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1. Introduction and background. In the present paper we shall deal with

functions/ which map an abstract set X into a uniform space Y. We assume

that certain topological structures are given on the set X so that we can speak

of the limting values of / as the independent variable £ approaches x and we

can also define the continuity of / at some of the points xdX.

These topological structures on X will be such that for a noncountable

set of points xdX the limiting values of / as £—>x and the continuity of /

at x can be interpreted in at least two different ways. For example if X is

the real line one an speak about the limiting values of / as £ approaches x

from the left and from the right, and of limj^.I_o/(£) and lim{_I+o/(£), and of

the left and right continuity of / at x. The exact definition of these topological

structures on X is given later.

We shall prove two general theorems for such functions: One of these

concern the equality of the limits lim/(£) as £ approaches the same point £

under different conditions. Two cases can be distinguished according as

lim/(£) is uniquely determined for each of these topological structures or not.

The other theorem states that except for a negligible subset of X the function

/ is continuous with respect to both or neither of the topologies defined on X.

These theorems include many old and new results as special cases from

the theory of functions of one and of several real variables. For better under-

standing it is perhaps more suitable to discuss first some of the known results

and to state the new ones afterwards. For real valued functions of one real

variable some precise results of this type have been known for a long time.

The common source of one group of these results is the following theorem due

to W. H. Young [1]:

The set of those points x for which lim sup{^x_0/(£)^lim sup£,I+o/(£) is

countable.

The uses of this theorem can be illustrated by mentioning a few immediate

consequences. Here it is convenient to use the expression "nearly everywhere"

to abbreviate the phrase "with the possible exception of at most enumerably

many points."

If f is upper semicontinuous from the left or from the right nearly everywhere

in an interval I then f is upper semicontinuous nearly everywhere in I.

If f is left or right upper semicontinuous and also left or right lower semi-
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continuous nearly everywhere in I then f is continuous nearly everywhere in I.

The direction of approach of the one sided semicontinuity may vary from

point to point. An analogue of the first result can be obtained by interchang-

ing the words upper by lower. The second corollary implies immediately the

result that monotonic functions are continuous nearly everywhere.

Another less immediate consequence of Young's theorem is the result

on the continuity of regular functions [2; 3]. We may as well state the result

for a slightly wider class of functions: We say that/ is nearly regular in 7 if

the one sided limits lim{,x_0/(f) and Iim{<I+0/(f) exist nearly everywhere in

7. A great number of results on regular functions hold also for nearly regular

functions. Using Young's theorem and a lemma which appears in the same

paper by Young we obtain:

Iff is nearly regular in the interval I then f is continuous nearly everywhere

in I.

The auxiliary theorem concerns the interlimits and intercontinuity of /:

A real number y is called an interlimit of/as f—>x if given any e>0 and any

neighborhood Nx of x there is a ^CNx such that |/(f) — y\ <e. The function/

is called intercontinuousat x if/(x) is an interlimit of/at x. Young's auxiliary

theorem states:

Every real valued function f defined on an interval I is inter continuous nearly

everywhere in I.

A recent generalization of this result to functions / which map one finite

dimensional Euclidean space into another one is due to Bonferroni [4]. We

shall extend this auxiliary theorem to uniform structures satisfying the first

axiom of countability and an additional hypothesis which will be stated later.

A second group of theorems on real valued functions of a real variable con-

cerns the relative magnitude of the Dini derivatives and one sided derivatives

of such functions. The best known among these results is the theorem which

states that any such function can have at most enumerably many cusps, i.e.

the set of those points where the left-hand and right-hand derivatives exist

and are different is countable. More generally we have D-4>^D+<p and

D~<j)^D+(t) nearly everywhere [5].

The foregoing results on the extreme derivatives of <p can be interpreted

as properties of the function/of two real variables x and f defined as/(x, f)

= (</>(f) — 0(x))/(f — x) for every point (x, f) with xj^f. Blumberg [6] was the

first to realize that these properties are independent of the special nature of

the function / and they hold for arbitrary functions of two real variables.

His result was improved and extended by Miss Schmeiser [7] and Jarnik

[8]. One of our main results gives a generalization of these theorems to ab-

stract topological spaces.

2. Preliminary definitions and lemmas. Let us assume that X is a fixed

noncountable point set whose elements we shall denote by x, x0 and f. There

are various ways to describe topological structures on X such that the phrase
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"£ tends to x" or the equivalent symbol "£—->x" becomes meaningful for the

points £dX and for some points x(E-X\ Perhaps it is more suitable for our

purposes to use the concept of a filter to describe convergence on X.

li the reader has a preference for nets he may replace the words "filter"

by the words "net" in the statements of the theorems and in the proofs;

there are only a few points in the proofs where the reasoning must be slightly

modified. For the definitions and the equivalence of such concepts he can con-

sult the articles of McShane [9; 10] and Bartle [ll]. An extensive bibliog-

raphy can be found in [12]. For the sake of completeness and also to avoid

confusion we state the definition of a filter:

A filter J in the set X is a nonvoid family of subsets of X such that

(1) if Fid5 and FiQF2 then F2d$,

(2) if Fi, FidSthen FiC\F2d'S,
(3) if Fd% then F is not empty.

