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Introduction. This paper is concerned with integrals of the form fsf(s)p.(ds),

where / is a real-valued function defined on S and p. is a finitely-additive

function whose domain is a ring 2 of subsets of 5 and whose range is con-

tained in the class of positive elements of a Dedekind complete(2) partially

ordered vector space %. It covers another aspect of the problem of integration

with respect to a vector-valued measure, considered by McShane [8] and by

Bartle, Dunford, and Schwartz [2].

The theory of integration is based on a theory of convergence of general-

ized sequences in the space J. This theory is presented in §1, with a brief

discussion of other convergence theories.

§11 treats ^t-measurability and integrability. The central concept is that

of convergence in measure. A generalized sequence {/„} converges to f in

measure if, for every e>0,

limn*{s\  \fa(s) -f(s)\   ^ e}  =0,
a

where

p.*D = A (e 3 D-eG 2)jue;

a function/isp-measurable if for each eGS there exists a generalized sequence

of simple functions converging to x4 in measure; the integral of a ^-measura-

ble function/^0 is the supremum of the integrals of all simple functions g

such that O^gf^f; the integral of an arbitrary/ is fsf+—fsf~- U properly

worded, the Vitali and Lebesgue convergence theorems for integrals are valid

in the above-described situation: This is the principal result of §11. When p. is

countably-additive, this result improves a special case of a theorem of Mc-

Shane [8, pp. 59 and 81 ].

The main theorem of §111 is an abstract form of the Riesz representation

theorem: If 5 is a normal space and T is a positive linear transformation from

C(S) into X, then
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(2) Definitions are in the body of the paper.
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Tf=   C f(s)u(ds)
J s

for some finitely-additive function p.; if H is an algebra and T is multiplicative,

then

p(Eif~\ E2) = pEvpE2.

This theorem is used as the basis of an alternative proof of the spectral theo-

rem for self-adjoint operators in Hilbert space.

I

1. Partially ordered sets.

1.1. Throughout this section (X, S) will denote a partially ordered set.

Whenever they exist, the supremum and infimum of a subset SRCIX will be

denoted by V2ft and A 9ft, respectively. Alternate notations are VaXa, t\aXa,

XiVX2V ■ ■ ■ \/Xn (for a finite class), and XiAXA ■ ■ ■ AX,. The follow-

ing statements are easy to prove: If SD? and Sft are subsets of £ such that

V9ftand A 9? exist, and if MSN for each tf£l and 7VG9i, then VSDcgASt.
li {Xab}c.y, is a set such that f\bXab, haXab, l\al\bXab, l\b/\aXab, and ha,bXab

all exist, then /\ahbXab = Ai,AaX0i> = i\a,bXab, and dually.

1.2. The theory of convergence on which the integration theory is based

uses the concepts of directed set, directed floor, and directed tower. The follow-

ing simple (artificial) example is given to illustrate the concepts involved.

Consider the following array:

yn < yi2 < yn < • • • < yi

A

y?i < yn < ■ ■ ■ < y2

A

A

y«i < y„2 < • • • < y»

A

A

0

Let 31 be the partially ordered set consisting of all of the above elements ynt

and y„, ordered as indicated in the diagram, together with the elements

Xi, x2, • • • , which are related to the elements ynk, y„, and 0 as follows:

yni<Xi<0 for all n, but the x,- are not related to the y„, nor is any x< related

to any xy when ij^j.
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1.3. Definitions. A set A is directed by a partial ordering < il to each

pair of its elements, ai and a2, there exists as£^4 such that a3 <ai and 03 <a2.

We symbolize such a directed set by A "< or by A( <). A directed floor

4> = (or <$") is a class of directed subsets of a partially ordered set I, all of

which are directed by the same order relation g (or ^). A floor <£= (or $s) is

a directed first floor with base B if it consists of a single element W = (2Jc~) such

that l\W = B (V9W = 5). Let co = {*1( ••-,<!>*} be a finite ordered collection

of floors, all of which are directed by ^ (^). Then co is a directed tower with

base B if

(a) $1 is a first floor with base B;

(b) if A7E9)c64>„ and n<k, then there exists 9twE*»+i such that A dlM =

M (V9t.,, = M).
We symbolize such a tower by co= (co"). The number k will be called the height

ol the tower co. A tower of height k is a k-tower. To simplify the notation we

shall write M£co to mean ilTGSJcE^Eco, where co is a &-tower. Similarly,

ME&i will mean MEWE^i-
IA. In the preceding example, {ynk} = is a directed set for each ra; {y„}

is also a directed set. The class 4?- = { {yn} } is a first floor with base 0; the

class \p- = { {yu}, {yn}, ■ ■ ■ } is also a floor. The class co~ = {<!>, \p} forms a

2-tower with base 0.

1.5. Definition. A tower co„ = {$!, ••-,$„} is an extension of a tower

o~k= {4*i, ' ■ ' . ^A if kt^n and \pi = $i for i = l, ■ ■ ■ , k. Here all floors are

directed by the same order relation.

1.6. Lemma. Letu>- (co~) be a k-tower. Suppose that, for each MESJcGdi/bGco

there exists an n-tower (om)~[(o-m) ~] with base M: a M={ipi(M), ■ ■ ■ ,\pn(M)}.

Let «'={$!,•••, <$*+„}, where <!>&+, = 1)^1^(17), i= 1, ■ • • , ra. Then co' is a

tower which is an extension of co.

Proof. Obviously all <$„, are floors, and4>i is a first floor. Suppose AT£ ■!)?£<£>,•.

If j<k, then, since co is a tower, there exists ^RnE.^j+i such that A'}Rn = N

(W3itf = N). If j = k, then by hypothesis there exists a tower <rN with base N.

Hence ytNE.^i(N)EaN has the property that h"StN = N (V3tN = N). If
k<j<k+n, then 9flG^y(M) for some J17. Since a.v is a tower, there exists

9twElrWil7)Cfy+1 such that A 9?^ = AT (VSKjv = A7). Hence co' is a tower. The

fact that co' is an extension of co follows immediately.

1.7. Definitions. The tower co' of the preceding lemma will be called the

extension of co by means of the n-towers au- An elementary k-tower with base B

is a tower {4>!, ■ • • , <!>*}, where each <!>, consists of the single-element set

\B}. The direction of {B} is considered to be the same as the direction of all

$,-. An extension of a tower a by means of elementary towers om is called a

canonical extension of co.

1.8. A &-tower has one and only one canonical extension to a (k+n)-

tower, n = 0, 1, 2, ■ • ■ .
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1.9. Definitions. A generalized sequence of elements of a set 9JcC£ is a

function whose domain is a directed set and whose range is contained in 3D?.

A generalized sequence {X„|a£;4( <)} is k-convergent to X if there exist

£-towers w= and co~ with base X such that, for each Jl7£co- and iV£cos,

there exists a(M, N)EA such that MSXaSN for a <a(.W, iV). The towers

co- and co- are said to be associated with {Xa} or with X. Symbolically,

X = £-limXa.

The sequence {y„} of the preceding example is 1-convergent to 0; on

the other hand, the sequence {x*} is 2-convergent to 0 but 1-lim x* does

not exist. Intuitively, a generalized sequence {Xa} 1-converges to X if its

elements are eventually "squeezed close" to X; the generalized sequence 2-

converges to X if its elements are eventually squeezed close to elements which

are squeezed close to X.

1.10. Note that 1-convergence is the same as o-convergence as defined by

McShane [8, p. 15].
In the sequel, we shall often abbreviate statements such as "given M

and TV, there exists a(M, N)EA such that MSXaSN ior a <a(M, N)" by

writing "eventually, MSXaSN."

1.11. Theorem. If X = £-lim Xa and F=£-lim Xa, then X=Y. Hence

k-convergence of a generalized sequence is uniquely defined and independent of a

particular choice of associated towers.

Proof. Suppose that the towers co-= (<l>i(^), • • • , <$*} and o>£

= !<£i(Si), ■ • • , <£*} are associated with X, and that the towers <rs

= {V'i( = ), ' ' " > $k} and cr-= {^i(Si), • • • , 4>k} are associated with Y. If

k = l, let R = X and S=Y; if k>l, let i?G**-i(^) and SE4>k-i(S) be arbi-
trary. Then there exists SIckE*^^) and ^lsE^k(S) such that \imR=R and

Agis = 5. If M^Wr and NEWS, then eventually MSXaSN. Hence

V9JcBgA9U If k>l, it follows that RSS for every RE^k-i(^) and
StE^h-^S)- If §1.1 is applied k — 1 times then XSY;iik = l, then the result
XS Y was obtained directly. Similarly, YSX. Hence X = Y.

1.12. Lemma. If X = £-lim Xa, then X — (k+n)-lim Xa for any non-

negative integer n.

