
CLANS WITH ZERO ON AN INTERVAL

BY

HASKELL COHENC) AND L. I. WADE

Following the terminology of Wallace [8] we shall use the word mob to

mean a Hausdorff topological semigroup, and shall use clan for a compact

connected mob with unit. Interval means a closed interval on the real line,

although as A. H. Clifford has pointed out to the authors, nearly all the

theorems (and proofs) generalize to arbitrary compact connected linearly

ordered topological spaces.

The object of this paper is to characterize clans with zero on an interval.

Partial results in this connection have been found by Faucett [3; 4] and

Clifford [l]. In addition the case when 0 (the zero) is an end point has been

studied by Mostert and Shields [5]. Finally a forthcoming paper of Clifford

[2] on linear mobs with idempotent endpoints will contain many pertinent

results.

In what follows 5 is always a clan on an interval with zero. It is well

known (e.g. Wallace [7]) that the unit u is an end point. We will assume that

it is the right hand end point (the other case, of course, can be handled by a

dual argument) and call the other end point 5. Let L be the interval [S, 0]

and R the interval [0, u] so that we have the following diagram for S:

L R

S 0 u

Fig. 1

We define a partial order ■< on 5 as follows: x<y if and only if x separates

y and 0, (i.e. x <y if both x and y are on the same side of 0 and x is closer to 0

than y is). We use the notation /, hEL and r, riER-
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1. We look first at the case when L is degenerate. In this case 8 = 0 and

0 is an endpoint. These clans have been completely determined by the work

of Mostert and Shields, and Clifford as noted above. For completeness we

include a summary of their results in this section.

Let S be such a clan and let E = {s| sES and s2 = s} (i.e. the idempotents
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in S). Note that E is closed and consider the closed intervals [e, f] with

e,fEE. Yet A = { [e,f]\ [e,f] is a component of E] and B= { [e,f]\ (e, f)C\E is
empty}. It is easy to see that 5 = U{ [e, f]\ [e,f]EA\JB]. Faucett [3] has

established that each [e, f]EA\JB is a submob with zero e and unit/, and

that [e, f]^[g, h] and xG [e, f], yE[g, h] implies xy = min {x, y}. It also

follows from Faucett's work that if x, yE [e,f]EA, then xy = min {x, y }. We

call such a clan an 17-mob.

Consider the example (due independently to E. Calabi, A. H. Clifford and

A. M. Gleason) of the interval [1/2, l] with the multiplication x-y

= max {l/2, xy}. We shall call any mob topologically isomorphic to this

example a C-mob (regretfully abandoning the euphonious "Calabi mobbi").

It can be shown that if [e,f]EB, it is either topologically isomorphic to the

usual unit interval (and will be called a 77-mob) or is a C-mob. Furthermore

if 5 is any interval and E is any closed subset of 5 containing the endpoints

of S, then S admits the structure of a clan made up of U, C, and M submobs

with the minimum multiplication between different submobs and E as the

set of idempotents of 5. Using Clifford's terminology [2], we shall call such a

clan "a standard clan."

2. We turn now to the case when 0 is an interior point.

Lemma 2.1. R is a submob.

Proof. Suppose that there are elements rx and r2 in R whose product

riTi = lEL. Since multiplication by r± is a continuous function ?v[r2, u]

D[rir2, riu] = [l, ri]. Since OG [l, ri] there must exist r3_r2 with rir3 = 0. Again

r3[0, w]l)[0, r3] which contains r2 so that for some rtER we have r3r4 = r2.

Now / = r1r2 = ri(r3r4) = (rir3)r4 = 0?"4 = 0 completing the proof.

Note, therefore, that R is a subclan with endpoint 0 so that it is a standard

clan.

Lemma 2.2. RLULREL.

Proof. If, say ril = r2, by an argument similar to that used in the preced-

ing lemma we find r3 and r4 such that r3l = 0 and r4r3 = ri. Now r2 = n/= (r4r3)/

= r4(r3/) =0. Similarly we can show LREL.

Lemma 2.3. Either L2EL or L2ER-

Proof. Suppose kk = l and kk = r. We show first that h and h may be
taken as the same element. If, say Zi>/3 there is, by continuity, an ri with

k = hri; so, kk=(liri)U = li(rik). Hence letting lb = rik (by Lemma 2.2) we

have W2 = / and hlb = r. Now suppose h > h. We find r2 with l2r2 = Z8 and note

that we have r = lih = li(hri) = (/i/2)r2 = /r2 which by Lemma 2.2 belongs to L.

