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1. Definitions. A point set M is said to be n-homogeneous if for any n

points Xj, x2, • • • , x„ of M and any re points yi, y2, • • • , yn of M there is a

homeomorphism of AI onto itself that carries Xi+x2 + • • • +x„ onto yi

+Y2+ • • ■ -\-yn. If there is such a homeomorphism which carries x,- into

yi (i^n), then AI is said to be strongly n-homogeneous. A point set M is

said to be nearly n-homogeneous if for any re points xi, x2, • • • , x„ of M and

any re open subsets(2) £>i, D2, • • • , Dn of M there exist re points yi, y2, • • • , y«

of Di, Z?2, • • • , £>„, respectively, and a homeomorphism of M onto itself that

carries Xi+x2+ • • • +x„ onto yi+y2+ ■ ■ ■ +y„. For convenience through-

out this paper, the terms "re-homogeneous" and "nearly re-homogeneous" are

used only where re>l. Where w = l, the terms "homogeneous" and "nearly

homogeneous" are used. Continua possessing these types of homogeneity

have been investigated previously in [4; 6].

A continuum M is said to be aposyndetic at the point x of M if for any point

y of M—x there is a subcontinuum K oi M and an open subset U of M such

that M—yZ)KZ) LOx. The continuum AI is said to be aposyndetic ii it is

aposyndetic at each of its points.

A subset H of the connected point set M is said to separate AI if M — H is

not connected.

A point x of a continuum M is said to be a cut point oi M ii there exist

two points y and z in M — x such that every subcontinuum of M that con-

tains y+z also contains x.

2. Homogeneous plane continua. Let & denote a nondegenerate homo-

geneous bounded plane continuum. F. B. Jones [9] has shown that K is a

simple closed curve provided it either is aposyndetic or contains no cut point,

and H. J. Cohen [7] has shown that K is a simple closed curve if it either

contains a simple closed curve or is arc-wise connected. These results gen-

eralized Mazurkiewicz's theorem that A" is a simple closed curve if it is

locally connected [13]. Similar results are obtained here for a bounded plane

continuum which is nearly homogeneous and separates the plane into a finite

number of connected domains. It can easily be seen that it is necessary in
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366



CONTINUA AND VARIOUS TYPES OF HOMOGENEITY 367

Theorem 1 to require that M separate the plane as there exists a dendron

which is nearly homogeneous. Also, a locally connected bounded plane con-

tinuum described by Sierpinski [17] is nearly homogeneous and has infinitely

many complementary domains. It was shown in [4] that a bounded plane

continuum M is the boundary of each of its complementary domains pro-

vided M is nearly homogeneous and does not have infinitely many comple-

mentary domains. Sierpinski's example cited above shows that it is necessary

to require that M should not have infinitely many complementary domains,

and it is shown here (Theorem 2) that this requirement is not necessary if

M is homogeneous. Results more complete than those in Theorems 3, 4, and

5 have been obtained by F. B. Jones [ll] for homogeneous continua. A more

complete bibliography and a history of results on homogeneous plane con-

tinua will appear in a paper by Bing and Jones [2].

Theorem 1. If the bounded plane continuum M is nearly homogeneous and

separates the plane into a finite number of connected domains, then M is a simple

closed curve provided any one of the following four requirements is fulfilled:

(a) M contains a simple closed curve.

(b) M is aposyndetic.

(c) M contains no cut point.

(d) M is arc-wise connected.

Proof of (a). It follows from [4, Theorem 7] that no proper subcontinuum

of M separates the plane. Hence M is a simple closed curve.

Proof of (b). No proper subcontinuum of M separates the plane [4,

Theorem 7], and hence it follows from a theorem proved by R. L. Moore

[14, Theorem 2] that no subcontinuum of M separates M. Bing [l, Theorem

2] has shown that any such aposyndetic continuum is locally connected.

That M is a simple closed curve follows from (a) and the fact that every

locally connected bounded plane continuum which separates the plane con-

tains a simple closed curve.