Proof. Let co- and co- be Jfe-towers associated with {X}. Let a be the

canonical extension of co to a (&+ra)-tower. Then cr- and <r- are (k + n)-

towers associated with {Xa}.

1.13. Definition. On the basis of §1.12, we say that {Xa} is convergent

to the limit X, and write X = lim Xa, if X = £-Iim Xa for some k. From §1.11

it is clear that a generalized sequence can converge to at most one limit.

1.14. Theorem, (a) If Xa = X, then HmZa = Z; (b) if X = \imXa and

eventually YSXaSZ, then YSXSZ; (c) if Y=k-lim X0 = /fe-lim Za and
eventually X„S YaSZa, then ^-lim Ya exists and equals Y.
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Proof. Part (a) is clear from the fact that { { {X} } } = is a tower associated

with X. To prove (b) let co- be a &-tower associated with {-X"a}. If AfGco,

then eventually YSXaSM. By §1.1 it follows that YSN for arbitrary

ArGw. Hence YSX. The inequality XSZ is proved in similar fashion. To

prove (c), let co- be associated with \Xa} and co~ be associated with {Za}.

Then cos and co- are associated with { Ya}.

1.15. Note that the method given in §1.9 for defining limits in a partially

ordered set 36 imposes a topology tk on 36: A set SftCJ is closed in this topology

if &-lim XaGSJc whenever {Xa} C9Jc and jfe-lim Xa exists: Similarly, a

topology / can be defined by means of the convergence defined in §1.13. If

kSn, then by §1.12 every closed set in tn is closed in tk. That is, tk is stronger

than tn. Similarly, the topology t is weaker than every tk- Since every one-

point set is closed relative to I, it is clear that X is a TVspace relative to /

and all tk.

1.16. If we take the class of all closed intervals $£ = {X\X^X0} and

$o = {X | X S X0} —where X0 is an arbitrary element of 36—as a subbasis for

a topology on 36 we obtain the interval topology. The set 36 is a 7\-space rela-

tive to the interval topology [4, p. 570] and [3, p. 61]. Since every closed

interval is closed in any of the topologies of §1.9, it follows that the interval

topology is weaker than the topology t and all topologies tk.

1.17. Definition. A lattice 36 is complete if every subset of 36 which is

bounded above has a supremum in 36 and every subset of 36 which is bounded

below has an infimum in 36.

1.18. Theorem. If 36 is a complete lattice and {Xa} is a generalized sequence

of elements in 36, then the following statements are equivalent:

(a) \Xa} 1 -converges to X;

(b) {Xa} converges to X;

(c) lim inf Xa and lim sup Xa both exist and equal X.

Proof. Obviously (a) implies (b). If (b) holds, letcos= {$i(g), • • • ,$k(S)}

and co~= {'J'i(^), • • • , <p*(I^)} be towers associated with {Xa}, and let

M~ Geo- and M~ Geo- be arbitrary. Then eventually M= Sh(a< b)Xa

SV(a<b)XaSMs. Hence M= glim inf XaSHm snoXaSM=. By §1.1, this

implies that N= S Hm inf Xa S Hm sup Xa S N~ for arbitrary N~ G$.-( S) and

N-£*,■( =), i = 1, • • • , k. It follows that X = Hm inf Xa = lim sup Xa. Now

assume (c). Then eventually Mb — h(a <b)Xa and Nb=V(a <b)Xa exist. Now

yjl-={Mb} and '$l-={Nb} are obviously directed sets, and eventually

MbSXaSNb for arbitrary b. Part (a) now follows, thus completing the proof.

1.19. According to MacNeille [7, pp. 443-444], any partially ordered set

36 can be imbedded in a complete lattice £ having a greatest element and a

least element in such a way that infima and suprema are preserved. Birkhoff

[3, p. 60 ] suggests that this device could be used to define a topology in 36:

If Xa, -^£36, then X = lim Xa in 36 if and only if -X" = lim inf X„ = lim sup Xa in
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2. With Birkhoff, we call this topology the relative topology. Let (I, ^) be a

partially ordered set topologized with the interval topology. Let 3o+

= {X\X = X0} be a closed interval in 2. If X„G3o+ and Z = lim Xa in the

relative topology, then since X^AaXa^Xo, it is clear that XESo- Hence

3oh is closed in the relative topology. Similarly, So~= {-X'|-X"^ A%} is closed

in the relative topology. It follows that the relative topology is stronger than

the interval topology. We now show that the relative topology is weaker than

the topology t mentioned in §1.15.

Let (X, S) be a partially ordered set. In 36, suppose that X = lim Xa. Let

co- and co- be towers associated with {-X"a}. Then eventually M~ ^Xa^M~

for any A7£co. If X is imbedded in a complete lattice ? then, as in §1.18,

M~ S lim inf Xa ^ lim sup Xa ^ M~ in S. Hence X = lim inf Xa = lim sup Xa, or

{Xa} converges to X in the relative topology. It follows that the tower topol-

ogy of §1.15 is stronger than the relative topology. Summarizing, we have the

following theorem.

1.20. Theorem. If we symbolize the relation "stronger than" by >>>, then

t{5>t2y> ■ ■ ■ »/»relative topDlogy » interval topology.

1.21. Definitions. If (£, g) and ($, g) are partially ordered sets, a map-

ping T: •£—>§) is positive il TXi^ TX2 lor Xi^X2. Positive mappings are also

called order-preserving. A positive mapping Tis continuous if T( VSDc) = V(T$m)

and T(A9?) = A(T9i) whenever 9Jc is directed by S> and 9c is directed by ^.

1.22. Let T: £—»£) be a positive mapping. The following statements are

clear from the definitions involved:

(a) T maps directed sets and floors onto similarly-directed sets and floors;

(b) if T is continuous, then T maps directed towers with base B onto

similarly-directed towers with base TB, and hence maps convergent generalized

sequences onto convergent generalized sequences.

1.23. Definition. A partially ordered set (•£, g) is Dedekind complete if

every directed subset 'ffl- of J which is bounded above has a supremum in £,

and every directed subset 9cs CJ which is bounded below has an infimum in

X.
2. Partially ordered vector spaces.

2.1. Definition. If £ is a real vector space which is at the same time a

partially ordered set (•£, g), then X is a partially ordered vector space if

(a) aX^O whenever X^O and a^O;

(b) X+Z^ Y+Z lor all Z whenever X^Y.
2.2. Throughout the remaining portion of this section 3E will denote a

Dedekind complete partially ordered vector space; elements of £ will be sym-

bolized by capital Roman letters, and subsets of I by capital German letters.

The small Roman letters a and 6 will denote elements of some (usually un-

specified) index (directed) set, and the small Greek letter a will stand for

some real number.
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2.3. Lemma, (a) If A„ Xa exists, then A„ Xa= — V„ ( — Xa), and dually;

(b) if A0 Xa exists and a^O, then f\a aXa = a/\a Xa; if aSO, then V„ aXa

= a/\a Xa;

(c) if VaXa exists and a^O, then VaaXa=aVaXa; if a SO, then i\aaXa

= aVaXa;

(d) if Xf>0, then f\(a>0)aX= V(a<0)aX = 0;
(e) if XSO, then V(a>0)aX = t\(a<0)aX = 0;

(f) if A a Xa and A& Yb exist,

then A0 Xa + i\b Yb = t\al\b (Xa+ Yb)=/\bi\a (Xa+ F„), and dually.

2.4. Definitions, (a) If 9Jc and 91 are subsets of 36, then 9fl+9l is defined

as the set {M+N\ MEWlNEVl} ;
(b) if $> and xp are two similarly-directed floors, then $+\p is defined as

the collection {9ft+9c| WE^-^E^};

(c) if cr= {$1, • • • , $*} and <a={\pi, • • • ,\pk\ are two similarly-directed

/fe-towers, then cr+co is defined as the collection \&i+\pi, • • ■ , $*+^*}',

(d) if a &-tower cr and an w-tower co are similarly-directed and k ^ n, then

cr+co is defined as cr+co', where co' is the canonical extension of co to a k-

tower.

2.5. Lemma, (a) The sum of two similarly-directed subsets of 36 is a directed

subset of 36 ;

(b) the sum of two similarly-directed floors is a directed floor;

(c) the sum of two similarly-directed towers is a directed tower; the base of

this sum is the sum of the bases of the component towers;

(d) the indicated sums in (a), (b), and (c) are directed in the same way as

the components.

Proof. We may suppose the order relation to be S. By §2.1, Mt+Ni

SM3 + NiSM3+Ns whenever MiSMs, t=l, 2. From this, (a) and part of

(d) follow. This in turn implies (b) and another part of (d). If $ and \p are

first floors with bases X and Y, respectively, then by (a) and §2.3(j), the floor

$+\p is a first floor with base X+Y. The rest of the proof is similar.