A collection (B of nonvoid subsets of X is called a filter base if Bi, B2,d®

implies the existence of a BG<B such that BC.BiC\B2. The family 5 of all

subsets F of X which contain at least one set 5 of (B is a filter in X, it is called

the filter generated by (B. It is easy to see that a subset (B of a filter EF is a base

of fF if and only if every Fd$ contains some B£(B. If a filter J has a countable

base then we say that J satisfies the first axiom of countability.

A topology 3 on a set A will be called a perfect topology if every non-

countable subset A * of A has a point of accumulation with respect to 3 which

belongs to A*. For instance every Hausdorff topology satisfying the second

axiom of countability is a perfect topology. For assume that A * is such that

no point adA* is a point of accumulation of A *. Then there is a neighborhood

Na about each adA* such that Na contains finitely many elements of A*.

Then {Na} covers A * and so by Lindelof's theorem it has a countable sub-

covering. Since each Na contains only a finite number of a's from A * it fol-

lows that A * is a countable set.

We shall use the notions of a uniform structure 11 and a uniform space Y.

If the reader is not interested in such generalities he may assume that the

space Y which occurs in Theorems 1-4 is a metric space. The proofs of

these theorems are simpler if Y is a metric space; instead of choosing a suita-

ble "vicinity" V it is sufficient to select a suitable e>0 and instead of finding

a W such that Wo WC.V it is sufficient to take e/2. Although all uniform

spaces which occur in the sequel are pseudo-metric spaces we insist on using

a uniform structure instead of a pseudo-metric. The reason for this is that

several of the results can be extended almost without change to a more general

situation where countable sets are replaced by sets having cardinality at most

m and noncountable sets by sets whose cardinality is strictly greater than m.

In this case Y need not be a pseudo-metric space; it is sufficient to suppose

that Y is a uniform space which has a structure base whose cardinality is at

most m. The only essential change is in the definition of the topology 3.
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Namely we must assume that every subset A* whose cardinality card A*>m

has an m-accumulation point which belongs to A *.

The usual definition of a uniform structure is as follows. (See for example

[13], [14] or [15].)
A uniform structure % on a set Y is a filter in the product YX Y such that

(4) if VC* then AQV,
(5) if FG11 then V-'CM,
(6) if VCU, then there is a WC% such that Wo WQ V.
Here A denotes the diagonal of FX Y, i.e. A is the set of pairs (y, y). The

set V~x is the set of all pairs (y2, yi) with (yu y2)CV. Moreover Wo Wis the

set of those pairs (yi, yi) lor which there is a suitable y2G Y with (yu y2)CW

and (y2, yi)CW. Axioms (4), (5), (6) correspond to the axioms d(y, y)=0,

d(yi, yi)=d(y2, yi), d(yu yi)^d(yi, y2)+d(y2, ys) oi a metric space Y. The

sets V of the filter are called vicinities^); in a metric space the e-vicinity is the

set of those pairs (yu y2) for which d(yi, y2) <e. The uniform structure It is

said to satisfy the first axiom of countability ii the filter 11 has a countable base.

We shall use the following lemmas:

Lemma 1. Given any FGlt there is a symmetric vicinity W such that

Wo WQV.

Proof. W is called symmetric if W_1 = W. Vf~\ F_1 is symmetric and by

(5) and (2) we have FHF^GH for any FG1L By (6) there is a UCU such

that U o UQ VC\ V'1 and so by the symmetry of VC\ F_1 we have U'1 o U~x

= (Uo [/)-» C V-1 f~\ V. This implies that U Q Uo U C V C\ V~x and

[/-'CfJ-'otZ-'CFriF-1 so that W=Ur\U-1QVC\V-1. WC^ is sym-
metric and W o WQ JJ o UQ V because U o UQ Vf~\ V~XQ V. This completes

the proof.

Lemma 2. 7/11 satisfies the first axiom of countability then there exists a de-

creasing sequence {Un} of symmetric vicinities which form a basis of 11.

Proof. By hypothesis 11 has a countable basis, say { F„}. By (5), (2) and

(1) we have Wn = VnH V~lCU for every n. The sets Un = WiC\ ■ ■ • (~\ Wn are

clearly symmetric and by (2) they belong to U. Since UnQWnQVn and

{ Vn} is a basis of 1t the decreasing sequence E/iD • • • 2Z7B3 • • ■ of sym-

metric vicinities is also a basis of It.