Proof of (c). As in the proof of (b), no proper subcontinuum of M sepa-

rates M. Bing [l, Theorem 10] has shown that such a continuum is a simple

closed curve if it is not cut by any one of its points.

Proof of (d). It follows from [4, Theorem 7] that no proper subcontinuum

of M separates the plane. Since M is decomposable, it follows from a theorem

proved by Kuratowski [12, Theorem 5] that M is the sum of two continua

Mi and M2 irreducible between the same pair of points. Hence Mi-Mi is

the sum of two mutually separated sets 77i and 772, and there is an arc K

in M irreducible from 77i to 772 and lying in one of the sets Mi and Mi. Con-

sider the case in which K is a subset of Mi. Since K-Mi is not connected, it

follows from a well known theorem (Janiszewski) that K + Mi separates the

plane. Hence K+M2 = M and Mi — Mi ■ M2 = K — K ■ Mi. This implies that M

is aposyndetic at each point of the set M\ — Mi-M2, and since this set is open
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relative to M, it follows from the near-homogeneity of M that M is aposyn-

detic. Hence it follows from (b) that M is a simple closed curve.

Theorem 2. Every homogeneous bounded plane continuum is the boundary

of each of its complementary domains.

Proof. Suppose that the boundary K of some complementary domain of a

homogeneous bounded plane continuum M is different from M. It is well

known that if is a proper subcontinuum of M and it is easy to see that K

separates the plane. From a classification of homogeneous decomposable

bounded plane continua given by F. B. Jones [ll, Theorem 2], it follows

that M is indecomposable. Since any homeomorphic image of K separates

the plane (Brouwer), it follows from the homogeneity of M that every com-

posant(!) of M contains a continuum that separates the plane. But no inde-

composable continuum is separated by one of its subcontinua. Hence each

composant of AI contains a continuum that is the boundary of some comple-

mentary domain of M. Since M has uncountably many mutually exclusive

composants, this leads to the contradiction that M has uncountably many

complementary domains.

Theorem 3. If the compact metric continuum M is nearly homogeneous

and H is an indecomposable proper subcontinuum of M, then cl(M-II) inter-

sects every composant of H.

Proof. Suppose some composant L oi H does not intersect c\(M — H). Let

R he an open subset of AI intersecting L but not c\(M — H). For each point

y of M there is a point x of R and a homeomorphism of M onto itself that

carries x into y. Hence for each point y of AI, there is an indecomposable sub-

continuum K oi M and an open subset D of M such that KZ)DZ)y and some

composant of K does not intersect c\(M — K). Since M can be covered by a

finite number of open sets such as D, it follows that there is a least integer

re such that M is the sum of re indecomposable continua Ah, M2, ■ ■ • , Mn

such that no one of them is a subset of the sum of the others and for each

i (i:£re), some composant of Mi does not intersect cl(M-Mi).

Now suppose that some composant Ki of Mi intersects Af2 and does not

intersect c\(M—Mi). Since M2 intersects cl(M-AIi), it follows that some

subcontinuum Z oi M2 is irreducible from cl(M — Mi) to some point of Ki.

From the fact that Z = c\(Z-c\(M-Mi)) [15, Theorem 37, p. 22], it follows

that Z is a proper subcontinuum of Mi intersecting both A+ and cl(M-Mi).

This involves the contradiction that Kx intersects c\(AI — Mi). Hence it fol-

lows that some composant of Mi does not intersect Af2, and similarly, foi

eachj (2 ^j^n), some composant of Mi does not intersect Mj. By [5, Theo-

rem 2], some composant of Mi does not intersect M2 + M3+ ■ ■ ■ -\-Mn. In a

(8) If x is a point of a continuum M, the sum of all of the proper subcontinua of M that

contain x is called a composant of M.
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similar manner it can be shown that for each i (i^n), some composant of Mi

does not intersect M1+M2+ ■ ■ ■ +Mi-i+Mi+i+ ■ ■ ■ +Mn. By [3, Theo-

rem l], if is »-indecomposable(4), and from the requirement that 77 is a

proper subcontinuum of M it readily follows that n>l. But this is impossible

for a compact metric continuum which is nearly homogeneous [4, Theorem

2]. That cl(M-H) intersects every composant of 77 follows from this con-

tradiction.