2.6. Theorem. The limit of the sum of two convergent generalized sequences

is the sum of the limits of the individual generalized sequences.

Proof. If cr* is a tower with base X associated with a convergent {Xa}

and co* is a tower with base Y associated with a convergent { Yb], then

<r*+co* is a tower with base X+Y associated with {X0+ Yb}. Here * repre-

sents ^ or ^, and {Xa+ Yb} is a function of the directed set {(a, b)}.

2.7. Corollary. The generalized sequence {Xa} converges to X if and only

if {X„ — X} converges to zero.

2.8. Theorem. For each a EA(<) and cEC(<) let {Z(a, b)\ bEB( <)}

and { W(c, b)} be generalized sequences which k-converge to zero. Suppose that
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V(c) + W(c, b) =X(b) g Y(a) +Z(a, b) for each a, b, and c, where { V(c)} and

{ Y(a)} are generalized sequences which h-converge to zero. Then

(h+ k)-limX(b)=0.

Proof. We shall show the existence of a tower, directed by ^ and having

base zero, which is associated with {X(b)}. In doing this, we consider only

towers which are directed by ^. Similar arguments hold for |£.

Let a be an /z-tower with base zero associated with { F(a)}. For each

77£a there exists an a(77) such that Y(a) ^H lor a <a(H). Let co(a(77)) be a

&-tower with base zero associated with {Z(a(77),o)} andletp(77)= { { {77} } }

+co(a(77)), where { { {77} } } is the elementary £-tower with base 77. If a' is

the extension of a by means of the towers p(77), then a' is an (h + k)-tower

with base zero. Let NEcr'. Then N = H+K(a(H)) for some .r7£a and

K(a(II)) Gco(a(77)). Since k-lim Z(a(H), b) = 0, there exists b(H)

= b(K(a(H))) such that Z(a(H), b)^K(a(H)) lorb<b(H). Since

X(b) ^ Y(a(H)) + Z(a(B), b) ^ 77 + K(a(H)) = N

for b<b(H), it follows that a' is associated with   {X(b)}. Hence (h+k)

-limX(b)=0.
2.9. Definition. A class {X(a, b)} of generalized sequences [a£^4( <)]

is uniformly k-convergent to Xh if there exist &-towers co~ and co= with base

zero which are associated with all {X(a, b)—Xb}. The class {X(a, b)} is

uniformly convergent to Xb ii it is uniformly ^-convergent to Xb for some k.

2.10. Theorem. Let F(n, a) be an element of H defined for every positive

integer n and every element a of a directed set A "^. If &-lima F(n, a) =0 for

each n and lim„ F(n, a) =0 uniformly in a, then lim„ F(n, a) =0 uniformly in n.

Proof. Let cog be a tower with base zero associated with {F(n, a)ja

arbitrary}, and let cr~(n) be a tower with base zero associated with { F(n, a) \ n

fixed}. Then for each N(E.co there is an integer P(N) such that F(n, a)^N

for n^P(N), uniformly in a. Similarly, for each S(n)(Ea(n) eventually

F(n, a) ^S(n). Since {1, 2, • • • , P(N)} is a finite set of integers, eventually

F(n, a)^S(l) + ■ ■ ■ +S(P(N)) for ra = l, 2, • • • , P(N).

For each TVGco, let p(N) =co(7V)+a(l)+ • • • +a(P(N)) where u(N) is

the elementary yfe-tower with base N. Then p(N) is a tower with base N. Let

co' be the extension of co by means of the towers p(A0. If Af£co', then M is of

the form M=N+S(1)+ ■ ■ ■ +S(P(N)). From the above, eventually

F(n, a)^Miorn = l, 2, • • • , P(N), and F(n, a) ^M for n^P(N) uniformly

in a. This implies that eventually 7"(re, a)^M uniformly in ra. Hence co' is

a tower with base zero associated with all {F(n, a)\n arbitrary}. Similar

considerations apply to the case of direction ^.

2.11. Definitions, (a) If WQl, then a9JJ is defined as the set

{aM\ Meau};
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(b) if $ is a floor, then o^= {a9Jc| 9JcG$};

(c) if co = {3>i, • ■ • , 4>A} is a tower, then aco = {o$i, • ■ • , a&k} •

2.12. Lemma, (a) Let W be a subset of 36 which is directed by S (^). If

a>0, then aW is directed by S (^); if a<0, then aW is directed by S;  (S);

(b) if <$ is a floor directed by S (^) and a>0, then a& is a floor which is

directed by S (^); if a<0, then a& is a floor which is directed by j£ (S);

(c) If co is a tower with base X which is directed by S (^) and a>0, then

au is a tower with base aX which is directed by S (^); if a < 0, then aco is a

tower with base aX which is directed by ^ (S) ■

Proof. Immediate from §§2.3 and 2.11.

2.13. Theorem. If {Xa} converges to X, then {aXa} converges to aX.

Proof. If co- is a tower with base X associated with {Xa} and a>0, then

(aco)- is a tower with base aX associated with jaJaj ; if a<0, then (aco) = is

a tower with base aX associated with (aXaj; if a = 0, the result is trivial.

Similar arguments apply to towers directed by ^.

2.14. Definitions. If §) is a partially ordered vector space such that the

partially ordered set (g), S) is a lattice, then g) is called a vector lattice. A

partially ordered algebra is a partially ordered vector space which is at the

same time an algebra, such that IF^O whenever X^O and F^O. A par-

tially ordered algebra is Dedekind complete ii it is a Dedekind complete par-

tially ordered vector space such that the mappings Y—>XY and Y-+YX are

continuous for each XSiO. A lattice ordered algebra whose partially ordered

vector space is a vector lattice.

2.15. Examples. A. Let 36 denote the class of all bounded Hermitian

operators in Hilbert space §. The set 36 may be partially ordered by: A SB

if and only if (Ax, x)S(Bx, x) for all xG§ [8, p. 108]. Then [8, p. Ill] 36 si
a Dedekind complete partially ordered vector space. Further [8, p. 109],

1-convergence of a generalized sequence {Xa\ to X is equivalent to eventu-

ally bounded (in norm) strong convergence of {Xa} to X. For each xG£> the

mapping X—>(Xx, x) is a continuous positive linear functional on X.

B. Let 21 be a strongly closed C*-algebra (i.e. uniformly closed self-

adjoint operator algebra in Hilbert space) which is commutative and which

contains the identity operator 7. Then 31 may be ordered in the same way as

the class 36 of the preceding paragraph. If { Ya} ~ is a bounded directed set in

SI, then for each F0G { Ya} the set { Ya— F0| Fa^ F0} - is a bounded directed

set of Hermitian elements. Hence V„ (Ya— F0) =XG36 exists. Since F is the

strong limit of the directed set { Ya— Yo}, it follows from the preceding para-

graph that Y = X+ F0= Va Ya exists in St. Hence (a similar argument holds

for A) A is a Dedekind complete partially ordered vector space. If XSsO then

X(Va Ya)^XYa. If xG® then |XF0x-XFx| S\X\-\ Yax-Yx\ so XYx
= lim XYax. Hence Va (XYa) exists and equals X(Va Ya). We thus see that
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31 is a Dedekind complete partially ordered algebra. This result is related to

that of §111.3.

C. Let ty be the class of all polynomial functions on an unbounded set of

real numbers, ordered in the natural way. We shall show that $3 is a Dedekind

complete partially ordered vector space.

Suppose {Pa(t)} ~ is a directed set of polynomials which is bounded above

by a polynomial. Without loss of generality (observe the behavior for large

values of /) we may assume that the degrees of the Pa are bounded by ra.

Let Pa(t) = a"0 + a\t + • • • + aantn and for each t let </>(/) = V0 Pa(t) =

lim„ Pa(t). Then Pa(t) =<p(t) —ea(t), where lim„ ea(t) =0. Solving the equations

n

ZZ <Xplk   =  4>(k)   —  ta(tk)
p-0

(where {tk} is a collection of ra + 1 distinct real points) for the coefficients

a",, by determinants and using the addition property of determinants shows

that lima aaf = ap exists for each p = 0, 1, • ■ • , ra. Hence <j> is a polynomial

zZaptp which is obviously V„ Pa. A similar argument holds for A. Hence ty is

a Dedekind 'complete partially ordered vector space. This proof was sug-

gested by M. D. Marcus after examining the induction proof of the author.

Using a similar argument, it is clear that ^-convergence in *i|3 is equivalent

to dominated pointwise convergence.