Hence r must be 0. Note that similar arguments hold when k> l2 and when

h>h.
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Faucett [3 ] has shown that if p is a cut point of S, (i.e., if 5 — {p ] =A VJB

with A and B separate) and K (the minimal ideal)EA, then pS\JSpEA.

As immediate consequences (since K = {0}) we have

Lemma 2.4. rir2 ^ min {n, r2], lr and rl ^ I, and if L2 E L, then hk

<min {li, l2\.

Lemma 2.5. If ri<r2, then xn^xr2 and rix<r2x for all xES. If h<h, then

xh^xk and hx^kx for all xES.

Proof. For brevity we show one case, all other proofs being similar. If

li<h, there is an r such that l2r = h; so xk = (xk)r which is <x/2 by Lemma 2.4.

Definition. Two functions/ and gona semigroup are called co-multiplica-

tive if and only ii f(ri) =g(sx) and f(r2) = g(s2) imply f(nr2) =g(sis2).

Lemma 2.6. For any S we define f and gfrom R to L by f(r) =r8 and g(r) =5r,

then f (and g) satisfy:

(i) f(0)=0 and f(u)=b,
(ii) f is monotone (i.e. ri>r2 implies f(ri)>f(r2)),

(iii) / is continuous,

(iv) If to is the zero of T, a C or U-submob of R, then h and t2ET and

f(ti) =f(t2) imply h = t2 orf(h) =f(t0),
(v) / and g are co-multiplicative.

Proof. The first three statements are obvious, and for (iv) if say ti> t2,

there is a hET such that ^1=^2. Now tiS=f(ti) =f(t2) =t2b=titib. Therefore

tih=hhb = fy.ib= ■ ■ • =tlh5. The sequence {%} converges to t0, so by con-

tinuity ti8 = t0tid=tob, and f(h) =f(to).

(v) Suppose f(n)=g(si) and f(r2)=g(s2); then f(nr2) = (>v-2)5=ri(r-25)

= fif(r2) = rig(s2) = riSs2 = \f(ri) ]s2 = [g(si) ]s2 = dsiS2 = g(siS2).

3. All standard clans are abelian. Thus R is always abelian. We shall show

below that L is abelian; hence, if S fails to be abelian, this failure must occur

among the mixed products (elements of L multiplied by elements of R). We

offer such an example. Consider the interval from — 1 to 1 with multiplica-

tion " • " as follows:

For 5 and t non-negative st = st (the usual product)

(-s)-(-t) = 0, (-5)-/ =  - (st),        s-(-t) = - (s2t).

Note that L2 = 0 in the example. We call such clans left trivial and devote this

section to their study.

Construction 3.1. Let 5= [5, u] be any interval, and 0 any point in the

open interval (5, u). Let R= [0, u] and L= [d, 0], and define a multiplication

" • " on R making it into any standard clan. Let/ and g be any two functions
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on R to L satisfying (i) through (v) of Lemma 2.6. Define a multiplication

"o" on S as follows:

riOfj = fi-fS, rol = f(r-f~l(l)),

hol2 = 0, lor = g(r-g-*(l)).

Theorem 3.2. (S, o) is a left trivial clan, and any left trivial clan can be so

constructed.

This theorem will be proved by a sequence of lemmas.

Lemma 3.3. r o I (and I o r) are well defined.

Proof. Let kEf~l(l) and w = inf/_1(/). If k^m, by (iv) of Lemma 2.6

m2 = m. If rk^rm, r>m; so rm=m, and we have f(rk)^f(k)=f(m)=f(rm)

= /(r&). Thus f(rk) =f(rm) as was to be shown.

Note that we have shown that in the definition of "o" any element of

f~*(l) [or g~l(l)] may be selected. As consequences we have

Remark 1. f(r-f~1f(t))=f(r-t) and g(rg~lg(t))=g(r-t) for all r, tER-

Remark 2. f(r) =f(r ■ u) = r o 5 and g(r) = 5 o r.

Lemma 3.4. "o" is continuous.

Proof. Suppose ro/ = aG(5, 0). We prove this case only; the modifica-

tions for the other cases being tedious but obvious. Suppose N is any neigh-

borhood of a. We need to find U and W, neighborhoods of r and / respectively

with Uo WEA7. Since/ is continuous f~1(N) is open, and by continuity of

multiplication in P, we have open sets U and V containing r and/"-'(/) with

U-VEtl(N). Wence f(U-V)EN. Let pEV with p<m = inl f~\l); then
f(p) <l and sup f-y(p) <m. Pick q so that sup f~lf(p) <q<m, then f(p) <f(q)
<l. In a similar manner we can find k so that k> sup/_1(/) and f~lf(k) C V.

