ON ORDER-PRESERVING INTEGRATION(')

BY
R. R. CHRISTIAN

Introduction. This paper is concerned with integrals of the form [sf(s)u(ds),
where f is a real-valued function defined on S and u is a finitely-additive
function whose domain is a ring £ of subsets of .S and whose range is con-
tained in the class of positive elements of a Dedekind complete(?) partially
ordered vector space X. It covers another aspect of the problem of integration
with respect to a vector-valued measure, considered by McShane [8] and by
Bartle, Dunford, and Schwartz [2].

The theory of integration is based on a theory of convergence of general-
ized sequences in the space X. This theory is presented in §I, with a brief
discussion of other convergence theories.

§II treats u-measurability and integrability. The central concept is that
of convergence in measure. A generalized sequence {f.} converges to f in
measure if, for every €¢>0,

lim u*{s| |f,,(s) —f)| Z ¢ =0,

where
w*D = A (e D D eC Z)ue;

a function f is u-measurable if for each e €2 there exists a generalized sequence
of simple functions converging to x.f in measure; the integral of a u-measura-
ble function f=0 is the supremum of the integrals of all simple functions g
such that 0 <g<f; the integral of an arbitrary f is [sf* — [sf~. If properly
worded, the Vitali and Lebesgue convergence theorems for integrals are valid
in the above-described situation: This is the principal result of §1I. When p is
countably-additive, this result improves a special case of a theorem of Mc-
Shane [8, pp. 59 and 81].

The main theorem of §I1I is an abstract form of the Riesz representation
theorem: If Sis a normal space and T is a positive linear transformation from

C(S) into X, then
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() Definitions are in the body of the paper.
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n=£mmw

for some finitely-additive function u; if X is an algebra and T is multiplicative,
then
w(EiM E;) = uE; uE,.

This theorem is used as the basis of an alternative proof of the spectral theo-
rem for self-adjoint operators in Hilbert space.

1

1. Partially ordered sets.

1.1. Throughout this section (¥, <) will denote a partially ordered set.
Whenever they exist, the supremum and infimum of a subset MCSX will be
denoted by VIt and AM, respectively. Alternate notations are V,Xa, AaXa,
X1VX.V - - - VX, (for a finite class), and X;AX: /A -+ + AXa. The follow-
ing statements are easy to prove: If I% and M are subsets of X such that
VI and AN exist, and if M <N for each MEDM and NER, then VIRZAR.
If {X.}C¥ is a set such that AoXa, AaXas, Ao Xas, NoNaX s, and AopXa
all exist, then ANy X o =AsAeXas=A2sXa, and dually.

1.2. The theory of convergence on which the integration theory is based
uses the concepts of directed set, directed floor, and directed tower. The follow-
ing simple (artificial) example is given to illustrate the concepts involved.

Consider the following array:

yu <y <yu< - <N
A\
Yo < Yoo < v v e < ¥
/\

VAN
ynl<yn2<"’ <y,,
N

AN

0
Let A be the partially ordered set consisting of all of the above elements yn«
and y,., ordered as indicated in the diagram, together with the elements
x1, X2, - - -, which are related to the elements y.x, y., and 0 as follows:
Y <xx <0 for all #, but the x; are not related to the y,, nor is any x; related
to any x; when 1.
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1.3. DEFINITIONS. A set A is directed by a partial ordering < if to each
pair of its elements, a; and a,, there exists a; EA4 such that a; <a; and a; <a,.
We symbolize such a directed set by 4 < or by 4(<). A directed floor
®= (or ®2) is a class of directed subsets of a partially ordered set ¥, all of
which are directed by the same order relation £ (or =). A floor = (or %) is
a directed first floor with base B if it consists of a single element = (M=) such
that AM=B (VI =B). Let w= {<I>1, RN ¢’k} be a finite ordered collection
of floors, all of which are directed by = (). Then w is a directed tower with
base B if

(a) @, is a first floor with base B;

(b) if MEMES, and n <E, then there exists Ny EP,,; such that A Ry =

M (VRy=M).
We symbolize such a tower by w= (w=). The number % will be called the height
of the tower w. A tower of height & is a k-tower. To simplify the notation we
shall write M Ew to mean MEMEP,Ew, where w is a k-tower. Similarly,
MED; will mean MEMED,.

1.4. In the preceding example, {ynk} = is a directed set for each #; {y,.}
is also a directed set. The class ®== { {y,}} is a first floor with base 0; the

class = = { {yu}, {yu}, - - - } is also a floor. The class w* = {®, ¢} forms a
2-tower with base 0.

1.5. DEFINITION. A tower w,= {fbl, cee <I>,,} is an extension of a tower
o= {\Pl, cee, x//k} if k=n and ¢;=®; for =1, - - -, k. Here all floors are

directed by the same order relation.

1.6. LEMMA. Let 0= (w=) be a k-tower. Suppose that, for each MEMEP, Ew
there exists an n-tower (ox)= [(o2r) =] with base M:oy= {¢1(M), - - - Y (M)}.
Let ' = {®y, -+ -, Byyn}, where Opyp;=Upy ¥i(M), i=1, - - -, n. Then o’ is a
tower which is an extension of w.

Proof. Obviously all ®,, are floors, and ®, is a first floor. Suppose NEREP;.
If 7<k, then, since w is a tower, there exists Ry E®P;;; such that ARy=N
(VRy=N). If j=E, then by hypothesis there exists a tower oy with base N.
Hence RnEyYi(N)Eoy has the property that ARy=N (VRy=N). If
k<j<k+n, then MEY;(M) for some M. Since oy is a tower, there exists
Ry €Y1 (M) CP,,1 such that ARy =N (VRy=N). Hence ' is a tower. The
fact that ' is an extension of w follows immediately.

1.7. DEeFINITIONS. The tower ' of the preceding lemma will be called the
extenston of w by means of the n-towers oy. An elementary k-tower with base B
is a tower {<I>1, Cee, @k}, where each ®; consists of the single-element set
{B}. The direction of {B} is considered to be the same as the direction of all
®,. An extension of a tower w by means of elementary towers a1 is called a
canonical extension of w.

1.8. A k-tower has one and only one canonical extension to a (k+4n)-
tower, n=0,1,2, - - ..
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1.9. DEFINITIONS. A generalized sequence of elements of a set NCX is a
function whose domain is a directed set and whose range is contained in .
A generalized sequence {X,,IaEA( <)} is k-convergent to X if there exist
k-towers wZ and w* with base X such that, for each MEw= and NEw?=,
there exists a(M, N)EA such that M £ X,= N for a <a(M, N). The towers
w® and &= are said to be associated with {X,} or with X. Symbolically,
X =k-lim X,.

The sequence {y,} of the preceding example is 1-convergent to 0; on
the other hand, the sequence {xk} is 2-convergent to 0 but 1-lim x; does
not exist. Intuitively, a generalized sequence {X,} 1-converges to X if its
elements are eventually “squeezed close” to X; the generalized sequence 2-
converges to X if its elements are eventually squeezed close to elements which
are squeezed close to X.

1.10. Note that 1-convergence is the same as o-convergence as defined by
McShane [8, p. 15].

In the sequel, we shall often abbreviate statements such as “given M
and N, there exists a(M, N)EA such that M<X,<N for a <a(M, N)” by
writing “eventually, M < X,<N.”

1.11. TugoreM. If X =k-lim X, and YV =~k-lim X,, then X =Y. Hence
k-convergence of a generalized sequence is uniquely defined and independent of a
particular choice of associated towers.

Proof. Suppose that the towers wS={® (<), -, &} and w®
={®(=), -, <I>k} are associated with X, and that the towers o3
=i (=), - -, x[/k} and 0% = {\l/l(;), sy, %} are associated with V. If

E=1,let R=X and S=VY;if k>1, let REP:1(=) and SEYx_1(=) be arbi-
trary. Then there exists Mz EP,(2) and NsEYi( =) such that VMe=R and
ANs=S. If MEMr and NERNs, then eventually MZX.<N. Hence
VMe<ANs. If B>1, it follows that R<S for every RE®P;1(Z) and
SEY,_1(=). If §1.1 is applied £—1 times then X £ V; if k=1, then the result
X < Y was obtained directly. Similarly, Y=X. Hence X =Y.

1.12. LemMma. If X =k-lim X,, then X =(k+n)-lim X, for any non-
negative integer n.

Proof. Let 0= and wZ be k-towers associated with {X,}. Let o be the
canonical extension of w to a (k+4n)-tower. Then ¢= and o= are (k+n)-
towers associated with {X.}.