II

Notation. Throughout this section X will denote a Dedekind complete

partially ordered vector space. The complement of a subset e of a set 5 will

be denoted by S — e, or by e when the set S is understood. The characteristic

function of e will be denoted by ve. The class of all continuous real-valued

functions defined on a topological space S will be denoted by C(S). This class

is ordered in a natural way by: f^g if and only if f(s) ^g(s) for each 5£5\

The space C(S) is then a lattice ordered algebra, ll fEC(S) then/+=/V0,

/- = (-/)+, and |/| =/++/-. Well-known are the facts that /=/+-/-,

2(fAg) =f+g-\f~g\, and 2(/Vg) =f+g+ \f~g\ ■ UfEC(S) and a^O, then
the a-truncate of / is the function f<* = (f+Aa) — (f~\/a). We shall warn the

reader when there is danger of confusing a truncate of / with a power of /.

The symbol S* will denote a field of subsets of a given set S, and S will be

an ideal (i.e. eHEGS if e£S and ££2*) of 2*. The elements of 2 will be

denoted by small Roman letters and called integrable sets; the elements of 2*

will be denoted by capital Roman letters and called measurable sets. The

Greek letter p will denote a positive (p.e'SiO) additive (u(ei\Je2) =uei+ue2,

eiC\e2 = 0) function from 2 into 1. The terms subadditive, super additive,

increasing, and decreasing have definitions analogous to those of numerical

set functions. A positive superadditive function c/>: 2—>X is increasing and
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c60 = O. If 77 is an arbitrary subset of S which is contained in some eGS,

then <p*D = l\(e~DD)<pe and <p*D= V(eQD)<pe exist in 36. The function p* is

subadditive and p* is superadditive.

1. Set functions.

1.1. Definitions. An increasing function 0:2*—»36 is X-decreasing at a

set E0G2* if <pE0 = lim (E^3E0-EE2)<f>E. A class {<pb} of increasing functions

from 2* into 36 is uniformly Z-decreasing at a set Eo ii

<t>bEo = lim (E^Eo-EE^)<t>bE

uniformly in b.

1.2. Viewed as a set function, the Lebesgue integral Jsf(s)ds of a positive

function is a 2-decreasing function for every Lebesgue measurable set.

1.3. We shall assume that EG2 whenever EG2* and {pe|eCZEeG2j is

bounded in 36.

2. Convergence in measure.

2.1. Definitions. A subset DQS is a p.-null set if p*D=0. Any statement

which is true for all points of S except possibly those in a ju-null set is said to

hold u-almost everywhere. A real-valued function / defined on S is a p-null

function if {s\ \f(s)\ ^e} is a ju-null set for each e>0. The function / is p-

essentially bounded if it is the sum of a bounded function and a null function.

The p-essential supremum of an essentially bounded function g is ess sup g

= A>, V, h(s), where {h} is the class of all bounded functions for which g — h

is a null function. Similarly, the p-essential infimum of g is ess inf g = V«A, h(s).

A real-valued function/is a simple function if it assumes only a finite number

of distinct values ai, • • ■ , a„, and/_1({a,}) = E,G2* for i= 1, • ■ • , n. If all

Ei belong to 2, then / is a p.-integrable simple function. If the values — °° and

oo are admitted among the a,-, the function / is an extended simple function.

2.2. Every simple function / can be expressed uniquely in the form

/= 2~li-i aiXEi, where the a* are distinct real numbers and the E{ are disjoint

elements of 2* whose union is S. The class of all simple functions and the

class of all integrable simple functions are commutative lattice ordered alge-

bras.

2.3. Definition. Let {/,} be a generalized sequence of arbitrary ex-

tended real-valued functions defined on S. If / is an arbitrary real-valued

function, then {fa} converges to f in u-measure ii, for each e>0,

(a) E(a, e) = {s| \fa(s)— f(s)\ ^e} is eventually contained in an integrable

set e(a, e);

(b) limpt*E(a, e)=0.

Classic techniques can be used to prove the following:

2.4. Lemma, (a) The limit in measure of a generalized sequence is uniquely

determined up to a null function;

(b) the limit in measure of a generalized sequence of null functions is a null

function.
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2.5. Theorem. Suppose that {/„} converges to f in measure and {gb} con-

verges to g in measure. Leta>0 and DC.S be arbitrary, and let 8 be an arbitrary

real number. Then

(a) Xofa} converges to xd/ in measure;

(b) {8fa} converges to Bf in measure;

(c) fa+gb} converges to f+g in measure;

(d) \fa\} converges to \f\ in measure;

(e) fa} converges to f" in measure;

(0   {faSt} converges to faga in measure.

3. p-measurable functions.

3.1. Definitions. A real valued function / is totally p-measurable if and

only if there exists a generalized sequence {/„} of simple functions which con-

verges to / in measure. The function / is p.-measurable if x«/ is totally /Li-

measurable for every e£2.

3.2. Although no confusion will result from dropping the "pt-" which

prefixes V_nUll set" and "/i-null function", it is important to retain this prefix

when referring to p-measurable functions. In the sequel we shall define

measurable functions. Although every measurable function is ^-measurable,

the converse does not always hold.

3.3. Lemma, (a) Every simple function is totally p-measurable;

(b) every null function is totally u-measurable:

(c) the class of all null functions is a vector lattice;

(d) the class of all essentially bounded functions is a vector lattice;

(e) the product of two null functions is a null function;

(t)   the product of two essentially bounded functions is essentially bounded;

(g) if f and g are (totally) p-measurable, i/*££S*, and if 5 is a real number,

then f+g, of, xb/, /+, /~, |/|, fAg, fVg, and each a-truncate /" are (totally)

p-measurable.

Proof. Parts (a) and (b) are clear. Part (c) follows from (b) and §2.5.

Part (d) follows from (c). Part (e) follows from the inclusion relation

{s\  | (nm2)(s)\   ^f2} Q{s\ \m(s)\   ^ t} U {s\  \n2(s)\   ^ e}.

Part (f) is then clear from the preceding parts and the definition of essential

boundedness. Finally, (g) follows from §2.5.

3.4. Definition. A function g is an extended (totally) p-measurable func-

tion if and only if it is of the form g=f+( °°)xbi + (~ cc)XEi, where Ei and E2

are disjoint elements of 2* and/ is (totally) yu-measurable.

3.5. Lemma. If f is the limit in measure of a generalized sequence {/„} of

(totally) p-measur able functions, then there exist directed sets {gb}~ and {hc}~ of

extended (totally) p-measurable functions, converging to f in measure, such that

gb^f^hc. If {fa}  consists of simple functions, then  {gb}  and  {hc}  may be
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chosen to consist of extended simple functions. Further, the functions gb may be

chosen to be (totally) p-measurable if f is bounded below, and the functions he may

be chosen to be (totally) u-measurable iff is bounded above.

Proof. For each e>0, let E(a, e) = {5I |/0(s)— f(s)\ sge}. If e is an integra-

ble set containing E(a, e) let

g(a, e, e) = [f0- t]xe + (- *>)xe and

k(a, e, e) = [fa + t]xe + (°°)x«.

Then by §§3.3 and 3.4, g(a, e, e) and h(a, e, e) are extended (totally) p-meas-

urable functions; and they are extended simple functions if every/, is simple.

Let {gf,} consist of all finite suprema of functions of the form g(a, e, e),

where e>0 and E(a, e) SeE% are allowed to vary, and let {hc} consist of all

finite infima of functions of the form h(a, e, e). Since, for each e>0, E(a, e) is

eventually contained in an integrable set, neither {gb} nor {hc} is vacuous.

Also, gbSfShc, and both {gb}~ and {hc}~ are directed sets. Further, {gb}

and {hc} consist of extended simple functions if {/„) consists of simple func-

tions.

Let e* be an integrable set containing E(a, e). If sEe, then

-e < f(s) - fa(s) <t,    so    0 < f(s) - [fa(s) - e] < 2e.

Hence

{s\f(s) - g(a, e,e)(s) £ 2e} C e.

Similarly,

{s\h(a,e,e)(s) - f(s) ^ 2e} C,

Since {gb} and {hc} are directed sets, it follows that

7i= AM*{s|/(s) - gb(s) ^ 2e|
b

and

L2 = A p*{s\hc(s) -f(s) ^ 2e}
c

exist. Moreover, LiSp-e, i=i, 2. Hence LtSfi*E(a, e). Since lim p.*E(a, e) =0,

this implies that £,=0. Hence {gb} and {hc} converge in measure to /.

This proves the first part of the lemma.

If / is bounded below, let gb =g&V [A„/(s)]; if/ is bounded above, let

he = ^ A [V,/(*)]. Then \gb' }a and {*/ }- are directed sets of (totally) p.-

measurable functions satisfying (a), (b), and (c). This finishes the proof.