Now let IF be the open interval (f(k),f(q)); /GIF and 77 o W=f(Uf~1(W))

Ef(UV)EN.

Lemma 3.5. For r, sER and I EL, r o (s o l) = (r-s) o I [and dually I o (r-s)

= (l o r) o s].

Proof. ro(sol) = f(r-f~\s o /)) = f(r-f-lf(s-f^(l))) = f(r- (s-f~■»(/)))
= (r-s) o /.

Lemma 3.6. / and g co-multiplicative implies (r o 5) o s = r o (5 o s).

Proof. Let r, sER; then, there exist r1 and slER with f(r) =g(rl) and

g(s) =/Or1). Now (ro5) os = g(s-g-*f(r)) = g(s- g-'gf/1)) =g(s-r[) =f(slr)

=/(f-*1) =f(r-t1f(s1)) =f(r-f-*g(s)) =ro(5os).

Lemma 3.7. (r o 8) o s = r o (5 o s) for all r and sER implies (r o I) o s

= r o (I o s) for all r and s in R and IEL.
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Proof. For IEL there are p and qER with l=f(p) =g(q). So l = p o 8 and
8 o q. Thus (r o I) o s = (r o (8 o q)) o s = ((r o 8) o q) o s = (r o 8) o (qs)

= r o (8 o (q-s))=r o ((8 o q) o s)=r o (lo s).

Proof of Theorem 3.2. That "o" is associative follows from Lemmas 3.5

and 3.7. Clearly re is a unit for 5 and S is left trivial. Conversely if 5 is any

left trivial clan, Lemma 2.6 insures that the functions/and g (defined in that

Lemma) have the desired properties, and it is easy to see that the construc-

tion recreates the original multiplication in S.

4. Lemma 4.1. For each rER, 82r = 8r8 = r82.

Proof. Let rER- If r8 = 8r, the conclusion is immediate; suppose, then

8r<r8 (an analogous argument holds if 8r>r8).

Case 1. 82ER- Using 2.5 we get 82r^8r8 and 8r8^r82. Now 82ER means

82r = r82 and the conclusion follows.

Case 2. 82EL. There is a kER such that kr8 = 8r, and also there is pER

with p8 = 82. Using these relations and the fact that R is commutative, we

get 8r8 = kr82 = krp8=pkr8=p8r = 82r. Now since r8>8r, there is sER with

s> r and r8 = 8s. Since s> r, s8^r8 = 8s; so that by an argument as above we

get 8s8 = 82s. Now r82 = (r8)8 = 8s8 = 82s = 8(8s) =Sr8 completing the proof.

Lemma 4.2. L is abelian.

Proof. For h and l2EL there are ri and r2ER with 8ri = U. Therefore, using

4.1 and the commutativity of R we have y2 = 6ri5r2 = 52rir2 = 52r2ri = 5r25ri

Definition. We will call a clan pointed if in it l2 = 82 implies 1 = 8.

Theorem 4.3. A pointed clan is abelian.

Proof. Since R and L are each commutative and each l = r8 for some r,

we need only show r8 = 8r for all r. We divide the proof into three parts.

Case 1. If 52 is idempotent, then (53)2 = (52)3 = 52. Hence by pointedness

83 = 8 and 82 is a unit for 8. Then using 4.1 we have rd=r828 = 8r88 = 888r = 8r.

Case 2(2). If 82ER and is not idempotent, 82E [z, p], a C or c7-mob, and

there is sE(z, p) with z<s82<82. Ii 8s<s8, there is t>s with 8t = s8 and

s82 = 8t8=t82. It t>p, then /52 = 52, but t82 = s82<82. Hence s<t<p, and

z<s82 = t82 implies s = t. Since a similar argument holds if s8<8s we have

8s=s8. Now if rE(z, p), there is an 5 as above and a positive integer re such

that sn = r. Since 5 commutes with 5, so does r. If r>p, (r8)2 = r8rS=r282 = 82

so r8 = 8 and similarly 8r = 8 so r8 = 8r. Finally if r<z, r8 = (r82)8 = 8r82 = 8r.