Every uniform structure It determines a topology on Y which is called

the uniform topology derived from 11: Given any yCY we associate with

every FGIt a neighborhood Nv of y defined as Nv= [rj/(y, n)C V], ll IL has a

countable base then the uniform topology satisfies the first countability

axiom.

Lemma 3. If the uniform space Y defined by the uniform structure 11 com-

tains a countable set which is everywhere dense in Y then for every VC^t there

(') The names surrounding and uniformity are also used.
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is a subdivision 'Sly of Y into countably many disjoint sets My, called the meshes

of Sly, which satisfy MyXMyCl V.

Note. If Y is a metric space containing a countable set which is dense

everywhere in Y the existence of such subdivisions 31 is well known [5, p. 153],

[16, pp. 133—134]. The name subdivision is used here to avoid confusions in

terminology.

Proof. Let {y„} be dense in Y. Using Lemma 1 we can choose a symmetric

Wd U such that Wo WQ V and consider the neighborhood Nn of y„ defined

as N„ = [y/(yn, y) d W]. Since {y„} is everywhere dense in Y the neighborhood

N= [v/(y, r/)dW] of y contains some y„. The symmetry of W implies that

ydNn and so the neighborhood system {Nn} covers Y. Clearly the symmetry

implies that (y', y")dWo W ior any y', y"dNn and so NnXN„QV. The

sets M\ = NX, M\ = N2-M\C\N2, • • • , M\ = Nk-(Mv\J ■ ■ ■ WM'-'JAft,
• • ■ are disjoint, their union is Yand since MyQNk we have MyXMyQV.

This completes the proof.

Given a function / which maps the set X into the topological space Y

and given a filter EF in X we say that yd Y is a cluster point or interlimit of /

with respect to EF if for every Ny; y=f(x) and for every F£EF there is a £E:F

such that/(£)£7V„. The set of all cluster points of/with respect to EF will be

denoted by/[EF]. It is easy to see that/[EF] is a closed set in Y for every filter

EF in X.

A point yd Y is called a limit point of / with respect to EF if for every Ny

there is an F£EF such that/(£)£./V„ for every ££F. We say that/is continu-

ous at x with respect to EF if for every Ny there is an F£EF such that/(£) dNv

for every ££F. If Y is a Hausdorff space then there exists at most one limit

point of / with respect to EF; if this limit point y = (SF)lim /(£) exists then

/[EF] consists of the single point y.

Often these concepts are defined only when X is a topological space and

EF is a filter which has exactly one limit point. By a limit point of EF we under-

stand any point x such that every neighborhood Nx of x contains at least

one F£EF. Clearly x is a limit point of EF if and only if (PjCj where (Px de-

notes the filter generated by the set of all open sets containing x. If f(x)

is an interlimit of /with respect to the filter (Px then/is called inter continuous

at the point x. The limit superior of a real valued / with respect to a filter

EF is defined as

(EF)limsup/(£) = (SF)lim [(F)lub/(£)]

where (F) lub/(£) denotes the supremum of/(£) on the set F.

3. Main results. Now we are ready to formulate our main theorems. For

throughout this section and also in the forthcoming proofs let/be a function

mapping the set X into the set Y. Let A be an index set with elements adA

and let two systems (p1 = {EF^} and cp2 = {EF„} of filters EF^ and EF„ be defined in

X. Let a perfect topology 3 be given on the set A.
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We say that the system 01 has property P with respect to <j>2 and the topol-

ogy 3 if for every F'O0C5la(l there is a neighborhood Naa of a0 such that every

&t with aCNao and a^ao contains a set FlQF],0. Similarly we speak of <pl

and <f>2 having property P with respect to the topologies 3i2 and 32i. For in-

stance if X = A is the real line we can define for every x = aCX = A the filter

JF7 to be the filter generated by the family of open intervals x —5 <f = x where

5>0 is arbitrary and similarly we define 5X to be the filter generated by the

family of open intervals x^f <x + 5. Then the system 0+ has property P

with respect to <f>~ and the topology 3_+ of the real line X which is generated

by the neighborhoods Nx= [f/xgf <x + 5]. Similar statement holds also

when the ordering of 4>~ and <f>+ is reversed.

In the first theorem we choose A to be a noncountable subset of the set

X. The elements of A will be denoted by x. We suppose that x is contained

in every set FlC^l for every xCA.

Theorem 1. Suppose that the filter system <pl has property P with respect to

<t>2 and the perfect topology 3, aMd suppose that a uniform structure It" is

given on Y which satisfies the first axiom of countability. Then the set of those

points xCA at which f is continuous with respect to $1 and discontinuous with

respect to S2. is countable.