3.6. Lemma. Iff is totally u-measurable, then lim u*{s\ \f(s)\ 2ia} =0; iff

is ^.-measurable, then lim p.*{s\ \ ix«f)is)\ ^a} =0 for each e£2.
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Proof. It is sufficient to prove only the first part of the lemma, the second

part being an immediate corollary. First,/is the limit in measure of a general-

ized sequence {/„} of simple functions. For each a, then, there exists a real

number a such that |/tt| ga. Hence

{s\   |/(5)|    Sa +  1}  C  {,|   |/(5)   |   S   |/a(5)|    +1}

C   {5 I   I   |/(5)|    -   |/„(5)|   I    S   1}

Q   {s\    \f(s)   ~fa(s)\     i£   lf.

Hence A(a>0)M*H |/(*)| ^«} =P-*{s\ |/(*)-/.(*)| = l} for all/.. This im-

plies that limp*J5| |/(s)| Sex} =0.

3.7. Lemma. The product of two (totally) p-measurable functions is (totally)

p-measurable.

Proof. We first show that P is totally p-measurable whenever / is totally

M-measurable. By §3.3(g) we may assume without loss of generality that

/SO. Since/ is totally ju-measurable, there exists a generalized sequence {/„}

of simple functions converging to/ in measure. By §3.5 the/„ can be chosen

such that 0 g/„ 5=/ and such that {/„} ~ is a directed set. Let a > 0 and e > 0 be

arbitrary, let Ea = {s\f(s) -fa(s) Se}, let E(a, a)={s\ (p)2(s) -(faa)2(s) Se},

and let Ea= {5|/(5)Sa}. Here the superscript a indicates truncation. From

§2.5 it is clear that {p.*E(a, a) }s is a directed set with limit zero for each a>0.

By the preceding lemma j^*£a|a>0}- is a directed set with limit zero. Now

Ea= (Ear\{s\f(s) ^a})U(EanEa)CZE(a, a)KJEa. Hence u*Ea^p*E(a, a)

+p*Ea. By Theorem 1.2.8 it follows that lim u*Ea = 0. Therefore/2 is totally

^-measurable for each totally ju-measurable function /. The lemma now fol-

lows from §3.3(g) and the identity 4/g = (f+g)2 — (f—g)2.

3.8. Lemma. If {/„} is a generalized sequence of (totally) u-measurable func-

tions which converges to a function f in measure, then f is (totally) p-measurable.

Proof. We prove the lemma only for the case where all /„ are totally

^-measurable. In view of §§2.5, 3.3(g), and 3.5, it suffices to prove the lemma

under the assumptions that/. SO, that/SO, that {/„} is directed by S, and

that fa g/. Each/a is the limit in measure of a generalized sequence of simple

functions. Hence by §3.5 there exists for each/, a directed set {/„} of simple

functions such that 0g/*g/o and {/*} converges to/„ in measure. Let {gc} -

be the directed set of all finite suprema of functions /*. We shall show that

{gc} converges to/ in measure, thus showing that/ is totally ^-measurable.

Let e>0 be arbitrary. Then

{5 |/(5) -fa(s) = 2e} C {5 |/(5) -Ms) S e} ^ {s\fa(s) -/*(*) S e}.
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Hence u*{s\f(s) —gc(s)^2e}   exists for some gc. Since   {gc}   is directed, L

= /\c u*{s\f(s)—gc(s)^2t} exists. From the above, eventually

0 S L S M*{*|/M -/.(*) ^ A + u*{s\f(s) -/*(*) £ e}.

Hence eventually OSLSn*{s\f(s)—fa(s)^e}, so 7 = 0. This proves that

{gc} converges in measure to/.

3.9. Many of the foregoing lemmas are summarized in the following

Theorem. The class of all (totally) p-measurable functions is a commutative

lattice ordered algebra. This algebra contains as subspaces the class of all simple

functions and the class of all null functions, and is closed relative to the operation

of taking limits in measure.

4. p-integrable functions.

4.1. Definitions. Suppose that/= ^*_, a,x«< is an integrable simple

function, where the real numbers at and the sets eiG2 are distinct. The

H-integral of f over the set EG2*is the quantity fEf(s)p(ds) = 2*=i aiM^/^E).

4.2. For each EG2* the mapping/—*jEf(s)p(ds) is a positive linear trans-

formation of the vector lattice of all integrable simple functions into 36. For

each integrable simple function /, the mapping E—yfef(s)p.(ds) is an additive

function from 2* into 36. If/^0, this function is positive.

4.3. Let/ be an arbitrary bounded totally ^-measurable function. Then

by §3.5 there exist directed sets {gb} - and {hc} - of simple functions such that

gbSfShc, and {gb} and {hc} converge to / in measure. If fiG2, let g*

= VbfsXe,gb and h* = i\cfsX*A. Then 0Sh*-g* = /\(b, c)fsXei(hc-gb). Let
e>0 be arbitrary, and let E(b, c, e) = {s\ hc(s) — gb(s)^2e}. Then E(b, c, e)

CL{s\hc(s)—f(s)*±e}\j{s\f(s)—gb(s)?ie}, so eventually u*E(b, c, e) exists,

and l\(b, c)u*E(b, c, e) =0. If ei^e^E(b, c, e)C\ei, then

/Xex(hc - gb) =  I   +  J        S V [hc(s) - gb(s)]pe + epei.
S J e J ei-e s

Since lim p*E(b, c, e) =0 and e>0 is arbitrary, it follows that h* — g* = 0. Now

if {fa} 6 is any directed set of simple functions such that faSf and {/,} con-

verges to/ in measure, then the preceding argument yields h*= Va fsXeJa-

Similarly, if {/„} ~ is any directed set of simple functions such that/a>/ and

{fa} converges to/in measure, then g* = A0 JsXeJa-

4.4. Definition. An arbitrary positive totally p-measurable function / is

u-integrable over the set EG2* if and only if the set {Je/,} is bounded above,

where {/0}~ is the directed set of all integrable simple functions fa Sf-

4.5. Definition. If /^0 is integrable over E, then the u-integral off

over E is the quantity Va fsfa-

4.6. Note that a positive integrable simple function is integrable over

any EG2*, and that the integrals given for such a function in §§4.1 and 4.5

are equal. Further, any positive simple function which is integrable over any
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££2* is an integrable simple function. This removes any ambiguity at-

tached to the concept of positive integrable simple function.

4.7. Lemma, (a) Suppose that />0 is totally p.-measurable and fefa exists

for every a>0 and every integrable set eC££2*. If {/./"} is bounded, then f is

integrable over E.

7//S0 is integrable over £, then:

(b) Jsf= VaV(e£2-eC£) Va/«/", and the suprema may be taken in any

order;

(c) x«/ is the limit in measure of a directed set of integrable simple functions;

(d) XEg is integrable over E and JEXsg g/s/ */ g is a p-measurable function

such that 0 S g Sf;
(e) if {gb}~ is any directed set of simple functions such that 0 S gb = xb/ and

{gt}  converges in measure to xb/, then each gb is integrable over E and jEf

= V& fjggb.

4.8. Lemma. Let /SO arad gSO be integrable over E, and let /3S0 be arbi-

trary. Then f+g and Bf are integrable over E, and fs(f+g) —JBf+Ssi and

fBBf=Bhf.

Proof. Let {/„} be the directed set of all simple functions such that

0 Sfa Sf and let {g&} be the directed set of all simple functions such that

OSgbSg- If e£2, eC£, and a SO, then {xe(fa+gb)a} converges in measure

to x<(f+g)a- Hence f,(f+g)"SVaVb J,(fa+gb)SjBf+jEg, by §§4.7(e), 4.2,
and 4.3. Hence fE(f+g) = jEf+JEg. Now fE(fa+gb) £ft(f+g), so the additiv-
ity follows. Similarly for the positive-homogeneity.

4.9. Definition. An arbitrary totally /x-measurable function / is integra-

ble over the set ££2* if and only if /+ and /- are integrable over £. The

integral of/ over £ is the quantity

J E ** E *s E

4.10. We remark that by §4.8 the functions/and |/| are integrable over

the same sets. Also, by §3.3, every null function is integrable, and the integral

of a null function is zero over any measurable set.

4.11. Lemma. If f is integrable over ££S*, then /b|/| =0 if and only if

Xb/ is a null function.

Proof. We have remarked that /b|/| =0 if xb/ is a null function. Con-

versely, if /b|/| =0, then | xb/| is the limit in measure of a directed set {/„}

of positive integrable simple functions, such that 0g/ag |xb/| • Therefore

/b/o = 0. If/„= zZiOtiXti and aa*0, then ^ = 0. Hence/, is a null function.

Since the limit in measure of a generalized sequence of null functions is a null

function, this implies that | xb/| , and hence xb/, is a null function.
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4.12. Lemma. If f is a null function and g is integrable over E, then fgxe

is a null function.