Case 3. If 52£L and 52 is not idempotent, let p and qER be such that

p8 = 82 = Sq and suppose p> q. If p=fE [q, p], then/^g implies 82 = Sq = 8qf

= 52/=52/2 = (/5)2 and f8 = 8. Now f<p implies 82=p8>f8 = 8, so that 82 = 8,

(2) The authors express their thanks to the referee for the shortened proof of Case 2 given

here.
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a contradiction. Therefore p and q are nonidempotent elements of [z, e], a

C- or U-moh, and hence have unique reth roots in [z, e]. If, say, p1,n8> dq11",

there is rE(z, e) with Sql,n = rplln8. Multiplying on the right by gC"-1)/™ gives

0q = rpVn§q(n-i)in = rpiinrpiinfiq<.n-i)in= . . . = rnpg = rngq. hence 52 = 5g = r"5g

= r52 = r2n52= . . . =sg2g=2g2 = 54- Tnis contradiction shows pl'n8 = 8qlln.

Since plln approaches e and e5 = 5, there is an integer m with (pllm8)2>- 84.

Now if q = pr for some rE(z, e), (pllm8)2 = (8qllm)2 = (8pllmr1im)2 = r2lm(p1'm8)2

(by 4.1). Hence, (p1i™8)2 = r2im(pii">8)2 = riim(p1im8)2 = z(p1im8)2<zS2<p282 = 8i.

This contradiction shows p=q and p1'n8=8plln. Therefore pmi"8 = 8pmln

(where pmln is defined to be (plln)m) and since the rational powers of p are

dense in [z, e], r8 = 8r lor all rE[z, e]. As in Case 2, if r>e, (rb)2=(r(eb))

= (e8)2 = 82 = (8e)2 = (8er)2 = (Sr)2 and pointedness shows r8 = 8 = 8r. Finally if

r <z, r8 = rp8 = rS2 = 82r = 8pr = 8r.

5. In this section we examine clans with R a C or [/-mob. Since we have

done the left trivial case in §3, we make the (sometimes tacit) assumption

throughout this section that 52?^0.

Lemma 5.1. If S is a clan with 829^0 and R a C or U-mob, then S is pointed

and hence abelian.

Vrooi. ll I2 = 82 with I = r8 and r<u, then S2 = (r8r8)=r2S2=ri82 = • • • =0,

a contradiction.

Consider now the interval from —1 to 1. It is possible to make this into

a clan with L2ER by using ordinary multiplication. It is also possible to

have L2EL by defining products of negative numbers to be negative (more

precisely define "o" on [ — 1, l] by

x o y = 0 if x or y = 0,

["   x y   1 .       .
x o y = min   -j—r- > -,—r I | xy |   otherwise).

_ I x |     | y | J

We adopt the notation [ — a, l] means the interval from — a to 1 with ordi-

nary multiplication and [ — a, l]w means the interval with the "negative"

multiplication.

Lemma 5.2. If S is a clan with 82ER a U-mob, then S is topologically iso-

morphic to [ — a, l] for some a.

Proof. Since R is a 77-mob, we have / a topological isomorphism on [0, 1 ]

to P. Let PER be such that p2 = 82. Yet a=f~1(p). Define g: [-a, l]—►S as

follows:

For   tE [0,1], g(l) =f(t),

For tE[-a,0],g(t)=f(-t)8/p.

It is straightforward to verify that g is a topological isomorphism onto.
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Lemma 5.3. 7/ 5 is a clan with 82EL and R is a U-mob, then S is topologi-
cally isomorphic to [ — a, 1]n/[ — b, 0].

Proof. As in 5.2 we have /: [0, l]->F. Let pER such that p8 = 82. Let

a=f~1(p). Let ?re=sup {/|/2 = 0}, q = sup {r\rm = 0\, and b=f~1(q2). We

show first that a>b. Let s = sup {r|r8 = ?re}; then sl/28>m and, hence,

s52>0. Now pm = ps8=sp8 = s82> 0; therefore p^q^q2 and a> b. Now de-

fine g: [-a, l]N/[-b, 0]->Sby

For       lE[0,l],g(l) =f(t),

For tE[~a,-b],g(l) =f(-t)8/p.