1.13. DEFINITION. On the basis of §1.12, we say that {X.} is convergent
to the limit X, and write X =lim X,, if X =k-lim X, for some k. From §1.11
it is clear that a generalized sequence can converge to at most one limit.

1.14. THEOREM. (a) If X.=X, then lim X,=X; (b) if X =lim X, and
eventually Y<X,<Z, then YSX=<Z; (c) if Y=klim Xo=k-lim Z, and
eventually X, < Vo< Z,, then k-lim Y, exists and equals Y.
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Proof. Part (a) is clear from the fact that { { { X} } } = is a tower associated
with X. To prove (b) let w= be a k-tower associated with {Xa}. If MEw,
then eventually Y=X,< M. By §1.1 it follows that Y=< N for arbitrary
NEw. Hence Y=<X. The inequality X <Z is proved in similar fashion. To
prove (c), let @* be associated with %Xa and = be associated with {Z,]}.
Then w® and w= are associated with | V,}.

1.15. Note that the method given in §1.9 for defining limits in a partially
ordered set ¥ imposes a topology t on ¥: A set N CX is closed in this topology
if k-lim X,EM whenever {X,} CM and k-lim X, exists: Similarly, a
topology ¢ can be defined by means of the convergence defined in §1.13. If
k=<n, then by §1.12 every closed set in ¢, is closed in #. That is, ¢ is stronger
than ¢,. Similarly, the topology ¢ is weaker than every #. Since every one-
point set is closed relative to ¢, it is clear that X is a T;-space relative to ¢
and all .

1.16. If we take the class of all closed intervals 3§ = {X|X =X,} and
3o = {X| X = X,}—where X, is an arbitrary element of ¥—as a subbasis for
a topology on X we obtain the interval topology. The set X is a Ti-space rela-
tive to the interval topology [4, p. 570] and [3, p. 61]. Since every closed
interval is closed in any of the topologies of §1.9, it follows that the interval
topology is weaker than the topology ¢ and all topologies ¢.

1.17. DEFINITION. A lattice X is complete if every subset of ¥ which is
bounded above has a supremum in ¥ and every subset of X which is bounded
below has an infimum in ¥.

1.18. THEOREM. If X is a complete lattice and {X o} is a generalized sequence
of elements in X, then the following statements are equivalent:

(@) {Xaj l-converges to X;

(b) {X.f converges to X;

(c) lim inf X, and lim sup X, both exist and equal X.

Proof. Obviously (a) implies (b). If (b) holds, letw= = {<I>1( =), - -, () }
and w== {@1(;), RN @k(g)} be towers associated with {X.,}, and let

M=Ew= and M*Ew® be arbitrary. Then eventually M==<A(a<b)X,
= V(@ <b)X,<M=. Hence M= =<lim inf X, <lim sup X, <M=. By §1.1, this
implies that N= <lim inf X, <lim sup X, < N= for arbitrary N>€®,(<) and
N;Ed);(g), 1=1, - - -, k. It follows that X =lim inf X,=1im sup X,. Now
assume (c). Then eventually M;=A(a <b)X,and Ny= V(a <b)X, exist. Now
M=={M,} and N=={N,} are obviously directed sets, and eventually
My = X,=< N, for arbitrary b. Part (a) now follows, thus completing the proof.

1.19. According to MacNeille [7, pp. 443—444], any partially ordered set
%X can be imbedded in a complete lattice & having a greatest element and a
least element in such a way that infima and suprema are preserved. Birkhoff
[3, p. 60] suggests that this device could be used to define a topology in ¥:
If X,, XE€¥, then X =lim X, in ¥ if and only if X =lim inf X,=1im sup X, in
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2. With Birkhoff, we call this topology the relative topology. Let (%, £) be a
partially ordered set topologized with the interval topology. Let J¢"
={X|X=X,} be a closed interval in ¥. If X,E3¢ and X =lim X, in the
relative topology, then since X 2A,X,=X,, it is clear that XE€3¢. Hence
Sy is closed in the relative topology. Similarly, 35 = {X| X§Xo} is closed
in the relative topology. It follows that the relative topology is stronger than
the interval topology. We now show that the relative topology is weaker than
the topology ¢ mentioned in §1.15.

Let (¥, £) be a partially ordered set. In X, suppose that X =lim X,. Let
w* and wZ be towers associated with {X,}. Then eventually M* <X, < M=
for any MEw. If ¥ is imbedded in a complete lattice € then, as in §1.18,
MZ=<lim inf X,<lim sup X, < M= in 2. Hence X =lim inf X,=lim sup X,, or
{X.} converges to X in the relative topology. It follows that the tower topol-
ogy of §1.15 is stronger than the relative topology. Summarizing, we have the
following theorem.

1.20. THEOREM. If we symbolize the relation “stronger than” by >, then
0>t>> - - - >t>relative topology 3> interval topology.

1.21. DEeFINITIONS. If (%, <) and (), =) are partially ordered sets, a map-
ping T: X—9) is positive if TX,=TX, for X, = X,. Positive mappings are also
called order-preserving. A positive mapping T is continuous if T(VIN) = V(TIM)
and T(AN) =A(TRN) whenever M is directed by = and N is directed by =.

1.22. Let T:X—Y) be a positive mapping. The following statements are
clear from the definitions involved:

(a) T maps directed sets and floors onto similarly-directed sets and floors;

(b) if T is continuous, then T maps directed towers with base B onto
similarly-directed towers with base 7B, and hence maps convergent generalized
sequences onto convergent generalized sequences.

1.23. DEFINITION. A partially ordered set (¥, =) is Dedekind complete if
every directed subset M= of ¥ which is bounded above has a supremum in %,
and every directed subset 9= CX which is bounded below has an infimum in
X.

2. Partially ordered vector spaces.

2.1. DEerFINITION. If ¥ is a real vector space which is at the same time a
partially ordered set (X, £), then X is a partially ordered vector space if

(a) X 20 whenever X 20 and a20;

(b) X+Z=Y+Z for all Z whenever X2Y.

2.2. Throughout the remaining portion of this section X will denote a
Dedekind complete partially ordered vector space; elements of X will be sym-
bolized by capital Roman letters, and subsets of ¥ by capital German letters.
The small Roman letters @ and b will denote elements of some (usually un-
specified) index (directed) set, and the small Greek letter « will stand for

some real number.
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2.3. LEmMA. (a) If Ao X, exists, then Ny Xo= — Vo (—X.), and dually;

(b) if Aa X, exists and a20, then N, aXo=al, Xa; if a =0, then Vo aX,
=aAa Xa;

(c) #f Va4 X, exists and a 20, then Vo aXo=aV, X,; if <0, then A, aX,
=ava Xa;

(d) if X =20, then A(a>0)aX = V(a<0)aX =0;

(e) if X =0, then V(a>0)aX =A(a<0)aX =0;

(f) if Ao Xoand Ny Yy exist,
then Ao Xo+Ny Yi=AAy (Xo+ 1) =MNA, (Xo+ Ys), and dually.

2.4. DEFINITIONS. (a) If I and N are subsets of X, then M+ N is defined
as the set { M+N|MEM NEN};

(b) if ® and ¢ are two similarly-directed floors, then &+ is defined as
the collection {M+N|ME®-NEY};

(c) ifo= {<I>1, coo, &} andw= {1#1, cee ,¢k} are two similarly-directed
k-towers, then ¢+w is defined as the collection {¢1+t//1, N <I>,,+x[/,,} ;

(d) if a k-tower o and an n-tower w are similarly-directed and 2 =#, then
o+w is defined as 0 +w’, where w’ is the canonical extension of w to a k-
tower.

2.5. LEMMA. (a) The sum of two similarly-directed subsets of X is a directed
subset of X;

(b) the sum of two similarly-directed floors is a directed floor;

(c) the sum of two similarly-directed towers is a directed tower; the base of
this sum is the sum of the bases of the component towers;

(d) the indicated sums in (a), (b), and (c) are directed in the same way as
the components.

Proof. We may suppose the order relation to be =. By §2.1, M;+N;
S M;s;+N: = M;+N; whenever M; < M;, =1, 2. From this, (a) and part of
(d) follow. This in turn implies (b) and another part of (d). If ® and ¢ are
first floors with bases X and Y, respectively, then by (a) and §2.3(j), the floor
® 4y is a first floor with base X + V. The rest of the proof is similar.