Theorem 4. If the bounded plane continuum M is nearly homogeneous and

77 is an indecomposable proper subcontinuum of M such that M — H has only

a finite number of components, then c\(M — H) =M.

Proof. Suppose that cl(Af—77) is a proper subset of M. It has been shown

by Rutt [16, Lemma l] that no set which is the closure of a component of

M—H intersects every composant of M. Hence by [5, Theorem 2],

some composant of 77 does not intersect c\(M — H). This is contrary to

Theorem 3.

Theorem 5. If the bounded plane continuum M is nearly homogeneous and

separates the plane into a finite number of connected domains, then every inde-

composable proper subcontinuum of M is a continuum of condensation of M.

Proof. It has been shown that 17 is the boundary of each of its comple-

mentary domains [4, Theorem 7]. Since such a continuum is not separated

by any one of its subcontinua [14, Theorem 2], the conclusion of this theorem

then follows from Theorem 4.

3. Separation properties and homogeneity. It has been shown previously

that a decomposable plane continuum is locally connected if it is nearly n-

homogeneous [4; 6]. By imposing additional conditions in the hypotheses,

some similar results are obtained here for compact metric continua.

Theorem 6. If the decomposable metric continuum M is nearly 2-komo-

geneous, then M is aposyndetic.

Proof. Let Mi and Af2 be two proper subcontinua of M such that Mi+M2

= M, and let x1 and x2 be any two points of AI. There exist two points yx and

y2 in M—Mi and M—M2 respectively and a homeomorphism / of M onto

itself such that/(yx+y2) =Xi+x2. Then f(Mf) +/(AT2) = M and neither of the

continua /(Mi) and f(M2) contains both Xi and x2. Hence M is aposyndetic

at Xi with respect to x2, and from this it follows that M is aposyndetic.

Theorem 7. Every 2-homogeneous compact metric continuum is aposyndetic.

(4) A continuum M is said to be n-indecomposable if M is the sum of n continua such that

no one of them is a subset of the sum of the others and M is not the sum of w + 1 such con-

tinua. In some of the references such continua are said to be indecomposable under index n.
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Proof. This theorem follows from Theorem 6 and the fact that every 2-

homogeneous compact metric continuum is decomposable. (See proof of [4,

Theorem 10].)

Remark. Using the fact that a decomposable bounded plane continuum

is locally connected if it is nearly 2-homogeneous [4, Theorem 9], I proved

that every 2-homogeneous bounded plane continuum is a simple closed curve

[4, Theorem 10]. I wish to observe here that this result is a direct consequence

of Theorem 7 and F. B. Jones' theorem that every homogeneous aposyndetic

bounded plane continuum is a simple closed curve [9]. In fact, it follows

that a decomposable bounded plane continuum is a simple closed curve if it

is homogeneous and nearly 2-homogeneous. This result is also included in a

more recent result by F. B. Jones [ll, Theorem 2].

Theorem 8. If the compact metric continuum M is aposyndetic and heredi-

tarily unicoherent^), then M is locally connected.

Proof. Let x be a point of M and let AT be a subcontinuum of M not con-

taining x. Jones [8, Theorem 7] has shown that every aposyndetic continuum

is freely decomposable(6). Hence for each point y of K, M is the sum of two

continua X and Y such that x and y lie in M— Y and M — X respectively.