There are a number of special cases and applications of this theorem

which will be discussed in §7. Here we mention only the examples when

X = Y is the real line, the filter systems are cp~ and <p+ with A =X, and the

perfect topology 3 is one of the half-open interval topologies 3~+ and 3+~.

Applying Theorem 1 with both choices of 3 we see that the set of those points

where/ is discontinuous but continuous either from the left or from the right

is a countable subset of X.

Now we make further restrictions on the structures given on the sets X

and Y. We suppose that there is a uniform structure CUI defined on X which

satisfies the first axiom of countability. As earlier we suppose that two sys-

tems of filters<p1= {ffi} and <p2= {'S2,} are given on X and a perfect topology

is defined on the index set A. Here we consider only such filters tfa which

have the property that given any U there are sets Fi in SFj, satisfying F'XF'QU

and given any FlG^L there is a t/GH* such that F^K for every F'C^

satisfying F{XF'QU. Since Ux satisfies the first axiom of countability these

hypotheses are equivalent to the following: Fl has a countable base and it is

a Cauchy filter.
We say that cp1 has property ir with respect to <p2, 3 and It' if given any

a0CA, a set Fl0C^l0 and a vicinity [/Gil* there is a neighborhood 2Va„ of

ao such that for every aCNai)a^a0 the set F%t intersects some Fl satisfying

FaXFlQU. We can also speak about </>' and <f>2 having property ir with re-

spect to the topologies 3i2 and 32i and the uniform structure 11*. We shall

prove the following:
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Theorem 2. Suppose that the filter system <px has property ir with respect to

<p2, 3 awd 1tx awd suppose that a separated uniform structure c\iv is given on Y

such that the uniform space defined by 11" is compact. Then the set of those

indices a for which f[3a]C\f[$a] = 0 is countable.

As a simple illustration let us take Miss Schmeiser's theorem: As X we

take the Euclidean plane and as A a fixed straight line in X. For every adA

we consider a half line la with end point a and forming a fixed angle y' with

A. The filter EF„ is defined by the set of all open segments of l'a one of whose

end points is a. If y'^y2 and la and fa belong to the same fixed half plane

determined by A for every adA then the filter systems </>' and <p2 have prop-

erty ir with respect to the topology 3~+ of the line A and the ordinary uniform

structure of X. Hence by Theorem 2 the set of those points adA ior which

real valued function/defined on A!" does not have a common interlimit as£—>a

along l], and fa is a countable set.

Theorem 3. Suppose that there is a uniform structure given on the sets X

and Y such that ll1 awd 11" satisfy the first axiom of countability and the uniform

topology induced on XXY by It1 awd 11" is a perfect topology. Then every func-

tion f mapping X into Yis inter continuous nearly everywhere in X, i.e.f(x) £/[(?*]

for all but a countable set of points of X.

If X and Y are finite dimensional Euclidean spaces then the conditions

are clearly satisfied and we obtain Bonferroni's result. Finally we can prove

an extension of Young's theorem:

Theorem 4. Suppose that the filter system cp1 has the following property:

Given any Faod^L0 there is a neighborhood Naod3 such that for every aG-/V„0;

a?^ao there is a Fad$Z satisfying FlC.Fao. Then the set of those points adA for

which

(EF1) lim sup /(£) ^ (EF*) lim sup /(£)

is countable.

Several special cases and applications of these theorems will be discussed

after the proofs.

4. The proof of Theorem 1. We give an indirect proof. Let us suppose

that there exists a noncountable subset Ax of A such that at each point x£^4i

/is continuous with respect to the filter EF^ and is discontinuous with respect to

the filter EF?.

Let/(x) be abbreviated by y and similarly let/(£) be denoted by 77 when-

ever this abbreviation does not cause confusion. Since, at every xdAx, f is

discontinuous with respect to EF? there exist for each x£^4i a neighborhood

Nv of y =/(x) such that for every Fld$l there is at least one £GF| for which

/(?)££-Wv The neighborhoods Nv are derived from the uniform structure It"

and so we have proved that there is a noncountable set Ax such that for each
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xG^4i there is a vicinity V with the property that (y, rj) G V for at least one

point f of every F2X.

We may choose the vicinity V from a countable set of fundamental vicini-

ties Vn which form a countable base for the uniform structure 11". The set

^4i is not countable and the number of choices for V= Vn is at most denumer-

ably infinite. Hence we can select a suitable subset A* of Ai and a fixed

vicinity V such that the following statements hold:

(i) A* is a noncountable subset of A.

(ii) f is continuous with respect to 5X at every point xG^4*.

(iii) There is a fixed vicinity FGIt" with the property that for each xCA*

there is a f in every F2XC5X such that f s^x and (y, 77) G V.