2.6. THEOREM. The limit of the sum of two convergent generalized sequences
is the sum of the limits of the individual generalized sequences.

Proof. If o* is a tower with base X associated with a convergent {X,}
and w* is a tower with base Y associated with a convergent {Yb}, then
o*+w* is a tower with base X + ¥ associated with {X,+ V;}. Here * repre-
sents < or 2, and {X.+ Y} is a function of the directed set {(a, b)}.

2.7. CoROLLARY. The generalized sequence {X .,} converges to X if and only
if {X a—X } converges to zero.

2.8. THEOREM. For each aEA( <) and cEC(<) let {Z(a, b)leB( <)}
and { Wi, b)} be generalized sequences which k-converge to zero. Suppose that
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V(ie)+W(e, b)=X(b) = Y(a)+Z(a, b) for each a, b, and ¢, where { V(c)} and
{Y(a)} are generalized sequences which h-converge to zero. Then

(h + k)-lim X(b)=0.

Proof. We shall show the existence of a tower, directed by < and having
base zero, which is associated with {X(5)}. In doing this, we consider only
towers which are directed by =. Similar arguments hold for =.

Let ¢ be an k-tower with base zero associated with {Y(a)}. For each
HE o there exists an a(H) such that Y(a) £ H for a <a(H). Let w(a(H)) be a
k-tower with base zero associated with { Z(a(H), b)} and let p(H) = { { { H} } }
+w(a(H)), where { { {H} }} is the elementary k-tower with base H. If ¢’ is
the extension of ¢ by means of the towers p(H), then ¢’ is an (h+k)-tower
with base zero. Let NEo¢’. Then N=H+K(a(H)) for some HEe and
K(a(Il)) € w(a(H)). Since k-lim Z(a(H), b) =0, there exists b(H)
=b(K(a(H))) such that Z(a(H), b) = K(a(H)) for b <b(H). Since

X() = Y(a(H)) + Z(a(H), b) = H+ K(a(H)) = N

for b<b(H), it follows that ¢’ is associated with {X(b)}. Hence (h+k)
-lim X (b) =0.

2.9. DEFINITION. A class {X(a, b)} of generalized sequences [a €4 (<)]
is uniformly k-convergent to X if there exist k-towers w= and w* with base
zero which are associated with all {X(a, b)—X*}. The class {X(a, b)} is
uniformly convergent to X° if it is uniformly k-convergent to X°® for some k.

2.10. THEOREM. Let F(n, a) be an element of X defined for every positive
integer n and every element a of a directed set A <. If k-lim, F(n, a)=0 for
each n and lim, F(n, a) =0 uniformly in a, then lim, F(n, a) =0 uniformly in n.

Proof. Let = be a tower with base zero associated with {F(n, a)|a
arbitrary } , and let ¢=(n) be a tower with base zero associated with { F(n,a)|n
fixed}. Then for each NEw there is an integer P(N) such that F(n, a) <N
for n=P(N), uniformly in a. Similarly, for each S(n)&o(n) eventually
F(n, a) £S(n). Since {1, 2, -, P(N)} is a finite set of integers, eventually
F(n,a)<S(1)+ - - - +S(P(N)) for n=1,2, - -, P(N).

For each N€w, let p(N) =w(N)+o(1)+ - - - 40(P(N)) where w(N) is
the elementary k-tower with base N. Then p(N) is a tower with base N. Let
«' be the extension of w by means of the towers p(N). If M &w’, then M is of
the form M=N+S(1)+ - -+ +S(P(N)). From the above, eventually
F(n,a)£Mforn=1,2, - -,P(N),and F(n, a) £ M for n=z P(N) uniformly
in a. This implies that eventually F(n, a) < M uniformly in n. Hence &’ is
a tower with base zero associated with all {F(n, a)|n arbitrary}. Similar
considerations apply to the case of direction =.

2.11. DerINITIONS. (a) If MCX, then oM is defined as the set

{aM | MEM};
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(b) if @ is a floor, then a® = {aI| MED};
(c) fw= {<I>1, - ,<I’k} is a tower, then aw= {a<1>1, cee ,a@k}.

2.12. LemMMA. (@) Let I be a subset of X which is directed by = (). If
a>0, then oM is directed by = (Z); if @ <0, then o is directed by = (£);

(b) #f ® is a floor directed by = (=) and >0, then a® is a floor which is
directed by < (2);if a <0, then o® is a floor which is directed by = (£);

(c) If w s a tower with base X which s directed by < () and a>0, then
ow 15 a tower with base aX which ts directed by = (2); if « <0, then aw is a
tower with base aX which is directed by = (=).

Proof. Immediate from §§2.3 and 2.11.
2.13. THEOREM. If {X.} converges to X, then {aX,} converges to aX.

Proof. If = is a tower with base X associated with {X,} and a>0, then
(aw) = is a tower with base aX associated with {aX,};if <0, then (aw)Z is
a tower with base aX associated with {aX,}; if @=0, the result is trivial.
Similar arguments apply to towers directed by =.

2.14. DEerFINITIONS. If §) is a partially ordered vector space such that the
partially ordered set (¥, <) is a lattice, then 9 is called a vector lattice. A
partially ordered algebra is a partially ordered vector space which is at the
same time an algebra, such that X ¥ =0 whenever X =0 and Y=0. A par-
tially ordered algebra is Dedekind complete if it is a Dedekind complete par-
tially ordered vector space such that the mappings Y—-XY and Y—YX are
continuous for each X =0. A lattice ordered algebra whose partially ordered
vector space is a vector lattice.

2.15. ExamMrLEs. A. Let ¥ denote the class of all bounded Hermitian
operators in Hilbert space $. The set X may be partially ordered by: 4 =B
if and only if (4x, x) < (Bx, x) for all x€$ [8, p. 108]. Then [8, p. 111] ¥ si
a Dedekind complete partially ordered vector space. Further [8, p. 109],
1-convergence of a generalized sequence {X,} to X is equivalent to eventu-
ally bounded (in norm) strong convergence of { X,} to X. For each x€ H the
mapping X—(Xx, x) is a continuous positive linear functional on X.

B. Let % be a strongly closed C*-algebra (i.e. uniformly closed self-
adjoint operator algebra in Hilbert space) which is commutative and which
contains the identity operator I. Then 9 may be ordered in the same way as
the class ¥ of the preceding paragraph. If { Ya} 2 is a bounded directed set in
9, then for each Vo€ { V,} the set { V,— V,| Y= ¥o} * is a bounded directed
set of Hermitian elements. Hence V, (Y,— V) = X €X exists. Since Y is the
strong limit of the directed set { Yo— Yo}, it follows from the preceding para-
graph that Y=X+4Y,=V, Y, exists in A. Hence (a similar argument holds
for A) A4 is a Dedekind complete partially ordered vector space. If X 20 then
X(Vo Yo))2XVY,. If x€9 then |XVx—XVx| <|X| | Vex— Vx| so XVx
=lim X Y,x. Hence V, (X Y,) exists and equals X(V, ¥,). We thus see that
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A is a Dedekind complete partially ordered algebra. This result is related to
that of §II1.3.

C. Let B be the class of all polynomial functions on an unbounded set of
real numbers, ordered in the natural way. We shall show that P is a Dedekind
complete partially ordered vector space.

Suppose { P.(t) } Z is a directed set of polynomials which is bounded above
by a polynomial. Without loss of generality (observe the behavior for large
values of t) we may assume that the degrees of the P, are bounded by .

Let P,(t) = of +aft + - - - + ait» and for each ¢ let ¢(t) = Vo Po(t) =
lim, P.(t). Then P,(¢) =¢(t) —€.(t), where lim, €,(¢) =0. Solving the equations

Y ot = o(t) — ealt)

p=0

(where {#.} is a collection of n+1 distinct real points) for the coefficients
aj by determinants and using the addition property of determinants shows
that lim, &} =a, exists for each p=0, 1, - - -, n. Hence ¢ is a polynomial
> a,t? which is obviously V, P,. A similar argument holds for A. Hence P is
a Dedekind ‘complete partially ordered vector space. This proof was sug-
gested by M. D. Marcus after examining the induction proof of the author.
Using a similar argument, it is clear that k-convergence in P is equivalent
to dominated pointwise convergence.