Consider the collection of all such pairs of continua. Then K is covered by

the collection of all open sets such as M — X, and hence K is covered by a

finite number of such open sets. There exists a positive integer m and con-

tinua Xu X2, • • • , Xm, Yu Y2, ■ ■ • , Ym such that KEY1+Y2+ ■ • ■ +Ym

and for each i (i^m), Ari+F, = Af and xEM — Y(. Since M is hereditarily

unicoherent, it follows that the common part X' of the continua Xu X2, • • • ,

Xm is a continuum that does not intersect K. Clearly M = X'+ Yi+ F2+ • ■ •

+ Ym. Hence it has been shown that for any point x of M and any subcon-

tinuum K of M not containing x, the continuum M is the sum of a finite

number of continua no one of which both intersects K and contains x. This

condition is sufficient for a compact metric continuum to be locally con-

nected [15, Theorem 51, p. 134]. (Also, see [8, Theorem 8].)

Corollary 8.1. If the decomposable compact metric continuum M is heredi-

tarily unicoherent and nearly 2-homogeneous, then M is locally connectedl1).

Theorem 9. 7/ the decomposable compact metric continuum M is unicoher-

ent and nearly homogeneous, then for every positive integer re some subcontinuum

of M separates M into more than re components.

(6) A continuum M is said to be unicoherent if every two continua whose sum is M have a

connected intersection. A continuum is said to be hereditarily unicoherent if each of its sub-

continua is unicoherent.

(6) A continuum M is said to be freely decomposable if for any two points x and y of M

there exist two continua whose sum is M such that neither of them contains both x and y.

(') F. B. Jones [10] has shown that there does not exist a homogeneous continuum which

satisfies the hypothesis of this corollary.
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Proof. Suppose the contrary. Since M is decomposable and unicoherent,

it follows that some subcontinuum of M separates M. Hence it follows from

the above supposition that for some integer k greater than one some subcon-

tinuum of M separates M into k components and no subcontinuum of M

separates M into more than k components. Sorgenfry [18, Theorem 3.6] has

shown that such a continuum is irreducible about some k of its points. This

involves a contradiction since no decomposable compact metric continuum

is both nearly homogeneous and irreducible about some finite set [4, Theorem

4]-

Corollary 9.1. If the nondegenerate compact metric continuum M is uni-

coherent and n-homogeneous, then for every positive integer k some subcontinuum

of M separates M into more than k components.

Corollary 9.2. If the unicoherent compact metric continuum M is n-

homogeneous and 77 is a subset of M consisting of n points, then there exists a

subcontinuum of M which separates each two points of H from each other in M.

4. Some characterizations of a simple closed curve. Simple closed curves

in the plane have been characterized with some type of homogeneity require-

ment by Mazurkiewicz [13], Jones [9], Cohen [7], and the author [4]. (Also,

see Theorem 1 in this paper.) A decomposable compact metric continuum

that is continuum-wise homogeneous has been characterized as a simple closed

curve [6]. The proofs of the characterizations given here rely heavily upon

Bing's characterization of a simple closed curve as a compact metric con-

tinuum that is neither cut by any one of its points nor separated by any one

of its subcontinua [l ] and upon Whyburn's theorem that all except a counta-

ble number of local separating points of a compact metric continuum are

points of order two in that continuum [19].

Theorem 10. If the decomposable compact metric continuum M is nearly

2-homogeneous and there exist two points of M such that no subcontinuum of M

separates them in M, then M is a simple closed curve.

Proof. Let Xi and x2 denote two points of M such that no subcontinuum

of M separates them in M. Suppose that some subcontinuum K of M sepa-

rates M. Then M — K is the sum of two mutually separated sets 7?i and D2

that are open relative to M. There exist a point yi in 7J>i and a point y2 in D2

such that there is a homeomorphism of M onto itself that carries Xi+x2 onto

yi+y2. This involves the contradiction that the inverse of this homeomor-

phism carries the continuum K onto a continuum that separates xx from x2.

Hence no subcontinuum of M separates M.