By the hypothesis of the theorem there is a topology 3 on the set A such

that every noncountable subset of A has a point of accumulation which be-

longs to this subset. Hence by (i) the set A* has a point of accumulation x0

with respect to the topology 3 which belongs to A* itself. Therefore by (ii)

the function / is continuous at x0 with respect to the filter SF^.

The continuity of / at Xo with respect to o£0 means that given any Nvo

there is a FlXo such that *7=/(f) belongs to 2V„0 for every fGT'i,,. Since the

neighborhoods of the uniform topology on Y are derived from the vicinities

W of the uniform structure It", to every 2VVo there corresponds a WCW such

that r)CNy<) if and only if (y0, 17) GIF. Consequently the continuity of/ at x0

with respect to the filter $l0 can be stated in terms of the vicinities: Given

any WCW there exists a FXo such that for every f CFl0 we have (y0, rf)CW.

We shall consider one vicinity IF chosen in a suitable way: As earlier, let

V denote the fixed vicinity which occurs in (iii). For this particular VCW

we can find by Lemma 1 a symmetric vicinity W satisfying W o WQ V.

Having fixed W we determine the set F\0 such that (yo, 77) GIF for every

fGT'i,,. Therefore we have

(a) The vicinity W is symmetric, W o WQ V and (y0, 77) C Wfor every f G 7"^.

Now we apply the second part of the hypothesis of the theorem: We can

choose a neighborhood NXlj of the point x0 in the topology 3 such that for

every x; X5^x0, xCNX(> there is an Fl contained in F\0. Since x0 is a point of

accumulation of A* we can find a point x such that xG^4* and also xG2VI0.

First we fix such a point x and then determine the set F2zQFlXlj. By hypothesis

xCFl. Therefore we have

(b) The point xCA* is contained in F\ and also in F\a.

Now it is easy to arrive at a contradiction: On the one hand xG-4* and

so by (iii) there is a fGF* such that (y, 77) GF. By (a) we have Wo WQV

and so (y, 77) G Wo W. On the other hand by (a) we have (y0, rf)CW and by

(b) we may apply (a) with f =x and obtain (y0, y)CW. By the symmetry

of IF also (y, yi) C W and so using (y0, 77) G IF we obtain (y, 77) G W o W. This

is a contradiction and so the theorem is proved.

5. Proof of Theorem 2. We are going to prove the theorem by contradic-
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tion. We assume that the intersection of the nonvoid sets/[EFj,] and/[EF^] is

empty for a noncountable infinite set .4i of indices adA. Using Lemma 2 we

choose countable bases of 11* and It", say { Un} and { 7„} so that the vicinities

Un and Vn are symmetric and Ux ~3 U2 2 • ■ • and Vi 2 V2 3 ■ ■ • . We con-

sider a finite subdivision 9ln = $lvn of Y with meshes M\ = M\n. The existence

of such subdivisions is assured by the compactness and by Lemma 3. For

each fixed a£^4i let Ena be the union of those meshes Mn ior which there

is at least one point such that/(£)£Af£ and ££F^ for some F1 satisfying

FaXFlaCZUn.

The set .4i is not countable and so there exists a noncountable subset A2

oi Ai and a fixed set E„ for each w = l, 2, ■ • • which is the union of meshes

M„ such that for every adA2 we have Ena = En. Let En denote the closure of

the set En. We shall prove the following statement:

There is a noncountable subset A* of A2 and a fixed index n such that the

intersection of En awd/[EF^] is empty for every adA*.

Since there are denumerably many possibilities for w it is sufficient to

find an index n for every a£ij such that £n^/[EF^] is empty. On the contrary

let us assume that for some adA2 and for every index w there is a yn£ 7

with the property that yndEn and yndf[$a]. Then there is a y„' ££„ such

that (y„, yl)dVn- Of course yldMn for some index k. According to the

definition of En there is a £„ such that 7?„ =/(£„) £Af« and ZndFL, for some

FL with FnaXF^QUn- Since MnXM*Q F„ by the definition of the subdivi-

sion 9l„, we see that (y„', n„) £ F„ and so (y„, w„) G F„ o Vn.

By hypothesis/[EF^] is compact and so the set of points y„ has a point of

accumulation y£/[$„]. Thus for every m there is at least one index n = nm>m

such that (y, y„) G Vm. Since also (yn, nB) £ Vn o F„ we have (y, »?„)

£7mo 7mo 7m, where ??„=/(£,>) and £„£F„X„ with F^XF^Q Un-

it follows that y is a point of the set/[EF„]: In fact by Lemma 1 for every

7given in advance there is a Vm such that Vm o 7m o 7mC 7. Moreover given

any F£EFj, there is a UdIt* such that Fa C F for every F^ satisfying F.J X F<J C J/.