We verify that g(-b)= 0. By definition g(-b)= [f(b)/p]8= [q2/p]8=q(q/p)8.
It(q/p)8>m,q/p>s,and(sq/p)1li>s;hut((sq/p)1t28)2=[(sq)/p]82 = sq8 = qm

= 0. Therefore (q/p)8<m and g( — b)=q(q/p)8 = 0. We show now that g is

1 to 1. We need only consider the case [f( — h)/p]8= [f( — t2)/p]8. By (iv) of

Lemma 2.6 either f(-ti)/p=f(-t2)/p and /i = /2, or [f(~k)/p]8 =0. Now

s8=m>.0 implies the existence in F of k such that ks=f( — ti)/p. Since ks8=0,

km = 0 and k^q. Therefore f( — h)/p^qs and /(— h)<qps. Now psm = pss8

= s282 = (s8)2 = m2 = 0; so ps^q, /( —<i)=?2, and — h^b. Since the points in

[ — b, 0] have been identified, h (and similarly t2)=b. The remaining proper-

ties are easy to verify and we leave them to the reader.

Lemma 5.4. i/ S is a clan with 82ER, a C-mob, then S is topologically iso-

morphic to some [ — a, l]/[ — b, 1/2].

Proof. Since R is a C-mob, there is /, a topological isomorphism on

[1/2, l]—>F. To simplify the notation involved we consider the elements of

the C-mob [1/2, l] as a subset of the U-moh [0, l]. We use "■" to signify

C-mob multiplication, "o" for the usual multiplication, and juxtaposition for

multiplication in 5. Define h: R—>[0, l] by h(r) =f~A(r).

Let pEP he such that p2 = 52,

q = p1'2, a = h(q) O h(q),

w = sup {r\ r28 = 0],        b = h(q) o h(q) o h(w) o h(w).

It is easy to verify that [ — b, 1/2] is an ideal of [—a, l]. We form T

= [ — a, l]/[ — b, 1/2], use "•" to indicate multiplication in T, and consider

T as a subset of [ — a, l]. We define g: T—+S by

g(t) = /(/•) if t > 1/2,

«(0 = [f((-tyi2)/q]2biitE[-a, -b].

To show g is well defined, and continuous we verify

(i) tE[-a, -b] implies (-t)1'2>l/2.

(ii) tE[~a, -b] implies 0<f((-ty'2)<q.

(iii) g(-b)=g(l/2)=0.
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For (i) tE[~a, -b] means -t>b and (-t)li*>bl'2 = h(q)oh(w)

>min [h(q)oh(q), h(w) o h(w)]. Now q2=p means h(q2) =h(p)> 1/2; so

that h(q2) =h(q) o h(q). Similarly w2>0 and h(w) o h(w) =h(w2). Hence min

\h(q) o h(q), h(w) o h(w)] = min \h(q2), h(w2)]^l/2 and (i) is established.

(ii) Note first p^O; hence if wq = 0, w<q and (wq)ll2>w; but ((w<7)1/2)25

= wq8 = 0 contradicting the maximality of w. Thus wq>0 and f((—t)112)

>/(fti/2) = f(h(q) o h(w)) =f(h(q)-h(w)) = qw> 0. Also/((- /)>'*) <f(a"2)

=f(Hq))=q.

g(-b) = IM", = \m*Yk(w))-V& _ r^T
(iii) L    cj   J       L q      a       \- q a

_*,_o-/[i]-,[!].

To show g is 1 — 1 we first show fG[— 6, 1/2] implies g(t)^0. The case

/> 1/2 is trivial to show, and —tE [a, b) implies f[( — t)l'2]>f(b) =gw.Sothat

f[(—t)ll2]/q>-w and [/[( — /)1/2]/g]25 cannot be zero. Now repeating the argu-

ment in the previous lemma shows g is 1 — 1.

To show g is a homomorphism we verify three cases

(i) h, fee [1/2, 1]. Then g(h-h)=f(ti-ti)=f(ti)f(ti)=g(ti)g(ti).
(ii) /iG[l/2, 1], kE[-a, -b]. Then -(h-h) =max \b, h o (-h)} and

/((-(«r(S))"!)=/[max \b"2,  (h o (-72))"2} ] =/[max [b1'2,  (h- (-/2))"2} ]

= max {/(61/2),/((/i-(-fe))1/2)}. Hence

[max {/(*"*),/(«i-(-/a))1/s}T,
g(h-h) =-5

r/((-'2)1/2)i2= /(<i)|—-—-J 5 = «(/!)«(/»)•

(iii) <i, feG[—a, — 6]. Then

, n^   [M-^m)rjM-l2)m)l\   rM-h)m)f«-tiy<2)p-\2
g(lOg(li) = [ —r-J 5 |_—- -J 5 = |__      -7—J

=   [/((-^)1/2)/((-<2)1'2)]2=/((-/l)1'2-(-il)1/2-(-/2)I/2-(-/2)1'2)

= /(max <— >  (-Ii) o (-l2) >) = /(max <— , hotS J

= f(h-h) = g(h-li),

and the proof is complete.
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Lemma 5.5. If S is a clan with R a C-mob and 82EL, then S is topologically

isomorphic to some [ — a, l]jy/[ — b, 1/2].