II

NoTtaTioN. Throughout this section ¥ will denote a Dedekind complete
partially ordered vector space. The complement of a subset e of a set S will
be denoted by S—e, or by & when the set S is understood. The characteristic
function of ¢ will be denoted by x.. The class of all continuous real-valued
functions defined on a topological space S will be denoted by C(S). This class
is ordered in a natural way by: f<g if and only if f(s) =g(s) for each s&S.
The space C(S) is then a lattice ordered algebra. If f&C(S) then f+=f\V/0,
f=(—-f)*, and |f| =ft+f-. Well-known are the facts that f=ft—f-,
2fAg) =f+e—|f—¢g| and 2(f\Vg) =f+g+|f—g|. I fEC(S) and @2 0, then
the a-truncate of f is the function fo=(f* Aea) — (f~VVa). We shall warn the
reader when there is danger of confusing a truncate of f with a power of f.
The symbol Z* will denote a field of subsets of a given set S, and Z will be
an ideal (i.e. e{NEEZ if e€Z and EEZ*) of Z*. The elements of 2 will be
denoted by small Roman letters and called integrable sets; the elements of Z*
will be denoted by capital Roman letters and called measurable sets. The
Greek letter u will denote a positive (ue=0) additive (u(e:\Jey) =per+pes,
eiNe,=) function from X into X. The terms subadditive, superadditive,
increasing, and decreasing have definitions analogous to those of numerical
set functions. A positive superadditive function ¢: Z—X is increasing and
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¢ =0. If D is an arbitrary subset of S which is contained in some ¢e€ZX,
then ¢*D =A(eDD)pe and ¢p«D = V(e D)¢pe exist in X. The function u* is
subadditive and ux is superadditive.

1. Set functions.

1.1. DEFINITIONS. An increasing function ¢:Z*—¥X is Z-decreasing at a
set Eo€Z* if Eoy=1lim (EDE,- EEZ)¢E. A class {(;bb} of increasing functions
from Z* into X is uniformly Z-decreasing at a set E, if

¢ lo=1lim (EQEO EGE)%E
uniformly in b.

1.2. Viewed as a set function, the Lebesgue integral [gf(s)ds of a positive
function is a 2Z-decreasing function for every Lebesgue measurable set.

1.3. We shall assume that ECZ whenever ECZ* and {ue|eCE-e€Z} is
bounded in %.

2. Convergence in measure.

2.1. DEFINITIONS. A subset DC S is a u-null set if u*D =0. Any statement
which is true for all points of S except possibly those in a u-null set is said to
hold u-almost everywhere. A real-valued function f defined on S is a u-null
function if {s||f(s)| Z€} is a p-null set for each €>0. The function f is u-
essentially bounded if it is the sum of a bounded function and a null function.
The u-essential supremum of an essentially bounded function g is ess sup g
=AwV, &(s), where {h} is the class of all bounded functions for which g—#
is a null function. Similarly, the u-essential infimum of g is ess inf g= ViA, h(s).
A real-valued function f is a simple function if it assumes only a finite number
of distinct values ay, - - -, &, and f‘l({ai}) =E,&Z*fori=1, - - -, n. Ifall
E; belong to 2, then f is a u-integrable simple function. If the values — « and
o are admitted among the a;, the function f is an extended simple function.

2.2. Every simple function f can be expressed uniquely in the form
f= ZLI Xk, where the a; are distinct real numbers and the E; are disjoint
elements of Z* whose union is S. The class of all simple functions and the
class of all integrable simple functions are commutative lattice ordered alge-
bras.

2.3. DerFINITION. Let {f.}] be a generalized sequence of arbitrary ex-
tended real-valued functions defined on S. If f is an arbitrary real-valued
function, then {f,,} converges to f in u-measure if, for each €>0,

(a) E(a,e¢€) = {s| ]f,,(s) -—f(s)| > ¢} is eventually contained in an integrable
set e(a, €);

(b) lim u*E(a, €) =0.

Classic techniques can be used to prove the following:

2.4. LeMMA. (a) The limit in measure of a generalized sequence is uniquely
determined up to a null function;

(b) the limit in measure of a generalized sequence of null functions is a null
Sfunction.
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2.5. THEOREM. Suppose that {f.} converges to f in measure and {gb} con-
verges to g in measure. Let a>0 and DS be arbitrary, and let B be an arbitrary
real number. Then

(@) {xpfs} converges to xpf in measure;

(b) 5f.,} converges to Bf in measure;

(c) {fatas} converges to f+g in measure;

() {|fa| } converges to | f| in measure;

(e) ﬁ} converges to f* in measure;

) f;'g‘,’} converges to f*g® in measure.

3. mu-measurable functions.

3.1. DEFINITIONS. A real valued function f is fotally u-measurable if and
only if there exists a generalized sequence {f.} of simple functions which con-
verges to f in measure. The function f is u-measurable if x.f is totally u-
measurable for every eEZ2.

3.2. Although no confusion will result from dropping the “u-” which
prefixes “u-null set” and “u-null function”, it is important to retain this prefix
when referring to u-measurable functions. In the sequel we shall define
measurable functions. Although every measurable function is u-measurable,
the converse does not always hold.

3.3. LEMMA. (a) Every simple function is totally u-measurable;

(b) every null function is totally u-measurable:

(c) the class of all null functions is a vector lattice;

(d) the class of all essentially bounded functions is a vector lattice;

(e) the product of two null functions is a null function;

(f) the product of two essentially bounded functions is essentially bounded;

(g) if fand g are (totally) u-measurable, if ECZ*, and if 6 is a real number,
then f+g, of, xef, f+, |f] , fA\g, Vg, and each a-truncate f* are (totally)
u-measurable.

Proof. Parts (a) and (b) are clear. Part (c) follows from (b) and §2.5.
Part (d) follows from (c). Part (e) follows from the inclusion relation

{s| | o) (s)| = &} S {s| |m@)| 2 ¢} U {s| |mls)]| = ¢}.

Part (f) is then clear from the preceding parts and the definition of essential
boundedness. Finally, (g) follows from §2.5.

3.4. DEFINITION. A function g is an extended (totally) p-measurable func-
tion if and only if it is of the form g=f4 (% )xg,+(— ®)xE,, where E; and E,
are disjoint elements of Z* and f is (totally) u-measurable.

3.5. LEMMA. If f is the limit in measure of a generalized sequence { fa} of
(totally) u-measurable functions, then there exist directed sets { gb} 2 and {hc}é of
extended (totally) u-measurable functions, converging to f in measure, such that
e =<f=<h.. If {f.} consists of simple functions, then {go} and {h.} may be
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chosen to consist of extended simple functions. Further, the functions g, may be
chosen to be (totally) u-measurable if f is bounded below, and the functions h. may
be chosen to be (totally) u-measurable if f is bounded above.

Proof. For each ¢>0, let E(a, €) = {sl lfa(s) —f(s)[ ge}. If e is an integra-
ble set containing E(a, €) let

g(a'r €, e) = Ua - 6])(, + (— °°)Xe and
h(ay € 8) = [fa + f]Xe + (°°)Xg.

Then by §§3.3 and 3.4, g(a, ¢, ¢) and k(a, €, ¢) are extended (totally) u-meas-
urable functions; and they are extended simple functions if every f, is simple.

Let {gb} consist of all finite suprema of functions of the form g(a, ¢, ¢),
where ¢>0 and E(a, €) Se¢€Z are allowed to vary, and let {4} consist of all
finite infima of functions of the form £(a, ¢, ¢). Since, for each €>0, E(a, ¢) is
eventually contained in an integrable set, neither {g;} nor {%.} is vacuous.
Also, gy<f<h., and both {g}= and {h,}= are directed sets. Further, {g}
and {k.} consist of extended simple functions if {f,} consists of simple func-
tions.

Let e* be an integrable set containing E(a, €). If s&e, then

—e < f(5) — fu(s) <& so 0<f(s) = [fuls) — ] < 2e.
Hence
{s1765) = gla, 60)(s) 2 2¢} Ce.
Similarly,
{s] h(a, ¢ e)(s) — f(s) 2 2¢} Cee.
Since {g} and {A.} are directed sets, it follows that
L= /: p*{s] f(s) — go(s) = 2¢}

and
Ly = A w*{s| he(s) — f(s) Z 2¢}

exist. Moreover, L; <pue, =1, 2. Hence L; Su*E(a, €). Since lim u*E(a, €) =0,
this implies that L;=0. Hence {g} and {A,} converge in measure to f.
This proves the first part of the lemma.

If f is bounded below, let gf =g,\/ [A, f(s)]; if f is bounded above, let
B! =k A\[V.f(s)]. Then {g/}* and {A!}= are directed sets of (totally) u-
measurable functions satisfying (a), (b), and (c). This finishes the proof.