Proof. The function a|/| is a null function for each a^0. Since |g"x«| Sa,

it is clear that fgaXE is a null function. Now {s\\ (fgXs)(s) — (fg"XE)(s)\ ^e}

is contained in {s\ \(xEg)(s)\ ^a} for each e>0. By §3.6 it follows that

{fg"XE} converges to fgxs in measure. Hence fgXE is a null function.

4.13. Theorem. For each EG2*, the class of all functions which are

integrable over E forms a vector lattice, and the mapping Te : /—>/*/ is a positive

linear transformation from this vector lattice into 36.

Proof. Since |/+g| S \f\ +\ g\ it is clear from §4.7 that/+g is integrable

over E. Now (f+g)+-(f+g)-=f+g=f+-t+g+-g~. Hence JB(f+g)+
+JEt+jEg- = jE(f+g)-+JEf++JEg+, whence Js(f+g) =Snf+Jxg. This now
implies that f/\g and/Vg are integrable. The rest is clear.

4.14. Theorem, (a) -fs\f\gfgfgfi\f\;
(b) f*\f+g\£Mf\+Mg\;
(c) if f is a u-measurable function such that |/| is dominated u-almost

everywhere by a function g which is integrable over E, then xsf is integrable over

E and JuXEfSfEg;
(d) if f is an essentially bounded u-measurable function, then Xef is integrable

over Sfor every integrable set e, and (ess inf/) ueSfsXefS (ess sup/)pe.

(e) If f is integrable over E and g is essentially bounded, then fg is integrable

over E and

f \fg\   S (ess sup |g|) f \f\.
J E J E

4.15. Lemma. If'/'is integrable over E, then for each e>0 the set {s\ \ (xEf)(s)\

^ e} is contained in an integrable set.

4.16. Theorem. If f is integrable over E, then xb/ is the limit in measure of

a generalized sequence {/,} of integrable simple functions; this generalized se-

quence may be decomposed into the difference of two directed sets of integrable

simple functions, one converging to /+ and the other converging tof~, in measure.

Hence there is a generalized sequence {gb} of integrable simple functions which

1-converges in measure to xsf-

4.17. Theorem. Iffis totally u-measurable and the set {fe\f\a\ecZE-a^0}

is bounded, then f is integrable over E.

4.18. Theorem. For each totally u-measurable function f, the class IT of all

sets EG2* over which f is integrable is an ideal of 2*, and the mapping <pt:

E—*fsf is an additive function from H into 36. If f^ 0 and f is integrable over S,

then <pf is positive and ^-decreasing at each EG2*.
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4.19. Corollary. If fEJexists, then JEfand JE ,xb/exist for any measura-

ble set £C£j, arad fEf = fE,XEf-

4.20. The proofs of the foregoing statements are fairly easy consequences

of what has already been done. As shown in §4.6, any positive simple function

which is integrable over 5 is a positive integrable simple function. Since every

simple function which is integrable over S is the difference of two positive

integrable simple functions, it is clear that a simple function which is integra-

ble over every ££2* ( or over S) is an integrable simple function. It now fol-

lows that a set ££S* is integrable if and only if \e is integrable.

4.21. Definition. A positive function <p: 2—>3E is p-continuous il and only

if lim <p*Da = 0 whenever lim p*Da = 0. A class {<pb} of positive functions from

2 into 3£ is uniformly p-continuous if and only if lim,,<£*T>a = 0 uniformly in b

whenever lim u*Da = 0.

4.22. Theorem. Iff is integrable over S, then <p: e—>/«|/| is a pt-continuous

set function. Specifically, if {p*Da} is k-convergent to zero, then {<p*Da} is

(k + l)-convergent to zero.

Proof. For notational convenience we assume that/SO. If e3Z)ol then

4>e=fe(f-f") +UaSfs(f-f") +ape. Hence cp*DaSfs(f-fa) +au*Da. The re-
sult now follows from §1.2.8.

5. Convergence theorems.

5.1. Definition. A generalized sequence {/<,} of integrable functions

converges in the mean to an integrable function / if

lim   f |/,-/|   =0.
J s

5.2. Lemma. If {/„} is a generalized sequence of integrable functions which

converges in the mean to the integrable function f, then {fa} converges to f in

measure.

Proof. Let ha= |/B— /| and let e>0 be arbitrary. As usual, define £(a, e)

= {s| ha(s) S e}. We shall show that lim u*E(a, e)=0. Since JsK converges

to zero and £(a, e) = {s\ h'a(s) Se}, we may assume without loss of generality

(for the purpose of proving the lemma) that the ha are uniformly bounded

by e.
Let a be fixed. Then by §4.15 £(a, e) is contained in an integrable set e.

By §4.3, feha = hbfeg(a, b), where {g(a, b)} is the class of all simple functions

such that haSg(a, b) ge. Now

Xeg(a, b) = aixei + • • • + <xmXem, where g(a, b)(s) = a,- S 0

for s<Eei, and UJ'Li e, = e. Hence
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I  g(a, b) = aiu(ei) + • • • + amu(em)

S au»*(«,n E(a, *))+•••+ amix*(emr\E(a, e)).

If a{<e, then ha(s)Sg(a, b)(s)<e lor 5£e*. Hence eiC\E(a, t)=0 in this

case.   This   implies   that   ju*(e,- C\ E(a, «)) = 0   whenever   a,- < e.   Hence

eu*(ei n £(a, e)) + • • • + eM*(em CS E(a, «)) g J* g(a, J).

Now £(a, e)=U^=1 (eiP\E(a, e)). Since /x* 's subadditive, this fact, together

with the preceding statement, yields ep*E(a, e)Sfeg(a, b) for all 6. Hence

eju*£(a, e)S^b Jeg(a, b)=fehaSfsha. It follows that lim p,*E(a, e)=0, thus

proving the lemma.

5.3. Lemma. If {/s|/0| } is eventually bounded above (say by M) and {/„}

converges to f in measure, then f is integrable over S and fs\f\ = M.

Proof. Let aS0 be arbitrary. For e>0, let £(a, e) = {s\ \fa(s) -fa(s) | S e},

and let ei be any integrable set. By §3.8, / is totally ju-measurable, and by

§§3.3(g) and 4.14,/" is integrable over ei. If e^.ei(~\E(a, e), then

\ \f -U\ = \      + f     = f + e"ei = 2a^e + ^ei-

Hence

|    | /" - fl\   S 2au*(ei C\ E(a, «)) + e^ S 2au*E(a, e) + qiei.
J «,

Now

r i/i ^ r i/a-/n + f i/n ^a/£(a,f)+w+m.
•^ e, J «i •'S

Since lim u*E(a, e)=0, we have /e,|/a| ge^ei + Jl7. But e>0 is arbitrary, so

A|/a| ^-W- By §4.17, this implies that/is integrable over S and fs\f\ SM.

5.4. Theorem. Let {/„} 6e a sequence of functions which are integrable over

S. A function f is integrable over S and the limit in the mean of {/„} if and only if

(a) the sequence {fsfn} is eventually bounded;

(b) {fn} converges to f in measure;

(c) the sequence {/«|/n| } of set functions is uniformly p-continuous;

(d) the sequence {/B|/n| } is uniformly ^-decreasing at 0.

Proof. We suppose first that/is integrable and is the limit in the mean of

{/„}. Then (a) is immediate from the inequality /s|/n| Sfs\fn—f\ +fs\f\.

Next, (b) follows from §5.2. Now suppose that {p*Da} is a generalized se-
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quence which ^-converges to zero. Let F(n, a)=A (e~DDa) /«/„. We shall show

that F(n,a) converges to zero uniformly in n. Let G(n, a) =A(c07>a) f,\fn— f\

and 77(a) = A(tQl>„) f.\f\. Then OSF(n, a) SG(n, a)+H(a). Now lim. G(n,
a) = 0 for each « and limn G(n, a) =0 uniformly in a. By §1.2.10 it follows that

lima G(n, a) =0 uniformly in n. This implies that lim0 F(n, a)=0 uniformly

in n, or that {/«|/n| } is uniformly p-continuous.

We turn to the proof of (d). By §4.18 it is clear that /\eeS f~g = 0 for every

positive function g which is integrable over 5. Let $= {/t|/| | e£2}, and let

co-= { {$} }. Then co is a 1-tower with base zero associated with {/t|/| }.