Proof. As in the previous lemma we have /: [1/2, l]—>F. Consider 5

which consists of 5 with R replaced by [0, l] (identifying the "zero"). Let L

retain its multiplication from S, [0, l] have its usual products, and define

t-l = l-t=f(t)l if t>l/2 and 0 otherwise. It is easy to see that 5 is a clan, and

moreover one satisfying the hypotheses of Lemma 5.3. Hence we have a, b,

and g satisfying g: [ — a, l]N/[ — b, 0]—>S is a topological isomorphism; more-

over, we take g to be the identity on [0, l]. If we now define /: S—>S by

Kl)=l,J(t)=f(t) if <> 1/2, andf(t)=0 otherwise, and letn: [-a, l]N/[-b,0]
—*[ — a, l]ff/[ — b, 1/2] be the natural homomorphism; we have the following

diagram:

[~a, l]if_g_^ *

[-b,0] '

Vi f

[~a,l]N I

RT
Now by standard arguments there is induced g*: [—a, 1]n/[ — b, 1/2]—>S

(where g*=fgy~l) which has the required properties.

Definition. A base clan is one topologically isomorphic to [ — a, l]/I

(where 0<a^l and / is any closed ideal of [ — a, l]).

An N-base clan is one topologically isomorphic to [ — a, 1 ]n/I (I any closed

ideal of [ — a, 1]n).

The results in the previous lemmas may now be summarized and restated

as

Theorem 5.6. If S is a clan with 82^0 and Ra C- or U-mob, then S is a

base clan or an N-base clan.

6. In this section we characterize the general clan with zero on an inter-

val.

Definition. A clan 5 will be called full it either 82 = 8 or 52 = w. Note

that a full clan is pointed, and hence abelian by Theorem 4.3.

Definition. Two or more clans will be called matched if all have L2EL

or all have L2ER-

Definition. A clan 5 will be called an extension of B by A if:

(i) A is a clan,

(ii) B is an ideal and a subclan of 5, and

(iii) A =S/B.
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Suppose 5 is an extension of B by A. We examine the structure of S. Let

A= [8a, ua] and B= [8b, ub]. Now in S, since B is a subclan, it must be

connected. Since B is an ideal, it must contain the zero. Since A is a nontrivial

quotient it must contain the (image of the) unit, and finally if A is not stand-

ard 8a is (the image of) 5 (of S). So that S, in general, may be represented

by the diagram:

Z.0 B R°

oa = o Ob 0 ub Ua = «

Fig. 2

where L°, and F° stand for the half open intervals [5a, Oa) and (0,4, uA]

respectively.

Lemma 6.1(3). Let A and B be clans. Then there is a unique extension of B

by A if and only if
(i) A and B are matched and,

(ii) Either B is full, A is standard, or A is left trivial.

Proof. "Only if": If Si = 0A,A is matched with any clan. If not 8AE(L°UR°)
and A and B are matched by 2.3. If A is not standard, 5a > 8b- If A is not left

trivial, 8'AE(L°^JR°). Let xER° and yEL°. Since B is an ideal, xuB and

yusEB. But xub^.UbUb = ub, and yus> 8bUb = 8b- Thus xub=Ub and yus

= 8B and 8B may be written as 8aub and 82B = (8aUb)2 = 8\ub = 82aub which is

either 8B or ub so B is full.

"If": Let A and B satisfy (i) and (ii). Let L°=[8A, 0a), F° = (0a, ua]\

and S = LayJB\JR°. (If A is standard L° is null and references to it below

may be ignored.) Order S as in Fig. 2. Define a multiplication "•" on S as

follows:

(1) For x, yEB define x-y = xy (the product in 73);

(2) for xEB, yER° define x-y =yx = x;

(3) for x£73, yEL° define x-y = x8s and y-x = 5ax;

(4) for x, yER° define x-y=y-x = xy (the product in ^4 with the under-

standing that if xy = 0^ in A, x • y = uB);

(5) for x£F°, y£Z,° define xy = xy [and y-x = yx] (with the understand-

ing that if either product is 0a in A, we make it 8B in 5);

(6) for x, yEL° define x-y=y-x = xy (with the understanding that if

xy = 0a in A, x ■ y = 5|).

