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Introduction. The theory of ^4-sets and proper cyclic elements of a Peano

space proved extremely fruitful not only as an additional insight in the struc-

ture of Peano spaces, but also—to cite an example—in applications to surface

area theory (see [2; 5; 6]). Nevertheless, as L. Cesari has observed in his

papers [2; 3] concerning surfaces that are defined as mappings from closed

finitely connected Jordan regions, it is desirable to have a finer decomposi-

tion of proper cyclic elements. For, if one considers the middle space 717 asso-

ciated with such a continuous mapping (see [6; 9]), the proper cyclic ele-

ments of 717 may have the form of several "leaves" linked together. Each

of these constituent "leaves" ought to be considered by itself and should con-

stitute, in the terminology of L. Cesari [2; 3], a fine-cyclic element.

Several attempts have been made in the literature to decompose proper

cyclic elements further (see [4; 7; 8]). Recently, L. Cesari [2; 3] has succeeded

in obtaining such a decomposition for surfaces defined as mappings from

closed finitely connected Jordan regions which proved very useful in the

theory of surface area. One of the purposes of this paper is to extend Cesari's

concepts to Peano spaces.

In the above mentioned papers [4; 7] a decomposition of a proper cyclic

element has been obtained by generalizing the concept of conjugacy (see

[6; 9]). However, the elements so obtained lack many properties that are

possessed by proper cyclic elements and which are very desirable. In this

paper a new attempt is made to decompose a proper cyclic element by gen-

eralizing the concept of a set being cyclic (§13 of this paper). The writer's

intention has been to obtain as complete a theory for the generalized elements

as the theory of proper cyclic elements of a Peano space.

It is well-known that a proper cyclic element of a Peano space is a cyclic

A -set. Indeed, a proper cyclic element can be defined to be a cyclic A -set. Ac-

cordingly, the greatest part of this paper deals with a generalization of an

A -set. In this connection it should be recalled that an A-set of a Peano space

P can be defined as a closed nondegenerate subset A oi P with the property

that each component of P — A has only a single frontier point. An immediate

and obvious generalization of an .4-set would be a nondegenerate continuum

B of P such that the frontier of each component of P — B decomposes into a

finite number of points. Such sets will be termed B-sets. A fine-cyclic element

will then be defined to be a B-set which remains connected after removing
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any finite set of points. Such a definition is shown to be equivalent to the one

of L. Cesari. Moreover, the fine-cyclic elements of a unicoherent Peano space

P are precisely the proper cyclic elements of P.

The theory of P-sets of a general Peano space is, however, not as complete

as might be expected. Indeed, a P-set need not be a Peano space. There are

many other shortcomings to be pointed out in the course of the paper. The

aim of this paper is to obtain a theory of P-sets as complete as possible as

the theory of A -sets. Accordingly, the writer was forced to restrict the Peano

spaces and to consider only Peano spaces whose degree of multicoherence is

finite. As the paper attempts to show, the properties of P-sets in such Peano

spaces are suitable extensions of the corresponding properties of ^.-sets.

At this point the writer wishes to express his gratitude to Professor L.

Cesari for the privilege he has given him to study his papers [2; 3].

Notation. The following notation will be employed in this paper. The

closure of a set EQX will be denoted by c(E), and the frontier of E by Fr(P).

These concepts depend upon the containing space. Consequently, if the

space relative to which these operations are considered, is not the original

space, it will appear as a subscript, i.e., the notation Fr^(P) is the frontier of

E relative to the space A.

1. Definition of a P-set and some properties. Let P be a Peano space, i.e.,

P is a Hausdorff space which is a continuous image of the closed unit interval

O^i^l. All Peano spaces considered will be nondegenerate (more than one

point).

Definition. A nondegenerate continuum B oi P will be termed a B-set

of P provided either B =P or else every component of P — P has only a finite

number of frontier points.

The proof of the following three lemmas offers no difficulty.

(i) Lemma. Let B be a B-set of a Peano space P and assume that P — B^0.

If G is a component of P—B, then c(G) is a B-set of P.

(ii) Lemma. Under the same conditions as in (i), P — G is a B-set of P.

(iii) Lemma. 7/Pi, • • • , Bn is a finite collection of B-sets of a Peano space

P and if B =PiW • • • UB„ is connected, then B is a B-set of P.

2. Condition r(P). In the sequel, unless otherwise stated, we will have to

restrict ourselves to Peano spaces whose degree of multicoherence is finite

(Whyburn [9, p. 83]). Let P be a Peano space, and let for any two continua

Pi, F2 of P whose union is P, r(Pi, F2) be the number of components of

FXC\F2 less one. The degree of multicoherence r(P) of P is defined by r(P)

= l.u.b. r(Pi, F2), where the least upper bound is taken over all decomposi-

tions P = PiWP2 of two continua Pi, Fi.

(i) Lemma. Let P, P* be Peano spaces with r(P) =n< °o, and let m be a

continuous and monotone mapping from P onto P*. Then r(P*) Sn.
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Proof. Let Ff, F2* be any two continua of P* with F?VJF? = P*, and set

Fi = m~1(Ff), Fi = m-1(Fj?). Since m is monotone, Fi, Fi are continua of P

such that FiUFi = P. Therefore, r(Fi, Fj) Sn. Let now F he a component of

FiC\Fi. Since m(Fif^Fj) = Ffr\Ff, there is a component F* of Fff\F? such

that m(F)C_F*. Therefore, the number of components of F*C\F* is not

greater than the number of components of Fi(~\Fi. Consequently, r(7i*, F*)

Sn, and the lemma follows.