3.6. LEMMA. If f is totally u-measurable, then lim u* {s| ]f(s)f ga} =0;1i f
ts u-measurable, then lim p,*{sl I (xef) (s)[ ga} =0 for each eEZ.
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Proof. It is sufficient to prove only the first part of the lemma, the second
part being an immediate corollary. First, f is the limit in measure of a general-
ized sequence {f.} of simple functions. For each g, then, there exists a real
number « such that |f.] <a. Hence

sl za+1} S{si (/) | 2 [fals)| + 1}
S{s| @] = 6] 21}
C {s| 1f6) = fuls) | = 1}.

Hence A(a>0)u*{s| |f(s)| Za} Su*{s||f(s)=fa(s)| =1} for all f,. This im-
plies that lim p*{s| |f(s)| 2} =0.

3.7. LEMMA. The product of two (totally) u-measurable functions is (totally)
u-measurable.

Proof. We first show that f? is totally u-measurable whenever f is totally
u-measurable. By §3.3(g) we may assume without loss of generality that
f=0. Since f is totally u-measurable, there exists a generalized sequence { fa}
of simple functions converging to f in measure. By §3.5 the f, can be chosen
such that 0 £f, <f and such that {f,} is a directed set. Leta>0and >0 be
arbitrary, let E,= {s|f2(s) —fi(s) 2 ¢}, let E(a, @) = {s| (f)%(s) — (f)2(s) 2 ¢},
and let E,= {s|f(s) ga}. Here the superscript « indicates truncation. From
§2.5 it is clear that {p.*E(a, ) } = is a directed set with limit zero for each a>0.
By the preceding lemma {u*E.|a>0}= is a directed set with limit zero. Now
E.=(E.N{s|f(s) <a})U(E.NE,) CE(e, @)\JE,. Hence u*E,Su*E(a, a)
+u*E,. By Theorem 1.2.8 it follows that lim u*E,=0. Therefore f? is totally
u-measurable for each totally u-measurable function f. The lemma now fol-
lows from §3.3(g) and the identity 4fg=(f4+g)2—(f—g)%

3.8. LEmMA. If { fa} s a generalized sequence of (totally) u-measurable func-
tions which converges to a function f in measure, then f is (totally) u-measurable.

Proof. We prove the lemma only for the case where all f, are totally
u-measurable. In view of §§2.5, 3.3(g), and 3.5, it suffices to prove the lemma
under the assumptions that f,=0, that f=0, that {f.} is directed by 2, and
that f,<f. Each £, is the limit in measure of a generalized sequence of simple
functions. Hence by §3.5 there exists for each f, a directed set {fa} of simple
functions such that 0 <f2<f, and {f2} converges to f, in measure. Let {g.}
be the directed set of all finite suprema of functions fi. We shall show that
{g.} converges to f in measure, thus showing that f is totally u-measurable.

Let €>0 be arbitrary. Then

(5] 76s) = 7o) 2 26} € {s]7(8) = fuls) Z e} U {s| fuls) = fulo) Z ¢}
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Hence u*{s|f(s)——gc(s)226} exists for some g.. Since {gc} is directed, L
=/\c,u*{s|f(s) —g.(s) _>_=Ze} exists. From the above, eventually

05 LS u*{s|fs) = fuls) Z ¢} + w*{s] f(s) = fals) Z ¢}

Hence eventually O§L§p.*{s|f(s) —fa(s) ge}, so L=0. This proves that
{g.} converges in measure to f.
3.9. Many of the foregoing lemmas are summarized in the following

THEOREM. The class of all (totally) u-measurable functions is a commutative
lattice ordered algebra. This algebra contains as subspaces the class of all simple
Sfunctions and the class of all null functions, and is closed relative to the operation
of taking limits in measure.

4. u-integrable functions.

4.1. DEFINITIONS. Suppose that f= D %, a;X.; is an integrable simple
function, where the real numbers «; and the sets ¢;&2Z are distinct. The
u-integral of f over the set EEZ*is the quantity [gf(s)u(ds) = D_t_, au(e:NE).

4.2. For each EEZ* the mapping f— [gf(s)u(ds) is a positive linear trans-
formation of the vector lattice of all integrable simple functions into X. For
each integrable simple function f, the mapping E— [&f(s)u(ds) is an additive
function from Z* into X. If f= 0, this function is positive.

4.3. Let f be an arbitrary bounded totally u-measurable function. Then
by §3.5 there exist directed sets {g,} = and {%,} = of simple functions such that
&=f=<h., and {gb} and {hc} converge to f in measure. If &,EZ, let g*
=V, [sxeg» and k*=A [sx.h.. Then 0=Skh*—g*=A(bd, ¢)[sxe,(he—gs). Let
€>0 be arbitrary, and let E(b, ¢, €) —-{ |h (s)— gb(s)>25} Then E(b, ¢, €)

{ Ih (s) —f(s)>e} { If(s) gb(s)>e}, so eventually u*E(b, ¢, €) exists,
and A (b, O)W*E(b, c, €) =0. If e12eDE(b, ¢, €)ey, then

f xnlhe — g) = f f V [h(s) — go(s)]ue + een.

Since lim u*E(b, ¢, e) =0and e>01is arbltrary, it follows that A* —g*=0. Now
if {fa} % is any directed set of simple functions such that f,<f and {fa} con-
verges to f in measure, then the preceding argument yields 2* =V, [sx.,f..
Similarly, if {fa} = is any directed set of simple functions such that f,>f and
{f.} converges to f in measure, then g*=A, [sxofa

4.4. DEFINITION. An arbitrary positive totally u-measurable function f is
u-integrable over the set ECZ* if and only if the set {fafa} is bounded above,
where { fa} % is the directed set of all integrable simple functions f, <f.

4.5. DEFINITION. If f=0 is integrable over E, then the u-integral of f
over E is the quantity V, [zf..

4.6. Note that a positive integrable simple function is integrable over
any EEZ*, and that the integrals given for such a function in §§4.1 and 4.5
are equal. Further, any positive simple function which is integrable over any
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EEZ* is an integrable simple function. This removes any ambiguity at-
tached to the concept of positive integrable simple function.

4.7. LEMMA. (a) Suppose that f>0 is totally u-measurable and [,f* exists
for every o> 0 and every integrable set e CECZ*. If { Je “} is bounded, then f is
integrable over E.

If f=0 is integrable over E, then:

(b) [ef=V.V(eEZ-eCE) V. [.f, and the suprema may be taken in any
order;

(c) xk&f is the limit in measure of a directed set of integrable simple functions;

(d) xrg is integrable over E and [exeg < [&f if g is a u-measurable function
such that 0<g<f;

(e) of {gb}  is any directed set of simple functions such that 0 < g, <xzf and

g} comverges in measure to xgf, then each g is integrable over E and S&f
= Vb f Egb.

4.8. LEMMA. Let f=0 and g=0 be integrable over E, and let 3=0 be arbi-
trary. Then f+g and Bf are integrable over E, and [e(f+g)=[ef+[eg and
JeBf =B[&f.

Proof. Let { f.} be the directed set of all simple functions such that
0=f.<f and let {gb} be the directed set of all simple functions such that
0=g =g lf e€Z, ¢eCE, and =0, then {xe(fa+gb)°‘} converges in measure
to x.(f+g)=. Hence [((f+2)*=V.Vs [.(fat) < [ef+[eg, by §§4.7(e), 4.2,
and 4.3. Hence [e(f+g) < [ef + [eg. Now [e(fa+g) < [e(f+g), so the additiv-
ity follows. Similarly for the positive-homogeneity.

4.9. DEFINITION. Ar arbitrary totally u-measurable function f is integra-
ble over the set ECZ* if and only if f+ and f~ are integrable over E. The
integral of f over E is the quantity

Ji=Js=1r

4.10. We remark that by §4.8 the functions f and |f| are integrable over
the same sets. Also, by §3.3, every null function is integrable, and the integral
of a null function is zero over any measurable set.

4.11. LEMMA. If f is integrable over ECZ*, then fE|f| =0 if and only if
xzef is a null function.

Proof. We have remarked that [z|f| =0 if x&f is a null function. Con-
versely, if fEIfI =0, then |fo| is the limit in measure of a directed set {fa}
of positive integrable simple functions, such that 0§f4§|x3f|. Therefore
Sefa=0.If fo= Ei aiXe; and a;#0, then ue;=0. Hence f. is a null function.
Since the limit in measure of a generalized sequence of null functions is a null
function, this implies that | xzf|, and hence xzf, is a null function.
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4.12. LEMMA. If f is a null function and g is integrable over E, then fgxg
is a null function.