To verify that " •" is associative is mainly routine and utilizes the asso-

ciativity in A and B. Note, however, if we examine li-l2-b (with UEL° and

bEB), we get (h-h)- b = (hh)b = 8Bb (if hkEL»). While h-(hb)=li-(8Bb)
= 8%b. But if B is full 8B = 8B and if A is left trivial hl2 = 8B and associativity

is preserved.

(3) The authors are indebted to the referee for numerous suggestions concerning the state-

ment and proof of this result.
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Note also that the continuity of " •" can be verified by checking the (large)

number of special cases, and that, in particular, as one (or both) of the factors

approaches 5js, the fact that lim h-li — 8% depends on the fullness of B or the

left triviality of A.

Thus 5 is a semigroup and it is straightforward to verify the following:

Ua is a unit making 5 a clan; B is an ideal and a subclan; and A =S/B. It

remains only to show that the extension is unique. Suppose then that S' with

multiplication "o" is an extension of B by A. We show that "o" agrees with

" •" in the six classifications above.

(1) Since B is a subclan, xoy = xy.

(2) xo y=(xo uB) o y = x o (uBo y) = xo uB = x (using the relations

developed earlier in the proof.)

(3) Let y = Sa o z for some zGP"; then y o x = 8a o (z o x) =8a o x by (2).

Letting y approach 5js we get by continuity 8Bo x = 8ao x. Therefore y o x

= 8b o x = SbX. Similarly x o y = x8b-

(4) Since A=S/B, xoy = xy unless xoyG-B. But in that case since

x, y>Us, we have x o y>_uB = UB; so x o y = uB.

(5) Again xo y = xy unless x o yEB. In that case we let y=z o 8a- Now

since x o z^.uB we have x o y=x o zo 5^_Ws o 8A^LuB o 5s = 5s.

(6) Again xoy = xy unless xoyG-B. In that case xoy<5|; but x and

y = 5s implies x o y _ 8B. Hence x o y = 8% completing the proof.

Now for any standard clan K with kEK we define a collection of clans

we call S(7C, k) as follows: Let p be the largest idempotent in K<k. Yet

[p1', 0'] be an inverted copy of [0, p]. Identify 0 and 0' and let Si he the inter-

val [p', p]. Extend the multiplication on [0, p] to Si by defining

x'-y' = xy and

x'-y = x-y' = (xy)'.

Case I. If k = u, we let &(K, k) consist of the clan Si.
Case II. If k = p<u, we may, since [p, u] is a standard clan, form S2, the

extension of Si by [p, u] (using 6.1). Alternatively if T is any left trivial clan

with P= [p, u], there is Ss, the unique extension of Si by T. For Case II we

letS(P:, /fe)={S2}UfallS3}.
Case III. If k>p, let q be first idempotent >k. Now [p, q] is a C or

U-moh. Let B be any base clan with P= [p, q] and 82 = k. B and Si are

matched and Si is full so we may form St, the extension of Si by B. If q < u,

let T be any left trivial clan with R= [q, u]. Let S6 he the extension of Si by

T. Alternatively we have 56 the extension of 54 by [q, u]. In Case III we let

[jall54] if q = uor ~|

{all56} UjallSe} if q < rej

Note that in each case S(K, k) is a collection of clans having R = K and

52 = k.
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Theorem 6.2. If S is a clan with 82ER, S£S(F, 82).

Proof. Case I, 82 = u. Consider the function 5: R-^>L defined by 8(r) =8r.

It is easily seen to be 1-1, onto, and bicontinuous, and since 8(u)=8, we

have L is an inverted copy of F. Moreover, 5(x)5(y) =5x5y = 52xy = xy, and

[5(x)]y = 5xy = 5(xy) so S, in this case, is the "Si" in the definition above.

Case II, 52 is an idempotent <u. Let p = 82 and e = inf {/|/2 = />}. Since

(pe)2 = p2e2 = p3 = p, pe = e, and, by Case I, [e, p] is Si. If 6 = 5, S is the exten-

sion of [5, p] by [p, u] and is S2. If 6-<5, then S/[e, p] is left trivial; so S is

an S3.

Case III, 52 is not idempotent. Let p he the first idempotent -<52, q be

the first idempotent > 52, and e = inf {/|Z2 = 52}. Since (pe)2 = p2e2 = p282 = p2

= p, the interval [pe, p] is Si. Also since \p, q] is a C- or U-moh and qe = e,

ie> q]/[Pe> P] is a base clan by 5.6. Hence [e, q] is an S4. If q = u, q8 = 8, and

[5, q]/\pe, p] is a base clan; hence 5 = e and S is an S4. If q<u, and 6 = 5, S is

the extension of [e, q] by [q, u] and is an Se. If e-<5, S/[e, q] is left trivial

and S is an S5. So that in any event S£S(F, 52), which was to be shown.