For a slightly different proof of (i) see Whyburn [9, p. 154].

3. Preliminary results. In this section we will state some lemmas which

will be needed in the sequel. Most of the results are well-known and therefore

some of the proofs are omitted.

(i) Lemma. Let 77, K be disjoint closed sets of a metric space 717, and assume

that M — (Ii\JK) 9^ 0. Then there exists a closed set E in 717 separating H, K

in 717.

(ii) Lemma. Let A be a finite union of disjoint continua of a Peano space P.

Then there are two continua 77, K of P such that (1) HC\K = 0, (2) A C77U77,

(3) AC\H^0, AC\K^0.

(iii) Lemma. Let 77, K be two disjoint continua of a Peano space P and let

A be a closed subset of P consisting of n distinct components. If A separates

77, K in P, then there exists a number v, ISvSn, such that (1) no union of less

than v components of A separates 77, K in P; (2) there exists a union of v com-

ponents separating II, K in P.

By a change in notation we may assume that Ai, • • • , Av, ISvSn, is

such a minimal collection of continua of A. If we set A*= AXW ■ • • \JA„ the

set A* separates 77, K in P. Let G be the union of all components of P—A*

not containing 77.

(iv) Lemma. A*\JG is a continuum of P.

Proof. Let y be the component of P—A* containing 77. Then A*VJG

= P — y, which shows that A*VJG is closed. To verify that A*\JG is con-

nected, let us assume that

(1) A*\JG = E\J F,

where E, F are nonempty disjoint closed sets. We may assume that KCjF.

If F(~\A* =0, then P = (y\JE)VJF, where yVJE, F are nonempty disjoint

closed sets of P. Since P is connected, this is impossible, and hence

(2) FC\A*^0,       EC\A*9^0.

From (1) and (2) it follows that FC\A* decomposes into less than v com-

ponents of A.

Consider the set equality P-(FC\A*) = (y\J E)\J (F - A*). Since Fr(y)
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C^4*, we have c(yVJE)r\(F-A*) =[E\Jc(y)]r\(F-A*) = 0. Moreover,
(yKJE)r\c(F-A*)E(y\JE)C\F = 0, and HEy^E, KEF-A*. Thus
F(~\A * separates 77, K in P. Since, as noted above, F(~\A * decomposes into

less than v components of A, we arrived at a contradiction to the definition

of A*.

(v) Lemma. Let K be continuum of a Peano space P and let G be a com-

ponent of P — K. If r(P) =n< co, then Fr(G) decomposes into at most n + l dis-

tinct components.

(vi) Lemma. Let Kx, K2 be two disjoint continua of a Peano space P with

r(P) =n< co. Let A be a closed set of P separating Kx, K2 in P. Then there

exist v components Ax, • • ■ , Av, vSn + 1, of A such that A*=AXVJ ■ ■ ■ \JAV

separates Kx, K2 in P.

Proof. Let Gx be the component of P —A containing Kx. Then Fr(Gi)C^4,

whence K2EP — c(Gx). Let G2 be the component of P — c(Gx) containing K2.

Since c(Gx) is a continuum, we have from (v) that Fr(G2) decomposes into

at most n + l distinct components each of which is in A. Let then ki, • • ■ , ki,

iSn + l, be the components of Fr(G2), and let Ax, ■ ■ ■ , A„, vSi, be all those

distinct components of A such that k-XJ ■ ■ ■ \JkiEAxVJ ■ ■ ■ \JAV. Since

kxyJ ■ ■ ■ yJki separates Kx, K2 in P so does A*=AX\J ■ • ■ \JA„. This com-

pletes the proof.

4. Further properties of P-sets. Let P be a Peano space with r(P) =n < <x>

and let R be a continuum of P. If G is a component of P — R, then by 3(v),

Fr(G) decomposes into at most n + l distinct components. The next theorem

gives some information concerning the number of components of P — R.

(i) Theorem. Let R be a continuum of a Peano space P with r(P) = n < co •

Then there can be at most n distinct components of P — R the frontier of each of

which decomposes into more than one component.

Proof. If we deny the assertion we have at least n + l distinct components

Gi, • • • , Gn+i of P — R such that for each i, Fr(G.) reduces to more than one

component. By 3(ii) we have for each i two disjoint continua 77;, Ki of P such

that Fr(Gi)CT7AjP,-, Fr(G,-)C\P,-^0, Fr(Gi)rMI,^0. By 3(i) in conjunc-
tion with 3(vi) we have a closed set ^4»CP consisting of at most n + l com-

ponents separating 77,, P; in P. We may also assume that the number of

components of A is minimal in the sense of 3(iii). Note also that Ai separates

KiC\c(Gi), H{r\c(Gi) in c(G/).
For each i, let 5, be the union of all components of P — Ai not containing

Ki and let 5j be the component of P—Ai containing Ki. Then hiC\Gi7L0 and

Sir\G,^0. By3(iv)

(1) AiVSt,       i=l, •••,»+ 1

is a continuum of P.
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Let now Ni = c(Gi)n(AiKJSi), Mi = c(5,)r\c(Gj). Then Nit Mi are closed
and nonempty. Since c(Gj)=Ni\JMi and c(Gj) is connected, we infer that

Ntr\Mi^0. Moreover, iV./W.-CG.-. Since, for i^j, GiC\Gj = 0, we obtain

(2) (Nir\Mi)r\(NinMj)=0,       i^j,i,j=l,---,n+l.

