an open point-n

refinement for some ngm, then X is fully normal.

Proof. Let 01 be an open covering of X. We must show that 01 admits an

open star refinement 3. By hypothesis, 01 admits an open m-star refinement

S, and S admits an open point-n refinement 3 for some ngm.

If x£X, let 3»= {T£3: x£T}. Since 3 is point-n, we have | 3*1 gngm.

For each T£3X choose ST& such that TQSt. Since x£f1{5V: T£3xj and

S is an m-star refinement of 01, there is an i?£(R such that U {St: T£3j:} £i?.

Consequently St (x, 3) =U { T: T£3X} £U {ST: T£3,} £7?. Therefore 3 is an

open star refinement of 01. Hence X is fully normal.

Theorem 5.11. Let X be an itp+i-fully normal space. If 01= {Ra: a £.4 } is

an open covering of X such that \A\ =N/j+i, then there is an open point-Up

covering S= {Sa: a^A } of X such that SaQRafor each a£^4.

Proof. Let 01= {Ra: a£^4 } be an open covering of X such that \A\

= Np+i. We may assume, without loss of generality, that A = W(cop+i). Let 3

be an open Np+i-star refinement of 01.

For each aEA  put 5a = U { T£3: T£i?a and if y<a,  then   T<£7^}.
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Clearly S„CRa for each aEA. If x£X, then x£7 for some 7£3. Let ax

be the smallest ordinal a£ W(«p+i) such that TCRa- It follows that xESa,-

Hence S = {Sa: aEA } is an open covering of X.

Suppose that there is an XoEX such that Xo is an element of more than

Ng members of S, say x0ESas, bED, where \D\ =Ns+i. By definition of S,

for each 5£7> there is a 7j£3 such that XoETsCSay Hence H{ 7V 5£7>}

5*0, and so, since 3 is an Njj+i-star refinement of CR, there is an a*EW(w$+x)

such that U { Tt: S£D} CRa'-

Now TsCSa*. means, by definition of Sas, that TjCR<*i and if y<as, then

TiC^Ry. But TsCRa' for every bED, and so a*^at ior every 8£7>. This is

impossible because co/j+i is the smallest ordinal with Np+i predecessors, and

co0+i>o:*. Hence each point x£-X" is an element of at most Np members of S.

Therefore S is an open point-Np refinement of CR.
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