We now define 3l(F, k) for kEK a standard clan. This definition is

similar to that of S(F, k) with the exception of the construction of Si which

goes as follows: Let p he the largest idempotent ^k. Let/ be any continuous

monotone function of [0, p] onto an interval / with the property that/-1(£)

is either a point or a submob of [0, p]. Identify 0 and/(0) and let Si be the

interval [f(p), p]. It is clear that/now satisfies (i) through (iv) of Lemma 2.6

(with p = u and f(p)=8). Define multiplication in J hy ti-t2=f{f-1(ti)f~1(t2)].

To show " •" is well defined (and establish the similarity of this construction

with that of §3) we proceed as in Lemma 3.3. Let a£/_1(/i) and bEf-1^).

It a and b are unique, there is nothing to show. If not, say ay^m = inf/_1(/i)

= m2. Then either ab = mb or b> m and f(ab)>f(mb) =f(m) =f(a)>f(ab) so

f(ab)=f(mb) and "•" is independent of the choice of a. In a similar manner

we show " •" is also independent of b, completing the proof. Note that / is

now a homomorphism. Define mixed products r-t=t-r=f(f~l(t)r). By refer-

ring to the proof of Theorem 3.2, it is easy to complete the verification that

Si is a clan. Note that f(p) is idempotent so Si is full.

Case I. If k = u, we let 3l(F, k) = {all Si}.

Case II. If k = p<u, then for each Si there is S2, the extension of Sx by

[p, u]. There are also left trivial clans, T, with F= [p, «]; hence there are

clans, S3, which are extensions of Si by T. We let 3l(F, k) = {all S2} \J {all S3}.

Case III. If k>p, kE[p, q] a C- or U-moh. Let B he any TV-base clan

with R=[p, q] and k8 = 82. Let S4 be the extension of Si by B. If q<u, let

S5 be the extension of S4 by T (where T is any left trivial clan with F = [q, u])

or alternatively let Si be the extension of S4 by [q, «]. We let

rjall SA if q = u
<3l(K, k) = , .

L{allS6} U {allS6} if g < uA
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Note that in all cases %(K, k) is a collection of clans each having L2EL,

R = K, and kS = 82.

Theorem 6.3. If S is a clan with 82EL and k = 'ml {r|r5 = 52}, then

5G9l(P, *).

Proof. Case I, 5 = 52. Since k28 = k(k8) = kS2 = kS = 52, k is idempotent. The

function /: [0, k\—>L given by f(r)=8r is easily seen to be a continuous

homomorphism onto. Moreover, since S is pointed, we have, by Theorem

4.3, l-r = r-l = r-8f-1(l)=8-f-1(l)r=f(f-1(l)r). Hence [5, k] is an S,. If k = u,
S is an Si; if not, 5 is the extension of [5, k] by [k, u] and is an 52. Note, in-

cidentally, that whether k = u or not, that S is an 5iG3X(P, u) whenever 5 is

idempotent. This theorem also appears in Clifford [2].

Case II, 5?^52 but k = k2. Clearly k<u, and we may consider 5/[52, k]

which is easily seen to be a left trivial clan. Now (S2)2 = (k8)2 = k282 = k2kS

= kS = 82, so that [52, k] is an Si by Case I and S is an S3.

Case III, 5^52 and k^k2. We have kE[p, q] a C- or U-moh. Yet e

= inf j/[/2 = 52}. Since (qe)2 = qe2 = q82 = qkS = kS = 82, qe = e and [e, q] is a

clan. Now (pe)2 = pe2 = pS2 = pk8 = pS^pe. So pe is an idempotent and [pt, p]

is an Si. Now [e, q]/[pe, p] is an TV-base clan, so [e, q] is an Si. ll q = u, as

above, € = 5 and 5 is an Si. If q<u and e = 5, 5 is an extension of [e, q] by

[q, u] and is an Se- ll q<u and €<5, then S/[e, q] is left trivial and 5 is an S6.

Thus SE"3l(R, k) completing the proof.

Theorems 6.2 and 6.3 completely characterize clans with a given R, but

since all standard clans are known, we have characterizations for all clans with

zero on an interval.
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