Let now G* be the union of all components G of P — R not among

Gi, ■ ■ ■ , GnA-i- Define

n+1 n+1

(3) Fi = R ^ G* \J U Nit       Fi= R\J (i Mi.
i-l i=l

Since J?UG*=?-Um G,-, the set 7i is closed. Clearly, F2 is also closed.

Next we will show that Fi is connected. Let us deny this and assume that

F\ = H\JK, where 77, K are nonempty disjoint closed sets. Since R\JG* is

connected, let

(4) it U G* C 77.

From (3) and (4) we infer that KCMlH Ni, and since Gi(~\Nj = 0, i?±j, we
have

(5) K C\ Gi C Ni.

Let Kj =KC\Ni. Then Kj is not empty for some i. The remainder of the

proof will be in terms of such an index i. Since Ki CjAiUSi, consider the set

equality

(6) Ai \J Si = Kj \J [(Ai KJ Sj) - Kj ].

Since from (4), Ki QP — R, we have that Ki QGi, and hence

(7) Ki 9^0,       (AiVJSj) - Ki r±0.

Moreover,

(8) c(Ki) C\ [(At\JSt) - Ki] = Ki r\ [(AiVJSj) - Ki] = 0.

We will show now that [(AJJS{)-Ki]r\GiCH. First of all the left-
hand set is contained in Ft. Assume now that there is a point

x£ [(AiVJSi) - Ki]C\Gi

which is also in K. Then x^K(~\Gi, and hence by (5), x£7V,-. Thus

x£A7r^7V,- = A7/, which is impossible. Therefore

c[(Atyjsd - Ki]r\ Ki = c[(Aiwst) - Ki]r\ Gir\ Ki

C c{ [(Ai \J Sj) - Ki]C\ d} r\KiCHC\KiCHr\K = 0.

Since (6), (7), (8) and (9) contradict (1), we have shown that Fi is a con-

tinuum.
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By an entirely analogous argument it can be shown that F2 is also a con-

tinuum. It follows from (3) that FiWF2 = P, and from (2) we infer that FiC\F2

decomposes into at least n + 2 distinct components. This, however, is contrary

to the hypothesis that r(P) =n. The proof is now complete.

(ii) Corollary. Let B be a B-set of a Peano space P with r(P) =n<&>.

Then there can be at most n distinct components of P — B with more than one

frontier point.

5. ^4-sets. For the purpose of simplifying proofs in the subsequent dis-

cussion of P-sets, we will state in this section some properties of ^4-sets of a

Peano space P. Let us recall that a nondegenerate closed subset A of P is

termed an A -set of P provided every component of P— A has a single frontier

point. For the proof of (i) the reader is referred to Whyburn [9], and the

proof of (ii) is immediate.

(i) Lemma. Let 'Si be a collection of A-sets of a Peano space P. If A * = f)A,

AEty., is nondegenerate, then A* is an A-set of P.

(ii) Lemma. Let B be a B-set of a Peano space P, and let A be an A-set of P

containing B. Then B is also a B-set of A.

Let K be a nondegenerate subset of a Peano space P. Then the inter-

section of all A -sets of P containing K is by (i) an A -set of P and will be

referred to as the smallest A-set of P containing K.

(iii) Lemma. Under the above conditions, if A is the smallest A-set of P con-

taining K, then for every component G of A—K, FrA(G) decomposes into at

least two distinct points.

Proof. Assume there is a component G oi A—K such that Fr(G) reduces

to a single point. Then A —G is an A -set A* of A containing K. Since A is an

A -set of P, A* is also an ^4-set of P. Since A* is properly contained in A, we

have a contradiction.

6. More properties of P-sets. Let A be an A -set of a Peano space P and

let K be a connected subset of P. Then by Whyburn [9], AH\K is connected

(possibly empty). The following two theorems assert an analogous property

for P-sets.

(i) Theorem. Let B be a B-set of a Peano space P with r(P) = n < co, and

let K be a continuum of P. Then B(~\K decomposes into at most n + l distinct

components.

Proof. Let A be the smallest .4-set of P containing P. Since A is a mono-

tone retract of P, we have by 2(i) that r(A) Sn. From 5(il), B is a P-set of A

and as a consequence of 5 (iii) every component of A — B has more than one

frontier point (relative to A). Since r(A) Sn, we infer from 4(i) that there is

only a finite number of components of A — B.
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Since A is an A -set of P, A(~\K is connected. We may exclude the trivial

cases BC\K = K, BC\K = 0, and A =B. Let S be the union of the closures of

all components G oi A —B for which c(G)C\K?£0, and let S' be the union of

all other components. Since there is only a finite number of components of

A-B, we conclude that Pi = PUS', P2 = P'US, where K'=A(~\K, are two

continua whose union is A. Therefore, FXC\F2 decomposes into at most n + l

distinct components. Now PCiP2= (PPiP')U(S'nP')U(PC\S)U(S'C»S)
= (PC\P')U(PPiS). Since BC\S is a finite set of points, BC\K'=BC\AC\K
= BC\K decomposes into at most n + l distinct components.