Hence for a sufficiently high index w we have F„-aQF, so that £„£F and

(y, ln)£7. Therefore y £/[$],]. This is a contradiction because on the one

hand we also have y£/[SF^] and on the other hand/fEFiJO/fEF2,] is empty for

every adA2. This proves the statement.

Now we can arrive at a contradiction: Since the topology 3 is perfect and

A * is not countable there is an index a0dA * which is a point of accumulation

of A * with respect to the topology 3. Given any Um of the decreasing sequence

{ Um} of symmetric fundamental vicinities we choose F?„a0GEF^0 such that

FlnaoXFitacQUm. Given Fmao by hypothesis there is a neighborhood Nao oi

a0 such that the following statement holds for the fixed vicinity Un which cor-

responds to the fixed set En. For every a£iVO0; a^a0 there is an Fa with the

properties FaXFaCUn and FaC\F2ma<15^0. Since aa is a point of accumulation

of A* there is an adNaa such that aG-4*. Let £OT be a common point of Fax

and Flao- Then ?;„=/(£,„)££„.
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The compactness of the closed set En implies that the sequence {77*,}

has a point of accumulation y which belongs to En. We can easily show that

y also belongs to/[?„„]. This leads to a contradiction because a0G-<4* and so

E„r\f[5l0] is empty. In fact given any FC$l0 there is a £2Gltx such that

Fl0QF for every Fao satisfying F^XFl^QU. Therefore if we choose m such

that UmQU it follows by F2maoXF2maoQUm that Fla.QF. f„,G71,ao and so

fmGF for every m whenever UmQ U. Let also FG'U." be given. Since y is a

point of accumulation of {77*,} we have (y, r/m) C V for an infinity of indices m.

We proved that fmGT" with the possible exception of at most finitely many

indices m. Hence there are infinitely many m's tor which both fmGF and

(y, r)m)CV holds. Consequently y belongs to /[$„„] and so the theorem is

proved.

6. Proofs of Theorems 3 and 4. We prove the results by contradiction.

First let us suppose that there is a noncountable set XiQX such that y

=f(x)Qf[(Px] tor every xG^i- Then there exist t/Glt* and FGIf for every

xGA'i with the property that (y, 77) G V for every f satisfying (x, f)G^7. By

Lemma 2 there are decreasing sequences { Um} and { Fm} of symmetric fun-

damental vicinities of ll1 and C\LV. Hence we may suppose that U and F are

chosen from the elements of the sequences { Um} and { Vm} respectively.

Since on the one hand the possibilities for such a 77, F pair form a denumer-

able set and on the other hand Xi is not countable there are fixed vicinities

Un and Vp and a noncountable subset X2 of Xi such that (y, 77) G Fp for every

f satisfying (x, f) G Un.
Now we consider the set 5 of ordered pairs (x, y)CXX Y where xCX2

and y =/(x). This set is not countable and so by the hypothesis of the theorem

there is a point of accumulation (x0, yo) which belongs to S. Hence choosing

the neighborhood of (x0, yo) which is determined by the vicinities U„ and Vp

we see that there is a pair (x, y) CS with the properties (x, x0) G Un, (y, yo) G Vp.

This is a contradiction because on the one hand by (x, y)CS we have xCX2

and so (y,/(x0))G Vp but on the other hand by (x0, y0)G5 we have y0=/(x0).

This completes the proof of Theorem 3.

Proof of Theorem 4. For the sake of simplicity we shall use the notation

Aa = (5a) —lim sup/(f). Let us suppose that Ala7^A2a for a noncountable subset

Ai of indices aCA. By a suitable choice of the superscripts i=l, 2 we can

make A^<A^ for a noncountable subset A2 of At. Since the set A2 is not

countable there is an e>0 and a noncountable subset A3 of A2 such that

A^+e<A^ for every aCA3. We consider the set of values A2 counting each

value with its multiplicity in a. This set is not countable and so there is a real

number A2 and a noncountable subset A* of A3 with the property that

I A2— A21 <e/3 for every a C A*.
The topology 3 is perfect and so there is a point of accumulation a0 ol

the set A* which belongs to A*. By the hypothesis of the theorem, given

Fa<sC5ao there is a neighborhood 2V„0 such that for every aCNafl; a^ao we
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have FaC.Fao for some F'id^l- By the definition of A2, there is a ££F2 such

that /(£) > A2 - e/3. Therefore /(£) > A2 - 2e/3 with £ G Fao so (F„0)

— lub /(£)>A2 —2e/3. The set Faad5ao being arbitrary we see that Aao

^A2 —2e/3. Since aoG-4* we have A^0>A^0 — e, which is in contradiction to

Ai0+e<A2ao.