Similarly, let wf = { { {/r|/n| } } } be a 1-tower with base zero associated with

[fl |/n| } • By hypothesis, there exists a p-tower cr- = {^i, • ■ • , ypp} with base

zero such that /s|/„-/| SPEVE^p for n^n(P). For each PE^E^p, let
a? be the elementary 1-tower with base P, and let pp = crp+co+coi+ • • •

+co„(p). Then pp is a 1-tower with base P. Let a' = {$i, • • • , $p+i} be the

extension of cr by means of the 1-towers pP, and let M = P+f-;\f\ +/7J/J

+ ' ' ' +/^(p)l/"l' MEWE^p+i- Let eM = eKJei\J ■ ■ ■ \JeWP)). Then eM
is an integrable set. If n = i, • ■ ■ , n(P), then /rj/n| SfcSfA SM; if
n>n(P), then

L i/»i = fj/»i = fj/»-/i + fj/i =^+ fj/i =^-
J e M J e J e J t J e

Hence /7M|/n| SM uniformly in n. It follows that {fsfn} is uniformly 2-

decreasing at 0. This proves (d).

Now assume (a), (b), (c), and (d). By §5.3,/is integrable over S. We shall

show that {fs\fn—f\ } converges to zero.

Let co- = {4>i, • • • , 4>A} be a &-tower associated with the class {/^l/nl }

which is uniformly 2-decreasing at 0. For each ME'iSlE^k there exists an

integrable set eM such that f7M\fn\ S M uniformly in n. Since the set function

/b|/| is 2-decreasing at 0, we may without loss of generality assume that

/7J/I ^ilfalso. For arbitrary e>0, let E(n, e)={s\ \fn(s)-f(s)\ ^e}. Since

{/„} converges to /in measure, eventually E(n, e) is contained in some eG2.

Hence

f     l/n-/|=f +   f SepeM+   f \fn~f\-
Jen J en—e «jifl"l« Jejune

Now /eMn«|/n-/| Sf*\fn\ +/.|/| • Since lim y*E(n, e) =0, it follows from (c)

and §4.22 thatlim„A(e3E(«,e))/vne|/n-/| =0.Letcr|= {^1, • • -,\pp} be asso-

ciated with the sequence {A(e3E(n, e)) jeMr\e\fn— f\ }■ For each NE'UlE^p,

{ { {epeM+N\ €>0) } } is a 1-tower with base N. Let a'M be the extension of

aM by means of these 1-towers. From the above work cr^ is a (p + l)-tower

with base zero associated with the sequence {JeM\fn—f\ }■ For each MG9H

E$k, { { {2M} } } +o'M is a (p + l)-tower with base 2M. Let co' be the exten-

sion of 2co by means of these (p + l)-towers. Then, since
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fl/n-/l    =    f+L=f      I/-"/]   +1    IM    +    f-l/l

=    f      l/n  "/I     +2M,

it follows that co' is a tower with base zero associated with the sequence

{/s|/„ —/| }. This finishes the proof of the theorem. \

5.5. Theorem. Let {/„} be a sequence of pi-measurable functions which con-

verges in measure to a function f. Suppose that every |/„ | is dominated u-almost

everywhere by the function g which is integrable over S. Then f and /„ are integra-

ble over S and {/„} converges in the mean to f.

Proof. By §4.14 all/„ are integrable over 51 and /bIaI Sjsg for any meas-

urable set £. This implies that {/«/«} is uniformly /^-continuous and {fEfn}

is uniformly S-decreasing at 0. The result now follows from the preceding

theorem.

6. Countable additivity.
6.1. Definitions. A a-field 2* of subsets of a set 5 is a field of subsets of

5 which is closed under the formation of countable disjoint unions. If 2 is

an ideal of a field 2 then an additive function <p: 2—»36 (where H is a Dedekind

complete partially ordered vector space) is countably additive if c6(Uj" i (Etr\e))

= lim„ zZ*-i <P(Ei(~\e) for every e£S and every countable disjoint collection

{£,•} of elements of 2*.

6.2. Definition. A real-valued function / defined on S is measurable if

/_1(5)£S* whenever B is a Borel set of real numbers. Here 2* is a a-field.

6.3. In contrast with that of /t-measurability, the concept of measurabil-

ity is independent of any function p., depending only on the underlying

a-field 2*. The theory of measurable functions is well known.

6.4. Lemma. If p, is countably additive, then every measurable function f is

p-measurable.

Proof. Let e£S and e>0 be arbitrary. It will be sufficient to prove the

lemma for the case where/SO. Let en= {s\(n — l)tSf(s) <ne}C\e, and let

/*= zZn-i (n—l)exe„- Then e„£2, e = U^Li e„, each/n is a simple function, and

{s\ | (x*f)(s)~fk(s)\ Se} =Ur+i en£2. Hence limaM*{5| | (Xef)(s) -fa(s)\ Se}
= 0, where {/<,}* is the directed set of all simple functions such that OSfa

SXef- This implies that/ is ju-measurable.

6.5. Theorem. Let {/„} be a sequence of measurable functions which con-

verges p-almost everywhere to a measurable function f. If there exists an integrable

(over S) function g such that \fn(s) \ Sg(s) u-almost everywhere for n = l,2, ■ ■ • ,

then f and /„ are integrable over S and {/„} converges in the mean to f. This con-

vergence is 1-convergence.
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Proof. We first show that {/„} converges to / in measure. Let E(n, e)

= {5||/„(*)-/(s)|^2e}.Then£(n,e)G2*. If E* = U;_* £(», e), then E*G2*,

Ek=}Ek+i, and 0* E*£2*. Further, f\ EkQN= {s\fn(s)+>f(s)}, so p*(D* Ek)
= 0. Now

Ei =( 0 Ek\ U (Ei - Ei) U (£2 - £3) U • • • = (£1 - £2) VJ • ■ •

W(£n_i - £n) W £n.

If Af= {s|g(5)^e} then M£2 by §4.15. Hence

n—1 / n—1 \

lim 2Z^[iEk-Ek+x)r\M] = limf £m[(£* - Ek+X) C\ M] + p(Enr^ M) J.

Hence lim p(£„fW) =0, so limp [(£(», e)Dl]=0. But £(w, e)QE(n, e)

r\(MKJNVJKn)Q [E(n,e)r\M]VNKJKn, where 7C„ = {s| |/n(s)| >g(5)}.
Since p*N = u*K = 0, it follows that lim u*E(n, e) =0. Hence {/„} converges

to/in measure. In view of §§5.5 and 6.5, it remains to show that the mean

convergence is 1-convergence.

For each sES, let g„' (s) = /\kinfk(s) and gn" (5) = V*i„/fc(s). Then from

the above work all gn' and g„" are integrable over 5 and fs\fn—f\ =Je\fn~f\

+jV|/n-/| Sje\fn~f\ +/S(gn" -gn') where *2# and e£2. Hence by §4.22

/s|/n— /| Sfs(gn' — gn )■ Now {gn"—gn'} is a decreasing sequence so

{fs(gn' — gn)} is a decreasing sequence. The preceding work shows that

lim fs(gn' —gn)=0, so the convergence of {/s|/n— /| } is 1-convergence.

6.6. The preceding theorem improves a special case of one of McShane's

theorems [8, pp. 59 and 81 ].

6.7. Corollary. For each integrable function f, fEf is a countably additive

set function. The convergence in the definition of countable additivity may be

taken to be 1-convergence in this case.

Ill

1. A representation theorem.

1.1. In this section 5 will denote a normal topological space and 2 the

field generated by the closed subsets of 5. Also, C(S) will denote the space of

all real-valued bounded continuous functions on S, and 36 a Dedekind com-

plete partially ordered vector space.

1.2. Definition. If p:2—>36 is a positive additive function and e£2,

then p is regular if ue = VpE, where FQe is closed; the class of all regular func-

tions will be denoted by r(2).
1.3. If u£r(2) then pe = A{pG|GQe-G open}. If fEC(S) then f~l[a, 5)

£2 for all real numbers a and 5. Since/is bounded,

00

/. =   Z   (w*)/-1^, nt + e)
n=—ao
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is a simple function for any e>0. Since OSf— /e<e, clearly {/«,} converges to

/ in ju-measure. Hence/is ju-measurable. Since uS is defined and/is bounded,

/ is ju-integrable over S.

IA. Lemma. Let cp be a function defined from the class of all subsets of S into

X such that <p0 =0. If

6 = {K C S | <f>E = <p(E H K) + 4>(E H K) for all EQS},

then S is a field and <p is additive on this field.

Proof. Formally identical with that on p. 45 of [6].

1.5. Theorem. If T: C(S)—>% is a positive linear transformation, then there

exists Mr£r(2) such that Tf=fsf(s)ur(ds) for all /£C(5). Conversely, if

p,Q.r(E),then T^f = fsf(s)p(ds) defines a positive linear transformation from C(S)

into X, arad the correspondence T<-»/i is reciprocal.

Proof. The proof in [l, p. 577] may be adapted to the new situation.