Let us denote by p(K) the diameter of a set K.

(ii) Theorem. Let B be a B-set of a Peano space P with r(P)=n< oo.

Then there exists a h = 5(B) >0 such that for every connected subset K of P with

p(K) <5 the set B(~\K is connected.

Proof. As in (i) let A be the smallest ^4-set of P containing P. Then

C = UFrA(G), where the union is taken over all components G oi A —B, is a

finite set and we may write C= {xu ■ ■ ■ , xk}, x^Xj for i^j. Define

(1) 8 = 8(B) = — min [p(x,-, x,-), i 9*j,i,j = 1, • ■ • ,k].

Let now K be any connected subset of P with diameter less than 5. Then

K' = KC\A is connected. We may assume that KT\B^0, (A -B)C\K'^0.

Since p(K') <8, K'C\B contains at most one point of C. From (A —B)r\K'

9^0 we infer that K'C\B has precisely one point x0 in common with C.

Let us assume that B(~\K' separates into N and M. Then we may take

XoEN. We assert that MEB°, where P° denotes the interior of B relative to

A. Let x be an arbitrary point of M. Then x^x0, and hence 0<p(x, x0) <5.

Since A is a Peano space, let 0 be a connected open set in A such that xEO

and p(0) <p(x, x0). We will show now that (A —B)C\e = 0. If this is not the

case, there is a component G oi A —B intersecting 0 and since 0 is connected,

¥rA(G)r\Q9±0. Consequently, there is a point x'EC which is also in 0. Since

p(0) <p(x, Xo), we have that x'^x0, and thus p(x', x0) Sp(x, x0) +p(x, x') <25.

This contradicts (1) and therefore xG0CP°- Thus M is a subset of P°.

It follows now that K'= (K'-M)\JM, K'-M^0, M^0. Taking clo-
sures relative to A, we have c(M) C\ (K' - M) = c(M) C\ B C\ (K' - M)

= c(M) C\ [(B C\ K') - M] = c(M) r\ N = 0, and c(K' - M) C\M
= c(K'-M)^Bar\MEc[(K'-M)nB]r\M=c[(Br\K')-M]r^M = c(N)C\M
= 0. This contradicts the connectedness of K', and hence BC\K' = BC\KC\A

= BC\K is connected.

(iii) Remark. If r(P) = co, then (ii) is generally not true as the example

in §8 will show. The following more general result can be proved by an en-

tirely analogous argument. Let B be a P-set of a Peano space P and suppose
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that there is a Peano subspace Q of P such that B(ZQ and Q — B decomposes

into a finite number of components. Then there exists a 5 = 8(B) >0 such that

for every connected subset K of Q with p(K) <5 the set BC\K is connected.

Note that B is also a B-set of Q.

7. Peano subspaces and 73-sets. Let B be a 7J-set of a Peano space P.

(ji) Theorem. Suppose that there is a Peano subspace Q of P such that BCLQ

and Q — B decomposes into a finite number of components. Then B is a Peano

space(2).

Proof. We only have to show that B is locally connected, and this will be

accomplished if B can be written as a finite union of connected sets with

arbitrarily small diameter. Let e>0 be given and let 0<i; = min [5(73), e].

Since Q is locally connected, there is a finite number of connected sets

Ku • • • , K, such that Q = KiKJ - - - \JKt and p(Kj) <■». By 6(iii), BC\Ki is
connected, and hence B can be written as a finite union of connected sets with

diameter less than e.

(ii) Corollary. If G is a component of P—B, then c(G) and P — G are

Peano spaces. Moreover, if r(P) < °o , then a B-set B of P is a Peano space.

Proof. The smallest ^4-set of P containing c(G), or P — G, or else B can be

taken as the Peano space Q in (i).

8. Example. Let Q=[0Su, vSl] be the closed unit square in the Eu-

clidean (u, z/)-pIane, and let Q* be the boundary of Q. Moreover, letZn

=-[v = 2~n, OSuSl], ra = 0, 1, • • ■ , and let Kn=[u = i2~^+1\ 0^z)^2-",

7 = 0, 1, • • • , 2"+1], ra = 0, 1, • • • . Finally let

p = e*u(ui,)u(u kX
\n>0        / VnaO /

It is easily verified that P is a Peano space with r(P) = oo. Let now

b = Q*yj( U 7n).

Then each component ol P — B has two distinct frontier points, and hence

B is a 73-set of P. Since B is not locally connected, B is not a Peano subspace

of P. It is also seen that there is no h = b(B) satisfying 6(h). Moreover, there

are continua KCjjP such that KC\B decomposes into an infinite number of

components (see 6(i)).

9. Further properties of 5-sets.

(i) Lemma. Let B be a B-set of a Peano space P with r(P) = ra < oo. Then

r(B)Sn.

(2) The author is indebted to the referee for suggesting this theorem.
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Proof. Let A he the smallest A -set of P containing 73. Since 73 is also a

73-set of A, we may without loss of generality assume that P=A. In view of

4(ii) and 5(iii), P — B decomposes into a finite number of components each of

which has more than one frontier point.