7. Special cases and applications of Theorem 1. First we modify Theorem

1 to obtain a more symmetric form: Suppose that a countable set {</>'} of

filter systems 4>{ is given in X in such a way that to every point xG-4 there

corresponds a filter tf'xdfp' where the index set A is a noncountable subset of

X. Let a perfect topology 3,-j be defined on A for every ordered pair of indices

i, j= 1, 2, • • • . Suppose that $'' and <j>' have property P with respect to the

topologies 3,/ and 3j< for every i, j = l, 2, • • ■ and xdFx for every Fxd5x

and every i and xdA. Using Theorem 1 we obtain the following proposition:

If for every xdA there is an index i such that f is continuous at x with

respect to 5X then for nearly every xdA f is continuous with respect to every filter

&x(i=l,2, ■ ■ ■).

The conclusion can be stated in a different form by using the concept of

the greatest lower bound of a family of filters. For every xG-4 we define the

greatest lower bound of the family {5X} to be the set EF* = gib EF^ of those sets

FXQX which include at least one set Fx from every filter EF^. It is easy to see

that EF* satisfies the axioms (1), (2) and (3) of a filter. By the foregoing prop-

osition given any xG-4 which is not an exceptional point and given any

NyQY there is an Fx for every i=l, 2, ■ ■ ■ such that r}dNy ior all ££Fi

Let Fx = Ui Fx. Clearly -qdNy for every ££FX and Fx£fF*. Then under the

same hypothesis as in the preceding proposition the conclusion now reads:

/ is continuous with respect to EFX = gib EFX nearly everywhere in A.

Now we make further restrictions on the systems <pl: We start from a

countable family (3*} of topologies 3' defined on the set X. By definition the

greatest lower bound of the family {3*} is the topology 3 = gib 3; whose open

sets 0£3 are open in every 3'. We define the filter system <£'= {(?l} to be the

set of all filters <PX generated by the neighborhoods N^d^ of xdA so that

Fld^l if and only if NlQFl for some open set A^£3\
If Oz is an open set in 3 which contains x then 0j:£3* and so 0*£<$» ior

every i. Therefore 0X is a set of the filter EFi = glb(Px. This implies that in

general (PzCZEFj where (Px denotes the filter generated by the neighborhoods

Nx of x in 3. For every i, j let the systems 0* and <p> have property P with

respect to some suitable perfect topologies 3,y and 3y, defined on A, and at

every x£^4 let/ be continuous with respect to some topology 3* where de-

pends on x. Then by the above corollary of Theorem 1 the function / is con-

tinuous with respect to the filter system <j>= {"Sx} at nearly all x£.4. This last

conclusion however does not imply the continuity of / with respect to the

topology 3 because only (P^CfFj is known.

There are a number of important instances when the filters <PX and SF*
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coincide. In view of (?XQ5X it is sufficient to show that 5XQ(?X, i.e. every set

FXCSX contains some VXC&* The simplest example of such topologies is

furnished by the topologies 3_+ and 3+_ induced on the real line X by the

half open intervals agf <6 and a<f ^o respectively. Here 3 = glb (3_+, 3+_)

is the usual topology of the real line and the conclusion gives the second corol-

lary of Young's theorem which was discussed in the introduction. For the

topologies 3+~ and 3_+ are perfect and can serve as the topologies 3" and 3'*

of the hypothesis.

Similar situations arise in the plane. First we introduce a notation: We

consider the circle with center xCX and radius p. Given a direction d in

X and any angle a (0<a<27r) we let Sx(p)=Sx(d, a, p) denote the sector

with central angle a pointing in the direction d. We agree that the vertex x

belongs to Sx(p) and no other boundary point of the sector belongs to the

plane set Sx(p). We say that a topology 3 in the plane is a (d, a)-topology if

every neighborhood 7VXG3 contains some Sx(d, a, p). For instance the family

of all sets Sx(d, a, p) for fixed (d, a) and arbitrary xCX, p>0 forms a base

of a (d, a)-topology; it is the finest among all (d, a)-topologies. Obviously

a (d, a)-topology is necessarily a (d, 8)-topology for every 8<a. We prove

the following lemma:

Every (d, a)-topology with a>ir is perfect. For every B^ir there is a (d, 8)-

topology which is not perfect.

Proof. We give an indirect proof. Suppose that there is a noncountable set

A QX such that no point xG^4 is a point of accumulation of A. Then we can

associate with every xG^4 a sector Sz(px) whose radius may depend on x

such that Sx(pz) contains no points of A except x. The set A is not countable

and so there is a noncountable subset A * of A and a common radius p > 0 with

the property that the only common point of Sx(p) and A * is x. Let xi, x2CA *

and let the indices be chosen such that x2 is not farther in the direction d

than x2. Then XiCSx(d, a, p) and a>ir imply that x2 is outside the circle

about xi with radius p. Consequently the distance between any two points

Xi5^x2 of A* is at least p. Since the usual topology of the plane is perfect

we have a contradiction.