Proof. The function | f| is a null function for each @=0. Since | g*xz| <o,
it is clear that fg*xg is a null function. Now {sl I (fgxg)(s)—(fg“xg)(s)l =
is contained in {s| | (xgg)(s)| ga} for each ¢>0. By §3.6 it follows that
{ fe*xe} converges to fgxz in measure. Hence fgxg is a null function.

4.13. THEOREM. For each EEZ*, the class of all functions which are
integrable over E forms a vector lattice, and the mapping Tg: f— [&f is a positive
linear transformation from this vector lattice into X.

Proof. Since |f+g| <|f| +|¢g] it is clear from §4.7 that f+g is integrable
over E. Now (f+g*—(f+g)~=f+g=ft—f+g*—g~. Hence [e(f+g)*
+[of~+ [zg~= [e(f+8)~+ [of -+ [xg*, whence [&(f+g) = [5f+/zg. This now
implies that fAg and f\/g are integrable. The rest is clear.

4.14. THEoREM. (a) — [&|f| < ef<[=|f];

(b) [elf+el <Selfl +/5]el

(c) if f is a u-measurable function such that | f| is dominated u-almost
everywhere by a function g which is integrable over E, then xgf is integrable over
E and [exef < [Eg;

(d) <f fis an essentially bounded u-measurable function, then x.f is integrable
over S for every integrable set e, and (ess inf f) ue < [sx.f < (ess sup f)ue.

(e) If fis integrable over E and g is essentially bounded, then fg is integrable

over E and
J sl = s LeD) f 111

4.15. LEMMA. Iff is integrable over E, then for each €>0 the set {s| | (xzf)(s)|
>e} is contained in an integrable set.

4.16. THEOREM. If f is integrable over E, then x&f is the limit in measure of
a generalized sequence { f,,} of integrable simple functions; this generalized se-
quence may be decomposed into the difference of two directed sets of integrable
simple functions, one converging to f+ and the other converging to f~, in measure.
Hence there is a generalized sequence {gy} of integrable simple functions which
1-converges in measure to Xef.

4.17. THEOREM. If f is totally u-measurable and the set { [.|f|*|eCE-a=0}
is bounded, then f is integrable over E.

4.18. THEOREM. For each totally u-measurable function f, the class II of all
sets EEZ* over which f is integrable is an ideal of 2%, and the mapping ¢;:
E— [&f is an additive function from T into ¥. If =0 and f is integrable over S,
then ¢, is positve and Z-decreasing at each ECZ*,
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4.19. COROLLARY. If [g,f exists, then [gf and [& xef exist for any measura-
ble set ECE,, and fE'f‘_-fE,XEf-

4.20. The proofs of the foregoing statements are fairly easy consequences
of what has already been done. As shown in §4.6, any positive simple function
which is integrable over S is a positive integrable simple function. Since every
simple function which is integrable over S is the difference of two positive
integrable simple functions, it is clear that a simple function which is integra-
ble over every EEZ* (or over S) is an integrable simple function. It now fol-
lows that a set EEX* is integrable if and only if xg is integrable.

4.21. DEFINITION. A positive function ¢: Z—% is u-continuous if and only
if lim ¢*D, =0 whenever lim u*D,=0. A class {dn,} of positive functions from
T into X is uniformly u-continuous if and only if lim, ¢; Dy =0 uniformly in b
whenever lim u*D,=0.

4.22. THEOREM. If f is integrable over S, then ¢: e— [.|f [ is @ u-continuous
set function. Specifically, if {u*D.} is k-convergent to zero, then {qS*D.,} 1s
(B+1)-convergent to zero.

Proof. For notational convenience we assume that f=0. If e2D,, then
de=[(f—f2)+ [f* < [s(f—f=) +ue. Hence ¢*Dy < [s(f —f=) +apu*D,. The re-
sult now follows from §1.2.8.

5. Convergence theorems.

5.1. DEFINITION. A generalized sequence { fa} of integrable functions
converges in the mean to an integrable function f if

limfs|f.,—f| = 0.

5.2. Lemma. If { fa} is a generalized sequence of integrable functions which
converges in the mean to the integrable function f, then {fa} converges to f in
measure.

Proof. Let k= |f., —f| and let €>0 be arbitrary. As usual, define E(a, ¢)
={s] ha(s) = €}. We shall show that lim p*E(e, €) =0. Since [shi converges
to zero and E(a, €) = {s| hi(s)=e }, we may assume without loss of generality
(for the purpose of proving the lemma) that the k, are uniformly bounded
by e.

Let a be fixed. Then by §4.15 E(a, ¢€) is contained in an integrable set e.
By §4.3, [.ha=N, [.g(a, b), where {g(a, b)} is the class of all simple functions
such that k,=<g(a, b) <e. Now

Xeg(ay b) = A1Xey + SR AmX ep) where g(ay b)(S) =a; 0

for sCe;, and UL, e;=¢. Hence
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[ 80,0) = wwten + -+ cmsten)
’ = (!1[1-*(81 N E(a) 6)) + -+ amﬂ*(em N E(a, 6)).

If a;<e, then h,(s)<g(a, b)(s) <e for s€e;. Hence e;\E(a, €)= in this
case. This implies that u*(e; N E(a, €¢)) = 0 whenever a; < e. Hence

(e B, 9) + - + (e O B, 9) 5 [ g0, D)

Now E(a, €) =U, (e;NE(a, €)). Since u* is subadditive, this fact, together
with the preceding statement, yields eu*E(a, €) < [.g(a, b) for all b. Hence
eu*E(a, €) <N\, [g(a, b) =[ch.<[sha. It follows that lim u*E(a, €) =0, thus
proving the lemma.

5.3. LEmma. If {/. s! fal } is eventually bounded above (say by M) and {f.}
converges to f in measure, then f is integrable over S and [ sI f | =M.

Proof. Let « =0 be arbitrary. For >0, let E(a, €) = {s| | f*(s) —f2(s)| = ¢},
and let e; be any integrable set. By §3.8, f is totally u-measurable, and by
§8§3.3(g) and 4.14, f= is integrable over e;. If eDeiMNE(a, €), then

f|fa—f:| =fn +fn~§f+€#elé2a#e+eyel.

Hence
f | f* = fa| = 20u*(es N E(a, €) + euer < 20u*E(a, €) + euen.
No

w
f Ifai -S-f lfa—f:| +f |f:l < 2au*E(a, €) + euer + M.
€y €y S

Since lim p*E(a, €) =0, we have [,,|f2| <eue;+ M. But €>0 is arbitrary, so
Je|f*| £ M. By §4.17, this implies that f is integrable over S and [s|f| < M.

5.4. THEOREM. Let { f,,} be a sequence of functions which are integrable over
S. A function f is integrable over S and the limit in the mean of {f.} if and only if

(a) the sequence {[sf.} is eventually bounded;

(b) {fa} converges to f in measure;

(c) the sequence { /. .,[ f,.l } of set functions is uniformly u-continuous;

(d) the sequence {[ E| fal } is uniformly =-decreasing at &.

Proof. We suppose first that f is integrable and is the limit in the mean of
{f+}. Then (a) is immediate from the inequality [s|fa| <[s|fa—f| +/s|7].
Next, (b) follows from §5.2. Now suppose that {u*Da} is a generalized se-
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quence which k-converges to zero. Let F(n,a) =A(e2D,) [of». We shall show
that F(n, a) converges to zero uniformly in 7. Let G(n, a) = A (eDD.) [|f.—f|
and H(a) =A(e2D,) [,|f|. Then 0= F(n,a) £G(n,a)+H(a). Now lim, G(n,
a) =0 for each n and lim,, G(n, a) =0 uniformly in a. By §1.2.10 it follows that
lim, G(n, @) =0 uniformly in #. This implies that lim, F(#n, a) =0 uniformly
in n, or that {/.|f.| } is uniformly u-continuous.