Let now Fi, F2 be any two continua whose union is 73. Let Si be the union

of the closures of all components G of P—B for which Fr(G)r\Fi9£0, and

let Si be the union of all other components of P — B. Then the sets Ff

= FjUSi, Fi=FjUSi are two continua of P whose union is P. Therefore,

Ffr\F*   reduces   to   at   most   ra + 1   distinct   components.   Now   FfC^F*

= (Fir\Fi)w(Ftr\sj)w(Fir\s2)w^ns,) = (^nf2)\j(F2nSi). since
FiC\Si is either empty or else finite, we conclude that FiC\Fi decomposes into

at most ra + 1 components. The proof is complete.

(ii) Lemma. Let A be an A-set of a Peano space P and let B be a B-set of A.

Then B is also a B-set of P.

Proof. Let G be a component of P — B. If GCjP — A, then G is also a com-

ponent oi P—A, and hence Fr(G) reduces to a single point. We may therefore

assume that GC\A?±0. Since G'= G(~\A is connected, G' is a component

of A —B. Since B is a B-set of A, FrA(G') is finite.

We now assert that

(1) Fr* (C) = Fr (G).

Since Fr^(G')CFr(G) is obvious, let x£Fr(G). Then there exists a sequence

of points {x„} in G such that x„—>x. If infinitely many x„ are in A, then x„£G'

and hence x£FrA(G'). Thus we may proceed with the proof under the as-

sumption that x»£4 for each ra. Let yn be the component of P— A containing

x„. Let us observe that only a finite number of the xn lie in a given y*. Other-

wise, x£Fr(y*), and since G—yk9£0, x£G which is impossible.

Hence we have a sequence {nt} with the property that xnj£yn,-, yniC\ynj

= 0, i^j, xni—*x. Since y„; is a component of P — A, Fr(y„/) reduces to a

single point pni in A. By Whyburn [9], p[c(ynj)]—>0 as i—>oo, and therefore

p(pni, x) Sp(pni, xnj)+p(xni, x) Sp[c(ynj)]+p(xni, x)—>0 as 7—>=°. Thus pn,.-^x,

and since pBj£G', we infer that x£Fr^(G'). Thus (1) follows and the proof

of (ii) is complete.

(iii) Lemma. Let B be a B-set of a Peano space P with r(P) < °o . If 73' is a

B-set of B, then B' is also a B-set of P.

Proof. Let A he the smallest .4-set of P containing B. Then 73 is also a

B-set of A and A—B decomposes into a finite number of components each

of which has more than one frontier point. We will show that B' is a 73-set

of A, which by (ii) concludes the proof.

Let now L = UFrA(G), where the union is taken over all components G

of A—B. Then LCjB and L is finite. Consider a component G' of A—B'.
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If G'C\L = 0, then either G' is a component of A — B, or else G' is a com-

ponent of B —B'. To prove this assume that G' is not a component of A —B.

Then GT\B^0. If now G' — B^0, then there is a component y of A — B

contained in G'. Since G'—y^0, there follows that GT\FrA(y)?£0, and

thus G'P\L?£0, a contradiction. In either case FrA(G') is finite.

Hence we assume that GT\L^0. Since L is a finite set of points in B,

letyi, • • • ,yk be the components of B—B' such thatyif^L^0, i=l, ■ ■ ■ ,k.

We assert that

(1) Ti U • • • U yA D G' n P.

Let xEG'(~\B and let y be the component of B—B' containing x. We will

prove that yC\L^0. If we deny this, then it follows readily that y is open

in A and that Fr,i(7)CP'- From this we deduce that

(2) G' = (G' - y) Uy, G' - y ^ 0, y * 0,

(3) c(y) C\ (G' - y) = y H (G' - y) = 0, since Fr^ (y) C B',

(4) c(G'-y)nyCC[(G'-y)ny]=0,

where the above closures are relative to A. However, (2), (3), and (4) con-

tradict the connectedness of G'. Thus yCiPr^0, and (1) follows.

We will prove now that

(5) ¥rA (G') C U YrB (y.) U L.
i-i

If xGFrJi(G'), then there is a sequence {x„} in G' such that x„—>x. If in-

finitely many xn are in G'H\B, then from (1), xEFra(yi) for some i. Other-

wise, x is in L, thus proving (5).

Since L is a finite set of points and since P' is a P-set of B, Frs(yi)U ■ • •

UFr^yit) is a finite set of points. Thus (5) implies that B' is a P-set of A.

Thereby (iii) is proved.

Remark. Without the restriction r(P) < co, (iii) is in general not true.

As an example consider

I = [0 S x S 1, y = 0], h m [0 S x S 1/2, y = x],

72=. [1/2 S x S 1, y + x = 1],

II = [x = tr1, 0 S y S tr1],      7n" = [x = 1 - n~\ OSyS tr1].

Then P = 7U7iU72UU„£2 (7„'U7„") is a Peano space. The set P=7U
U„i2 (In U7„") is a P-set of P, and P' = 7 is a P-set, even ,4-set, of P. How-

ever, P' is not a P-set of P.

10. Intersection of P-sets. The property mentioned in 5(i) for A -sets will

not be true for P-sets, since the intersection of P-sets need not be connected.

We have, however, the following results.
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(i) Lemma. Let Bi, ■ ■ ■ , Bk be a finite number of B-sets of a Peano space

P with r(P)=n< oo. If B is a nondegenerate component of Bi(~\ ■ ■ ■ C\Bk,

then B is a B-set of P.