The second statement of the lemma can be proved by considering the

(d, /3)-topology whose base is Sx(d, 3, p) where p>0 and xCX are variables.

Let A be any straight line which is perpendicular to d. Give any xG-4 con-

sider the neighborhood Sx(d, 3, p) of x. Since B^ir, Sx(d, 8, p) contains no

other point of A besides the vertex x. Hence x is not a point of accumulation

of A.
Now we consider a denumerable family of unit vectors d' which is dense

in the space of all unit vectors, i.e. given d and e>0 there is an index i such

that d d{> 1—e. Let 3* (i= 1, 2, • ■ •) be a (d, a'")-topology with a{>ir. Then

for every i,j = 1,2, ■ ■ ■ the filter system <p{= {(Pl} has property P with re-

spect to <p' and the perfect topology 3*. Hence the hypotheses of our last prop-
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osition are satisfied and so if a function / is continuous at every xCA with

respect to at least one of the topologies 3,: then / is continuous at nearly all

points xCA with respect to $Fx = glb (Px. Clearly every FxC5x contains a circle

with center x and so / is continuous in the usual sense nearly everywhere in

A. We obtain the following result:

Let f be a function mapping the plane into a uniform space Y whose uniform

structure 11" satisfies the first axiom of countability. If at every point x of a non-

countable subset A of Xf is continuous with respect to some (d, a)-topology where

a>ir, then f is continuous in the usual sense at nearly all xCA.

The function / is continuous at x in the (cf, a)-topology if and only if

the restriction of/to the plane sector pointing in the direction d and having

central angle a is continuous at the vertex x. The result can be readily ex-

tended to finite dimensional Euclidean spaces.

8. Remarks on Theorem 2 and examples. It is obvious that the reasoning

given in the beginning of §7 concerning Theorem 1 can be repeated also in the

present case. Hence we can consider a countable set {<pi} of filter systems

<t>i= {$„} where the index set .4 = {a} is not countable. We suppose that tp'

and <p' have property ir with respect to some perfect topologies 3,-,- and 3;,-

defined on A. Then under the same hypotheses on X and F as in Theorem 2

we have:

For nearly all choices of aCA any two sets f[$'a] and f[$'a] have a nonzero

intersection, i.e. f has a common limiting value with respect to any two filters 5a

and 5!a.

It is remarkable that in certain instances the countability condition on

the index set {i} can be relaxed. This is the situation, for example, in the

problem treated by Miss Schmeiser. Let us consider all directions dl on the

same side of the straight line A in the plane X. Let us denote by $lx the filter

generated by the segments which have x as one endpoint and lie on the half

line from x in the direction d'. If we suppose that there is a noncountable

subset Aiol A such that for every xG-4i there exist two directions di and d'

with the property that the intersection of/[$i] and/[jF„] is empty, then we

can find a noncountable subset Ai ol Ai and an angle 5 (0<5<tt) such that

for every aCA2 the angle between the exceptional directions di; i = i(a) and

d';j=j(a) is greater than 5.

The filter systems cp1 = {5a} and <62= {5Ja} where i = i(a) and j =j(a) have

property ir with respect to the topology 3~+ and 3+~ of the straight line A

and so the hypotheses of Theorem 2 are satisfied. On the other hand

/[5«]n/[5l]=0 for every aCA2, i.e. the conclusion of Theorem 2 does not

hold. Therefore there cannot be such a noncountable subset ^4i and we have:

For nearly all choices of aCA the sets f[$a] andf[$p] intersect for all direc-

tions d' and d> on the same side of A.

This result is Jarnik's improvement of the theorems of Blumberg and

Miss Schmeiser. His proof is a direct proof but it makes extensive use of the
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special properties of the Euclidean plane. It is easy to repeat the foregoing

reasoning to obtain similar improvements of Miss Schmeiser's result on func-

tion defined in Euclidean 3-space. Various applications of these results can

be found in Blumberg's paper.

According to a later result of W. H. Young [17] on real valued functions

defined on the real line the sets/[EFj] and/fEF^] coincide for nearly all x£A".

This theorem can also be extended to abstract spaces and it is again the

property P which matters. However we do not wish to discuss the problem

in details.

It would be desirable to give an alternative characterization of perfect

topological spaces which is equivalent in the same sense as the compactness

in the Frechet sense (using filters) and in the Alexandroff-Urysohn sense are

equivalent. For uniform spaces several such characterizations can be ob-

tained by using Zorn's lemma. This and related problems will be discussed

in a future paper.
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