We turn to the proof of (d). By §4.18 it is clear that A.cz [3g=0 for every
positive function g which is integrable over S. Let £ ={/7|f||e€EZ}, and let
w*={{f}}. Then w is a 1-tower with base zero associated with {71}
Similarly, let wZ={{{/=|f.| } } } be a 1-tower with base zero associated with
{f;lfn| }. By hypothesis, there exists a p-tower ¢= = {Yn, - + -, ¥p} with base
zero such that [s|f.—f| SPEBEY, for n=2n(P). For each PEBEY,, let
o7 be the elementary 1-tower with base P, and let pp=0p+wtwi+ - - -
+wnp). Then pp is a 1-tower with base P. Let ¢’ = {<I>1, SR <I>p+1} be the
extension of ¢ by means of the 1-towers pp, and let M =P+ [7|f]| + /| f.]
+ -+ ;;,(P)lf"li MEED?E‘I),,.H. Let exy=eUe)J - - - Ue(,.(p)). Then exn
is an integrable set. If n=1, - -, n(P), then f;MIf,.| </ f,,[ s=M; if
n>n(P), then

[onl = finl s fin-sl+ [I sp+ [l s

Hence [3,|f.] <M uniformly in #. It follows that {[gf.} is uniformly 2-
decreasing at &J. This proves (d).

Now assume (a), (b), (c), and (d). By §5.3, fis integrable over S. We shall
show that {[s|fa—f| } converges to zero.

Let w*={®,, - - -, &} be a k-tower associated with the class {/g|fa] }
which is uniformly Z-decreasing at . For each M &M &P, there exists an
integrable set ey such that [7,|fa] <M uniformly in n. Since the set function
fE|f| is 2-decreasing at &, we may without loss of generality assume that

:lel < M also. For arbitrary €>0, let E(n, €) = {sl |f,.(s) —f(s)! _Z_e}. Since
{f,.} converges to f in measure, eventually E(z, €) is contained in some eE€Z.
Hence

f | fo — £l =f + geueM+f | fo— 1] -
ey ey—e eyyMNe exNe

Now fo,nelfa—f] < /| fal +/e| f|. Since lim p*E(n, €) =0, it follows from (c)
and §4.22 that lim, A (e 2E (n,)) [, ne| fa—f| =0.Let o= {¢1, - - -,y,} beasso-
ciated with the sequence {A(¢eDE(n, ¢)) f,un,lf,, —f| }. Foreach NEREY,,
{{{eues+N| €>0}}} is a 1-tower with base V. Let oi be the extension of
oy by means of these 1-towers. From the above work oi is a (p+1)-tower
with base zero associated with the sequence {feulf,. —f| }. For each MEM
Ed,, {{{2M}}} +0'is a (p+1)-tower with base 2. Let o’ be the exten-
sion of 2w by means of these (p+1)-towers. Then, since
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Jip=rtsf +[ s [ In-s +J7M|fnl + [ 11

s [ =gl +om,
eM “

it follows that w’ is a tower with base zero associ%ated with the sequence

{/s|f.—f| }. This finishes the proof of the theorem. '

5.5. THEOREM. Let {f.} be a sequence of u-measurable functions whick con-
verges in measure to a function f. Suppose that every I f,.| 1s dominated u-almost
everywhere by the function g which is integrable over S. Then f and f, are integra-
ble over S and {f.} converges in the mean to f.

Proof. By §4.14 all f, are integrable over .S and [ EI f,,| < [&g for any meas-
urable set E. This implies that {[.f.} is uniformly p-continuous and {/fzf.}
is uniformly Z-decreasing at . The result now follows from the preceding
theorem.

6. Countable additivity.

6.1. DEFINITIONS. A o-field Z* of subsets of a set S is a field of subsets of
S which is closed under the formation of countable disjoint unions. If 2 is
an ideal of a field Z then an additive function ¢: Z—¥% (where X is a Dedekind
complete partially ordered vector space) is countably additive if (U;%, (E:Me))
=lim, D1, #(E:Ne) for every e©Z and every countable disjoint collection
{E.} of elements of =*.

6.2. DEFINITION. A real-valued function f defined on S is measurable if
f1(B)EZ* whenever B is a Borel set of real numbers. Here Z* is a o-field.

6.3. In contrast with that of u-measurability, the concept of measurabil-
ity is independent of any function u, depending only on the underlying
o-field Z*. The theory of measurable functions is well known.

6.4. LEMMA. If u is countably additive, then every measurable function f is
u-measurable.

Proof. Let ¢e€Z and €>0 be arbitrary. It will be sufficient to prove the
lemma for the case where f=0. Let e,= {sl (n—1)e=f(s) <ne}f\e, and let
fe= 2k | (n—1)ex.,. Then e,EZ, e=U,"_, e,, each f, is a simple function, and
(5] [ &) () —fi(s)| 2 €} = Uz, en€=. Hence lim, u* {s| | (xef) () —fuls)| 2 €}
=0, where {f,}* is the directed set of all simple functions such that 0<f,
=x.f- This implies that f is u-measurable.

6.5. THEOREM. Let {f.} be a sequence of measurable functions which con-
verges u-almost everywhere to a measurable function f. If there exists an integrable
(over S) function g such that { f,.(s)l < g(s) p-almost everywhere forn=1,2, - - -,
then f and f, are integrable over S and { f,.} converges in the mean to f. This con-
vergence is 1-convergence.
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Proof. We first show that { f,.} converges to f in measure. Let E(n, ¢)
= {s| |fa(s) =f(s)| Z2¢}. Then E(n, &) EZ*. If Ex=U,".; E(n, €), then E,EZ*,
EiDExy, and Ny E,EZ*. Further, Ny ExCN = {s|fa(s)f(s)}, so u*(Ne Ex)
=0. Now

E1=(ﬂEk)U(E1—E2)U(E2—E;)U'-~=(E1—E2)U-~-
k

\J(En-1 — En) \J E,.
If M={s|g(s)=e¢} then MEZ by §4.15. Hence

lim i p[(Ex — Erpr) N\ M) = lim ( i) pl(Ex = Expr) N M) + w(E. N M)).

Hence lim u(E.N\M) =0, so lim u[(E(n, € M ]=0. But E(n, ) TE(n, ¢)
N(MUNUK,)C[E(n, \M]UNUK,, where K, = {s||f.(s)|>g(s)]}.
Since u*N=p*K =0, it follows that lim u*E(n, €) =0. Hence {f.} converges
to f in measure. In view of §§5.5 and 6.5, it remains to show that the mean
convergence is 1-convergence.

For each s&S, let g (s) =Arzn fi(s) and g4’ (s) = Vizn fu(s). Then from
the above work all g/ and g’ are integrable over S and fslf,. —fl = [\ fa—7l
+[71fa=F| S S| fa—F| +/s(gs" —gd) where e2 N and e€Z. Hence by §4.22
Js|fa=f] SSs(g! —g/). Now {gl’—g!} is a decreasing sequence so
{[s(gs" —gd)} is a decreasing sequence. The preceding work shows that
lim [s(g!’ —g.) =0, so the convergence of {[s|f.—f|} is 1-convergence.

6.6. The preceding theorem improves a special case of one of McShane’s
theorems [8, pp. 59 and 81].

6.7. COROLLARY. For each integrable function f, [gf is a countably additive
set function. The convergence in the definition of countable additivity may be
taken to be 1-convergence in this case.

I11
1. A representation theorem.
1.1. In this section S will denote a normal topological space and Z the
field generated by the closed subsets of S. Also, C(S) will denote the space of
all real-valued bounded continuous functions on .S, and X¥ a Dedekind com-

plete partially ordered vector space.
1.2. DerFINITION. If p:Z—% is a positive additive function and e&€Z,

then u is regular if ue= VuF, where FCe is closed; the class of all regular func-

tions will be denoted by 7(Z).
1.3. If uEr(2) then pe=/\{uG|GQe-G open}. If fEC(S) then f~![a, 0)
€3 for all real numbers a and 4. Since f is bounded,

fe= i (ne)f~[ne, ne + €

n=-—o0
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is a simple function for any ¢>0. Since 0 = f—f. <e, clearly {fe} converges to
fin p-measure. Hence f is u-measurable. Since uS is defined and f is bounded,

f is u-integrable over S.

1.4. LEMMA. Let ¢ be a function defined from the class of all subsets of S into
X such that ¢ =0. If

€= {KCS|$E=e¢(ENK)+ ¢(EN K) for all E C S},

then € is a field and ¢ is additive on this field.
Proof. Formally identical with that on p. 45 of [6].

1.5. THEOREM. If T: C(S)—X is a positive linear transformation, then there
exists urE&r(Z) such that Tf=[sf(s)ur(ds) for all fEC(S). Conversely, if
RET(Z), then T.f = [sf(s)u{ds) defines a positive linear transformation from C(S)
into X, and the correspondence T>u is reciprocal.