Proof. We proceed by induction on k. Let then H = Bif~\Bi. By 7(h), Bi

is a Peano space and by 9(i), r(Bj)Sn. Let A he the smallest A -set of 73i

containing 77. Then r(A) Sn.

If G is a component of A —77, we will prove that Fr^(G) reduces to a finite

number of points. Let us observe that BiC\G = 0, and hence there is a com-

ponent y of P —Bi such that yjjG. Since Fr,i(G)CFr(Y) and since Bi is a

TJ-set of P, FrA(G) reduces to a finite number of points. If 77 is connected,

we infer that 77 is a 5-set of A and hence from §9, 77 is a B-set of P.

We assume now that 77 is not connected. By 6(i), 77 decomposes into a

finite number of components. Since A is a Peano space, the number of com-

ponents G of A —77 such that Fr^(G) intersects at least two distinct com-

ponents of 77 is finite. By 5(iii), each component of A —77 has more than

one frontier point. Thus, by 4(i), the components G of A—H tor which

there is a component K of 77 such that FrA(G)QK is also finite (for then G

is a component of A — K). Let then Gi, • • • , Ga be the components of A — 77.

If B is a nondegenerate component of 77 and if G is a component of A —B,

then GCGiW • • • KJGkKJ(H-B) and FrA(G)CFrA(Gj)KJ ■ ■ ■ KJFrA(Gk).

Thus Fr^(G) is finite and hence B is a 5-set of A. Consequently, B is a B-set

oi P.

Assume now that (i) is established for k — 1 73-sets of P, and consider k

73-sets Bi, • • • , Bk of P. Let B be a nondegenerate component of Bi!~\ ■ ■ ■

C\Bk and let B* be the nondegenerate component of BiC\ ■ ■ • (~\Bk-i con-

taining B. Then B* is a 73-set of P and B is a nondegenerate component of

B*f\Bk. Thus B is a B-set of P.

Remark. Without the restriction r(P) < =o, (i) is in general false. As an

example consider  the Peano space defined  in §9.  Let

Bi = IKJ U (Ij KJ Ij'), n even, Bt = 7 KJ U (Ij KJ Ij'), n odd.
n£2 n>2

Then Bu Bi are B-sets of P and BiCs\Bi = I. However, 7 is not a 73-set of P.

(ii) Lemma. Let St) be a collection of B-sets of a Peano space P with r(P)

= ra< co , and assume that 77=147?, B£95, is a nondegenerate continuum. Then

77 is a B-set of P.

Proof. Let G be a component of P — 77 and assume that Fr(G) reduces to

more than ra + 1 distinct points. Let Xi, • • • , x, be v = n + 2 distinct points of

Fr(G) and let 25 = min [p(x,-, xj), i^j, i, j=l, ■ ■ ■ , v]. Since P is a Peano

space, let 0; be connected open sets of P such that Xi£0j and the diameter of

0,- is less than S. Then 6i(~\Qj = 0, i^j, and for each i, QiC\G?±0.
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In view of the arcwise connectedness of G one can construct a con-

tinuum tCG such that 0,/V^0, i=l, ■ ■ • , v. Now for each yEr, there

exists a set P„(E93 such that yEBy. Since By is closed, there is an open set 0„

containing y and QyC\By = 0. Since r is compact, we have a finite number of

points yi, ■ ■ ■ , ym in r such that O^U • • ■ \JOymZ)r. Let now C be the com-

ponent of BVIC\ ■ ■ ■ C\BVm which contains 77. Since t is disjoint with the

set BViC\ ■ ■ ■ r\BVm, there follows that CC\r = 0. In view of (i), C is a P-set

of P. It is now easily seen that the component G' of P — C containing t has

the property that Fr(G') decomposes into at least w + 2 distinct points. Since

C is a P-set of P, this contradicts 3(v). The proof of (ii) is complete.

Let C be a nondegenerate continuum of a Peano space P with r(P)

= n< co, and let 93 be the collection of all P-sets of P containing C.

(iii) Lemma. Under the above conditions the set H=ClB, P£93, is a B-set

of P.

Proof. By (ii) it suffices to show that 77 is connected. We may assume

that P — Ht^0. We will exhibit now a decreasing sequence of P-sets {B'j}

of 93 such that 77= fly P/.
Since P—77is open, let }P,} be a sequence of compact sets of P —77such

that KtC.Ki+i, t = l, 2, • • • , and U, P, = P—77. For each i, let Bi be a P-set

of 93 with BiEP — Ki. For the construction of such a P-set apply the method

used in the proof of (ii). Set Pi' =Pi, and define inductively P/ as the com-

ponent of Bjf~\Bj_x containing C. Then by (i) each Bj is a P-set of 33, and

P/DP;+i, j=l, 2, • • • . To prove that 77=fLP/, observe that ilcDyP/.
In view of the property or the sequence {P,} we also have the complemen-

tary inclusion. By a well-known theorem (Whyburn [9, p. 14]) we conclude

that 77 is connected.

11. Property X. A subset £ of a Peano space P is said to satisfy the

property X provided (1) E is connected, (2) no finite set of points of E dis-

connects E. Clearly, if E satisfies the property X so does c(E). The proof of

(i) is left to the reader.