1.6. Note that §1.5 is valid for the space of all complex valued bounded

continuous functions defined on S, as well as for the real space C(S): Since

T(fi+ifx) = Tfi+iTfi, a linear transformation on the complex space is deter-

mined by its action on the real functions. The integral of a complex function

f=fi+ifi (where the/,- are real functions) is then, by definition, fsf(s)p(ds)

=fsfi+ifsfi- Naturally 3E must be a vector space over the complex number

system (or a direct sum X©X of real spaces) but this causes no trouble.

1.7. If X is the real or complex number system, ordered by aS/ijif a — /3S0,

and 5 is a compact Hausdorff space, then a general form of the celebrated

Riesz theorem may be obtained from §1.5 with only a little more argument.

The key lemmas follow.

1.8. Lemma [l, p. 590]. If S is a compact Hausdorff space then every

bounded regular finitely additive real valued function p. defined on the field 2

generated by the closed sets of S is countably additive.

1.9. Lemma [5, p. 76]. Every positive countably additive p. defined on 2 cara

be extended to a positive regular measure u defined on the a-field 39 of Borel sub-

sets of S.

1.10. Theorem. Let S be a compact Hausdorff space, let Ti be a Dedekind

complete partially ordered vector space, and let T be a positive linear transforma-

tion from C(S) into H. If there exist enough continuous positive linear functionals

in H to distinguish between points ofX., then there exists a positive countably addi-

tive regular mapping /i* from the a-field 33 of Borel subsets of S into J such that

Tf=fsf(s)u*(ds). Conversely, if ;u* is such a mapping, then the integral

fsf(s)u*(ds) defines a positive linear transformation from C(S) into X.



486 R. R. CHRISTIAN [November

Proof. Let p: 2—»36 be the mapping mentioned in §1.5. For each BE$8,

let n*B = V{pE|£CZBE£2}. Then the mapping p*: 93—>36 is superadditive

and increasing. If {Bk} is a sequence of pairwise disjoint elements of B and

B = UT-i Bk, then ̂ B £M*(U2.i S4) £ 2Zl-i ̂ k. Hence p*B ̂  V„ EZ-i M*5*
sS S"-iP*5*. Let X* be an arbitrary positive continuous linear functional

defined on 36. Then by §§1.8 and 1.9 X*ut, is countably additive. Hence

(JV)5=V„EL1JVBi. But X*n*B^X*\ln2Zl-iH*Bk^X*2Zk-iH*Bk
- Z*-i X*H*Bk. It follows that XV*5=X*V„S.1mA. Therefore p*£
= Vn^JUi p*B*. From its definition m* is regular. Since p* is an extension of

pt, any generalized sequence {/,} of ju-simple functions converging to/ in

p-measure must be a generalized sequence of p*-simple functions converging

to/ in /^-measure. If {/,} B is the directed set of all p-simple functions such

that 0 Sfa Sf+ and {gb} is the directed set of all /x-simple functions such that

OSgbSf-, then

ff(s)p(ds)=    ff+-    f/-=   V     f fa-   V     fg,
«^S •/ S J S a     J S b     J S

-   f/+WM*(75)-  ft(sW(ds)=  f f(s)p*(ds).
J s J s J s

This completes the proof.

2. When T is multiplicative.
2.1. Definition. A positive linear transformation T from a partially

ordered algebra §) into a partially ordered algebra 36 is multiplicative ii

T(YiY2) = (TYi)(TY2) for all F,, F2£2).

2.2. Theorem. Let S be a normal topological space and suppose that T is a

positive multiplicative linear transformation from C(S) into a Dedekind com-

pletely partially ordered algebra 36. 7/Ei and E2 are elements of the field generated

by the closed subsets of S, then

p(Ex f\ E2) = pEuiEi,

where p. is the function whose existence was stated in §1.5. Conversely, if p. is

such a function, then the mapping

TJ=  f f(s)p(ds)
J s

defined in §1.5 is multiplicative.

Proof. Assume that T is multiplicative. We shall first show that u(FC\K)

= uFpK for arbitrary closed sets F and K. Let fEC(S) be greater than xf,

and let gEC(S) be greater than xx. Then fg^XFDK- Hence
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uFuK =   ( A  (/ S   XF)Tf)( A (g  S   XK)Tg)   = A (( A Tf)Tg)
a        f

= A   A TfTg = A T(fg) S A (/* S x,nK)n = /i(£ n tf).
»    / /,»

Given h(E.C(S) such that /j^xfok, we shall now construct decreasing

sequences {/„} and {gn} of elements of C(S) such that/nSxp, gnSxx, and

A„ (TfnTgn)STh. From this construction we shall then have pFpK

S A„ (Tf„Tgn) S Th. Since h is an arbitrary continuous function greater than

Xfnx, it will then follow that pFpKSp(Fl^K). Combined with the result of

the preceding paragraph, this will prove the first part of the theorem for

closed sets F and K.

Without loss of generality we may assume that h(s) = 1 lor each s^Kf^\F.

Lethn = hV(l/n). If we define//(5) as 1 ior sEF and fJ (s)=hn(s) for sEK,

it follows from elementary topology that/7 is a continuous function on K\JF;

by Tietze's extension theorem /„' can be extended to a bounded continuous

function /„" defined on all of S. Let J* =/„" V»». If 5££, then f*(s) S/„" (5)
= 1. Since/*S^S0, it follows that/*Sxr. Also,/* is a continuous function

which never takes on a value less than (1/ra). Hence g* =h„/f* £C(5).

If s£7:, then hn(s) =f*(s)gt(s)=hn(s)g*(s), so gt(s) = 1. Since both «„ and

/* are positive, gn must be positive also. Hence g„Sxx.

Since 0Shn — hS(l/n) and Tis positive, we have 0^ Th„ — ThS(l/n)Te,

where e is the function identically 1 on 5. Since {h„} is a decreasing sequence,

it follows that l\Thn exists and equals Th. Now Thn = T(f*g*). Let /„

=/i*A • • • Aft and gn = g*A ■ • • Agt- Then {/„} and {gn} are decreasing

sequences of functions, /*S/nS_x/?, and g*SgnSxx. Hence T« = An T«„

= A„ T(/*g*)=A„ (T/*T£*)SAn(T/„Tg„). As we observed before, this yields

u(FC\K) =pFpK for closed sets £ and A7.

Now let £1 and £2 be arbitrary elements of 2. Then

n(Ei(~\E2) = VJmT'I ££ EiC\E2P closed}.

But every closed P<^EiC>\E2 is the intersection FC\K of two closed sets

FQEi and KCE2 (we may take F = K=P), and every intersection KC\F is

a closed set contained in EiC^E2. Hence

m(£i H £2) = V m(# H £) = V (uA-M£)

= V [ V (mM)1 = V \pF V m*1
bLb: J       f L       ir       J

=  V pFV uK = pEiuEi.
F K

Conversely, suppose that u is a regular positive additive function from 2

into £ such that p(ExE2) =p,EiuE2.  If/SO and gSO, then / is the limit in
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measure of a directed set {fa} * of simple functions such that OSfaSf, and g

is the limit in measure of a directed set {gb} of simple functions such that

OSgbSg- Hence \fagb}i is a directed set of simple functions converging to fg

in measure. Now

J   fa    J    gb  =   (    Z)   «rf*«<j(    £ A-M«/ j

= X) afou^i C\ ej) =   I  (a«8/)xe,-n« =   I  /og6-
i.» •> s J s

Hence TfTg-fsf-Jsg=fsfg=T(fg) ior positive functions / and g. The ex-

tension to arbitrary elements/and g of C(S) is easy:

T(fg) = 7(/+g+ - f+g- - f~g+ + f-g~)

= (Tf+)(Tg+) - (Tf+)(Tg-) - (Tf-)(Tg+) + (Tf-)(Tg~)

= T(J+ - f~)T(g+ - g-) = TfTg.

3. Final remarks. Let SI be a commutative C* algebra containing the

identity operator 7. Then by the Gelfand-Neumark theorem, 31 is isometri-

cally isomorphic to the algebra C(S) of all continuous complex-valued func-

tions on a compact Hausdorff space S. Let T: C(S)—>3t be this isometric iso-

morphism. Then Tf is a Hermitian operator for every real function /. If

/^0, then ((Tf1 2)x, (7/"2)x) ^0 for every x£§. It follows that T is positive.

Now the closure SI of SI in the strong topology is also a commutative C*

algebra with identity 7. By §1.2.15, 31 is a Dedekind complete partially

ordered algebra. Noting §1.6, it follows that T may be represented by means

of §1.5. With §§1.10 and 2.2, and the fact that the functionals X—>(Xx, x)

distinguish between points of 31, this furnishes another proof of the spectral

theorem for bounded Hermitian operators.
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