Proof. The proof in [1, p. 577] may be adapted to the new situation.

1.6. Note that §1.5 is valid for the space of all complex valued bounded
continuous functions defined on S, as well as for the real space C(S): Since
T(fi+if:) =Tfi+1iTf,, a linear transformation on the complex space is deter-
mined by its action on the real functions. The integral of a complex function
f=fi+1if: (where the f; are real functions) is then, by definition, [sf(s)u(ds)
= [sfi+1i[sfs. Naturally ¥ must be a vector space over the complex number
system (or a direct sum X@®X of real spaces) but this causes no trouble.

1.7. If X is the real or complex number system, ordered by =8 if a —3=0,
and S is a compact Hausdorff space, then a general form of the celebrated
Riesz theorem may be obtained from §1.5 with only a little more argument.
The key lemmas follow.

1.8. LEmmA [1, p. 590]. If S is a compact Hausdorff space then every
bounded regular finitely additive real valued function u defined on the field =
generated by the closed sets of S is countably additive.

1.9. LeMMA [5, p. 76]. Every positive countably additive u defined on = can
be extended to a positive regular measure p defined on the o-field B of Borel sub-
sets of S.

1.10. THEOREM. Let S be a compact Hausdorff space, let ¥ be a Dedekind
complete partially ordered vector space, and let T be a positive linear transforma-
tion from C(S) into X. If there exist enough continuous positive linear functionals
in X to distinguish between points of X, then there exists a positive countably addi-
tive regular mapping ux from the o-field B of Borel subsets of S into X such that
Tf=[sf(s)us(ds). Comversely, if us is such a mapping, then the integral
Jsf(s)us(ds) defines a positive linear transformation from C(S) into .
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Proof. Let u: 2—% be the mapping mentioned in §1.5. For each BE 3,
let uxB=Y {,uE| ECB-EECZ}. Then the mapping ux: 8—% is superadditive
and increasing. If {Bk} is a sequence of pairwise disjoint elements of B and
B=U;., B, then psB=pue(Ui; B) = D .1 uaBi. Hence uxB= Vo D 11 usBs
= > % usBi. Let X* be an arbitrary positive continuous linear functional
defined on ¥. Then by §§1.8 and 1.9 X*us is countably additive. Hence
(X*us)B= V. > t.1 X*uxBr. But X*usBZX*V, D r pxBe=X*D 7oy uaBs
= D> r_ X*uxBy. It follows that X*u,B=X*V, Z:_l uxBr. Therefore u«B
=V, > i, uxB:. From its definition ux is regular. Since p« is an extension of
u, any generalized sequence {f,} of u-simple functions converging to f in
u-measure must be a generalized sequence of us-simple functions converging
to f in us-measure. If { f‘,}= is the directed set of all u-simple functions such
that 0<f,<f+and {g} is the directed set of all u-simple functions such that
0=gy=f-, then

fsf(s)u(ds)=fsf+—fsf‘= v J - v fsg,,

- f FHs)uads) — f F(s)ualds) = fs (s)un(ds).

This completes the proof.

2. When T is multiplicative.

2.1. DEFINITION. A positive linear transformation T from a partially
ordered algebra 9) into a partially ordered algebra X is multiplicative if
T( Yl Yz) = (TY])(TYz) for all Yl, Y2€®

2.2. THEOREM. Let S be a normal topological space and suppose that T is a
positive multiplicative linear transformation from C(S) into a Dedekind com-
pletely partially ordered algebra X. If Ey and E, are elements of the field generated
by the closed subsets of S, then

w(E1 M Ep) = pEwE,,

where u is the function whose existence was stated in §1.5. Conversely, if p is
such a function, then the mapping

T,/ = fs £s)u(ds)

defined in §1.5 is multiplicative.

Proof. Assume that T is multiplicative. We shall first show that u(FNK)
=uFuK for arbitrary closed sets F and K. Let f€C(S) be greater than xr,
and let g&C(S) be greater than xx. Then fg=xrnx. Hence
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pFuK = (N (f 2 x0)TH(A (¢ 2 xx)Tg) = A (A If)Tg)
g f

=N ANTfTg= AN T(fg) 2 N (h 2 xrnx)Th = p(F N K).
o f f.0

Given A& C(S) such that A= xrnx, we shall now construct decreasing
sequences {f.} and {g.} of elements of C(S) such that f,=xr, g.=xx, and
A, (Tf.Tg,) <Thk. From this construction we shall then have uFuK
<A, (Tf.Tg,) STh. Since & is an arbitrary continuous function greater than
Xrnk, it will then follow that uFuK Su(FNK). Combined with the result of
the preceding paragraph, this will prove the first part of the theorem for
closed sets F and K.

Without loss of generality we may assume that k(s) =1 for each s€KNF.
Let h,=hV(1/n). If we define f,/ (s) as 1 for s€F and f,! (s) =k,(s) for sEK,
it follows from elementary topology that f,/ is a continuous function on K\UF;
by Tietze's extension theorem f, can be extended to a bounded continuous
function f,!’ defined on all of S. Let fi=f/" \/k,. If sEF, then f;(s) 2f!' (s)
=1. Since ff =2 =0, it follows that f = xr. Also, fi is a continuous function
which never takes on a value less than (1/#). Hence gy =h,/ff €C(S).

If sEK, then k,(s) =fr(s)gs(s) =ha(s)gi(s), so gx(s) =1. Since both &, and
f* are positive, g, must be positive also. Hence g, = xx.

Since 0=Zh,—h=(1/n) and T is positive, we have 0= Th,—Th=<(1/n)Te,
where ¢ is the function identically 1 on S. Since {h,.} is a decreasing sequence,
it follows that ATh, exists and equals Th. Now Th,=T(fig)). Let f,
=ffN - Afiand g.=gfA\ - - - Agt. Then {fn} and {g,.} are decreasing
sequences of functions, fr2f.=xr, and gi=g.2xx. Hence Th=A, Th,
=N, T(frg) =N (TFHiTg) 2N (Tf.Tg.). As we observed before, this yields
w(FNK)=uFuK for closed sets F and K.

Now let E; and E; be arbitrary elements of 2. Then

w(Ex M\ Ey) = V{uP| P C E; N E,- P closed}.

But every closed PCE/N\E, is the intersection FNK of two closed sets
FCE, and KCE, (we may take F=K =P), and every intersection KNF is
a closed set contained in E,/MN\FE,. Hence
p(Ex N\ Ep) = V u(KNF) = V (uKuF)
F.K

K,F

o |y o yor ]

F

= V uF V uK = pEuE,.

F K

Conversely, suppose that u is a regular positive additive function from Z
into ¥ such that u(EE;) =puEuE,. If f=0 and g=0, then fis the limit in
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measure of a directed set {fa} ? of simple functions such that 0<f,<f, and g
is the limit in measure of a directed set {gy} of simple functions such that
0=<g,<g. Hence {f.gs}* is a directed set of simple functions converging to fg
in measure. Now

fsf,,- fsgb = ( g ames)( gﬂm&")

= Z aiﬂjﬂ(eim eJ!) = f(a"ﬁi)xh'ne:‘ = ffagb-
i s s
Hence Tf Tg=[sf  [sg=/sfg=T(fg) for positive functions f and g. The ex-
tension to arbitrary elements f and g of C(S) is easy:

T(fo) = T(f*e* — frg~ —f¢" + /%)
= (Tf)(Tg") — (Tf)(Tg7) — (Tf)(Tgh) + (Tf)(Tg)
= TI(f* =Tt — g) = IfTg.

3. Final remarks. Let % be a commutative C* algebra containing the
identity operator I. Then by the Gelfand-Neumark theorem, ¥ is isometri-
cally isomorphic to the algebra C(S) of all continuous complex-valued func-
tions on a compact Hausdorff space S. Let T: C(S)—¥ be this isometric iso-
morphism. Then Tf is a Hermitian operator for every real function f. If
f=0, then ((Tf*2)x, (Tf'?)x) =0 for every x& 9. It follows that T is positive.
Now the closure % of A in the strong topology is also a commutative C*
algebra with identity I. By §1.2.15, % is a Dedekind complete partially
ordered algebra. Noting §1.6, it follows that T may be represented by means
of §1.5. With §§1.10 and 2.2, and the fact that the functionals X —(Xx, x)
distinguish between points of ¥, this furnishes another proof of the spectral
theorem for bounded Hermitian operators.
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