(i) Lemma. Let B be a B-set of a Peano space P and let E be a subset of P

satisfying the property X. If PC\P is infinite, then PCP-

(ii) Lemma. Let E be a nondegenerate subset of a Peano space P satisfying

the property X and let 93 be the collection of all B-sets of P containing E. If r(P)

= w< co , then 77= DP, P6E93, is a B-set of P satisfying the property X.

Proof. In view of 10(iii) it suffices to show that 77 satisfies the property X.

If we deny this, we have a finite set F of points xx, ■ ■ ■ , x,- in 77 such that

77—P is not connected. Since c(E) satisfies the property X, c(E) — F is con-

nected, and hence c(E) — F lies in a component G of 77—7. It follows readily

that c(G)Zjc(E). If now Q is a component of II—c(G), then FrH(Q)EF and
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hence Fth(Q) reduces to a finite number of points. Thus c(G) is a 7?-set of 77

and hence by 9(iii), c(G) is also a 7?-set of P. Since c(G) is properly contained

in H, we have a contradiction.

Remark. If r(P) = oo, (ii) is in general false. As an example, let E

= [(x, y):0SxSl, O^y^-l] and let h, h, IJ, Ij' be defined as in §9.
Then P = EKJIiKJI2KJ\Jn^ (IjKJI") is a Peano space, and E satisfies the

property X. The intersection of all 5-sets of P containing E is E. However, E

is not a 5-set of P.

12. Diameter of 7J-sets. In this section we will discuss a property of

73-sets which is analogous to the following property of .d-sets (T. Rado [6]).

If 21 is a collection of A -sets of a Peano space P, and if any two distinct A -sets

of SI are either disjoint or else have a single point in common, then there can

only be a finite number of A -sets of 21 with diameter greater than a given posi-

tive number. First we will state a lemma whose proof is left to the reader.

(i) Lemma. Let M be a connected metric space and let ra be a positive integer.

Moreover, let Xi, xn+i be two points in 717 with p(xi, x„+j) = 5>0. Then there exist

n points Xi, ■ ■ • , xn+i in M such that p(xy, x.) =^o/2", i?*j, i,j=l, ■ ■ ■ , ra+2.

(ii) Theorem. Let P be a Peano space with r(P) =n< oo, and let 93 be a

collection of B-sets of P with the property that any two distinct B-sets of 93 are

either disjoint or else have only a finite number of points in common. Let 5 > 0

be given. Then there is at most a finite number of B-sets of 93 with diameter ^ 5.

Proof. Let B', B" be any two distinct B-sets of 93. If BT\B"^0, then

B'(~\B" decomposes into at most ra + 1 distinct points (see 6(i)).

Deny the above theorem, and assume that there is an infinite sequence

Bi, Bi, • ■ • , Bn, • ■ ■ of 5-sets of 93 with diameter ^5. By (i) we can choose

in each Bi, ra+2 distinct points x\, ■ ■ ■ x^+2, such that

(1) p(x\, xl) ^ S/2n, I ?* k, I, k = 1, • • • , n + 2.

Since P is compact, we may assume that

(2) Xi —> Xi, x2 —> x2, • ■ • , Xn+2 —> x„+2.

From (1) and (2) we infer that

(3) p(x», xk) ^ 5/2", It* k,l,k = 1, ■ ■ • ,n + 2.

Since P is a Peano space, let Gx, ■ ■ ■ , Gn+z be connected open sets such that

xa£G* and for l^k,

(4) c(Gj) n c(Gk) = 0.

Since the sets Gk are open, we have in view of (2) an integer ra0>0 such that

for i^n0, Xj£G*, k = l, ■ ■ ■ , ra + 2.
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Let now i be a fixed integer not less than no. Then BiC\Gkp^0, k

= 1, ■ • • , n + 2. Consider now the continuum 77 = Pl+iUc(Gi)U • ■ •

Uc(Gn+2). From 6(i), 77C\Pf decomposes into at most n + l distinct compo-

nents. In view of (4) and the property that B,C\Gk?±0, k = l, ■ ■ • , n + 2 and

Bi(~\Bi+i is finite, this is clearly impossible. The proof is therefore complete.

(iii) Corollary. If 93 is a collection of B-sets satisfying the hypothesis of (i),

then 93 is denumerable.

Remark. Without the restriction r(P) < <*>, (ii) is in general false. As an

example consider the Peano space in §8, and take as the collection of P-sets

the sets Ln= [v = 2~n, O^wgl], n = 0, 1, 2, • • • .

13. Fine-cyclic elements.

Definition. A subset T of a Peano space P will be termed a fine-cyclic

element of P if and only if V is a P-set of P satisfying the property X (see §11).

Concerning the existence of fine-cyclic elements of a Peano space P, let

us observe that the Peano space considered in §11 has no fine-cyclic elements,

even though it has a subset E satisfying the property X. However, the follow-

ing theorem is valid.

(i) Theorem. Let P be a Peano space with r(P) < co and let E be a non-

degenerate subset of P satisfying the property X. Then there exists a unique fine-

cyclic element V of P containing E.

Proof. From 11 (ii) we infer that the intersection T of all P-sets of P con-

taining E is a P-set of P satisfying the property X. The uniqueness of T is a

consequence of ll(i).

(ii) Theorem. Let P be a Peano space with r(P) < co and let B be a B-set

of P. Then the fine-cyclic elements of B are those of P which are subsets of B.

Proof. Let T be a fine-cyclic element of P. Then by (i) there exists a unique

fine-cyclic element T'of P such that T'Dr. By ll(i), T'CP, and hence T'=r.

Conversely, if V is a fine-cyclic element of P with TCP, then by (i) there is a

fine-cyclic element T' of P such that TCr'. But then from the first part of the

proof, T' is also a fine-cyclic element of P, and in view of ll(i), T' = r.

14. Properties of fine-cyclic elements. Since a fine-cyclic element of a

Peano space P is a P-set of P, the properties of P-sets apply to fine cyclic ele-

ments. For convenient reference a list of those properties is given below. As

will be seen from this list, there is a striking similarity with the corresponding

properties of proper cyclic elements.

(i) Two distinct fine-cyclic elements of P are either disjoint or else have a

finite number of points in common.

The proof follows immediately from ll(i), and no restriction upon P is

needed. However, in the sequel we will have to assume that r(P)=n< co.

The Greek letter T will be used as a generic notation for a fine-cyclic element.
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(ii) There is at most a denumerable number of fine-cyclic elements of P,

and if there is an infinite number of fine-cyclic elements of P, they can be

arranged in a sequence {T,} such that the diameter of T,- approaches zero as

i—> oo.

(iii) If G is a component of P — T, then Fr(G) consists of at most ra + 1

points.

(iv) There are at most ra components oi P — T whose frontier decomposes

into more than one point.

(v) If K is a continuum of P, then TC\K decomposes into at most ra + 1

distinct components. Moreover, if the diameter of K is sufficiently small, then

YC\K is connected.

(vi) r is a Peano subspace of P, and r(T) Sn.

(vii) If P is unicoherent, i.e., if r(P) =0, then the fine-cyclic elements of

P are the proper cyclic elements of P.

Proof. We only need to prove (vii). Since a fine-cyclic element T of P is

cyclic, there is a unique proper cyclic element C of P such that TCjC. Since

P is unicoherent, C satisfies the property X (see [5]). By 13(i) there is a

unique fine-cyclic element V of P satisfying TCCCr'- Application of (i)

yields T = C = V. Conversely, a proper cyclic element of P is a 73-set satisfy-

ing the property X and hence is a fine-cyclic element of P.

15. L. Cesari's fine-cyclic elements. For the content of this section the

reader is referred to [2; 3 ].

Let 7 be a closed finitely connected Jordan region in the Euclidean plane

£2. If the superscript "°" denotes "interior of", then J = J0-(JiKJ ■ ■ ■ KJJn)°

where Ji, i = 0, 1, • • • , w are closed simple Jordan regions and 7,C7q for

7=1, • • • , ra, and JjC\Jj = 0', i^j, i,j = i, ■ ■ ■ , n. The integer ra is termed

the connectivity of J. It can be shown that the degree of multicoherence of

J is ra.

Let (T, J) be a continuous mapping from J into E3, the Euclidean three

space. Let G(T, J) denote the collection of maximal continua of constancy

of (T, J). According to L. Cesari [2; 3], a fine-cyclic element K of (T, J) is

defined to be a nonempty continuum of J satisfying the following properties:

(1) K is the union of the continua of constancy in G(T, J) which inter-

sect K, and T is not constant on K;

(2) If y is a component of J — K, then T is constant on each component of

Fr/(y);

(3) K is minimal with respect to the properties (1) and (2); that is, every

proper subcontinuum of K satisfying (1) and (2) is a continuum in G(T, J).

Given (T, J) as above. Then (see [9]), (T, J) admits of a monotone-

light factorization T = lm, m: J=>M, I: 717—>E3, where m is a monotone map-

ping from J onto 717 and / is a light mapping from M into E3. It follows from

[9] that G(T, J) is the collection of continua {m~1(x), x£7l7}. Since r(J) =n,

we have from 2(i) that r(TI7)^ra, and therefore the theory of fine-cyclic ele-
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ments of M, as developed in this paper, applies. We will prove now the follow-

ing theorem.

Theorem. K is a fine-cyclic element of (T, J) in the sense of Cesari if and

only if there is a fine-cyclic element T of M in the sense of §13 such that

K = m-1(T).

Proof. Let K be a fine-cyclic element in the sense of Cesari. By 3(v), for

each component y of J — K, Frj(y) decomposes into a finite number of com-

ponents. Let m(K)=T. From the properties (1), (2), and (3) it follows that

K = m~l(T) and that T is a P-set of M. We will show now that V satisfies the

property X. If this were not the case, we have a finite number of points

X\, • • ■ , xt in T such that R = T — (xAJ ■ ■ • Ux<) is not connected. If Q is

a component of R, then c(Q) is a P-set of T, and hence c(Q) is a P-set of M.

Since m is monotone, it follows easily that m~l [c(Q) ] is a proper subcon-

tinuum of K satisfying (1) and (2). But then by (3), c(Q) reduces to a single

point in M, a contradiction. Therefore, T is a P-set of M satisfying the prop-

erty X, and hence T is a fine-cyclic element of M.

Conversely, if T is a fine-cyclic element of M in the sense of §13, then by

a similar argument, m-1(r) is a fine-cyclic element of (P, 7) in the sense of

Cesari.
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