By Theorem 6, M is aposyndetic. Jones [8, Theorems 3 and 4] has shown

that the class of aposyndetic compact metric continua is equivalent to the

class of semi-locally-connected compact metric continua, and Whyburn [21,

6.21] has shown that every nonseparating point of a semi-locally-connected
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compact metric continuum is also a noncut point of that continuum. Since

no point separates M, it follows that no point cuts M. Bing [l, Theorem 10 ]

has shown that a compact metric continuum is a simple closed curve if it

is neither cut by any point nor separated by any one of its subcontinua.

Hence M is a simple closed curve.

Corollary 10.1. If the nondegenerate compact metric continuum M is 2-

homogeneous and is not separated by any one of its subcontinua, then M is a

simple closed curve.

Corollary 10.2. If the nondegenerate compact metric continuum M is

strongly 4-homogeneous, then some subcontinuum of M separates M.

Proof. This corollary follows from Corollary 10.1 and the fact that no

simple closed curve is strongly 4-homogeneous.

Theorem 11.7/ the nondegenerate compact metric continuum M is multi-

coherent^) and 2-homogeneous, then M is a simple closed curve.

Proof. This theorem follows from Corollary 10.1 and the fact that no

multicoherent compact metric continuum is separated by one of its sub-

continua.

Theorem 12. If M is a compact metric continuum such that for any proper

subcontinuum 77 of M and any two sets K\ and K2 in M — 77 each consisting of

two points there is a homeomorphism of M onto itself that carries H onto itself

and K~i onto K2, then M is a simple closed curve.

Proof. Suppose that M is not a simple closed curve. By Corollary 10.1,

some subcontinuum H of AI separates AI. Let Xi and x2 be two points lying

in the same component of If— 77 and letyiandy2 be two points lying in differ-

ent components of M—H. A contradiction results since there is no homeo-

morphism of M onto itself that carries 77 onto itself and Xi+x2 onto yi+y2.

Theorem 13. If the homogeneous compact metric continuum AI is separated

by some countable set, then M is a simple closed curve.

Proof. Any countable set that separates M contains a local separating

point of 717 [19, Corollary 5a]. Since M is homogeneous, every point of M

is a local separating point of M. Hence M contains a point of order 2 [19,

Theorem 9]. The homogeneity of M thus requires that every point of M is

of order 2, and hence M is a simple closed curve (Menger).

Theorem 14. If the nondegenerate compact metric continuum AI is homo-

geneous and hereditarily locally connected, then AI is a simple closed curve.

Proof. Every hereditarily locally connected compact metric continuum is

(8) A continuum M is said to be multicoherent if there do not exist two proper subcontinua

M, and M? of M such that Mi-\-Mi = M and Mi ■ Mz is connected.
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a rational curve [20 ], and hence some countable set separates Af. That M

is a simple closed curve follows from Theorem 13.

5. Homogeneous triodic continua. A continuum is said to be a triod if it is

the sum of three continua such that their intersection is a proper subcon-

tinuum of each of them and is the intersection of each two of them.

Theorem 15. If the decomposable compact metric continuum AI is nearly

2-homogeneous and is not a triod, then M is locally connected.

Proof. The near 2-homogeneity and the decomposability of M imply that

M is freely decomposable, and Sorgenfry [18, Theorem 3.1] has shown that

a freely decomposable compact metric continuum is locally connected if it is

not a triod.

Corollary 15.1. If the compact metric continuum AI is 2-homogeneous and

is not a triod, then M is locally connected.

Question. Is every 2-homogeneous compact metric continuum locally

connected?

Theorem 16. 7/ the decomposable compact metric continuum AI is unico-

herent and nearly homogeneous, then M is a triod.

Proof. Suppose M is not a triod. Sorgenfry [18, Theorem 3.2] has shown

that such a unicoherent continuum is irreducible between some two points.

This involves a contradiction as no decomposable compact metric continuum

is both nearly homogeneous and irreducible about a finite set [4, Theorem 4]

Corollary 16.1. 7/ the nondegenerate compact metric continuum M is n-

homogeneous and unicoherent, then M is a triod.

Corollary 16.2. If the decomposable bounded plane continuum M does not

separate the plane and is nearly homogeneous, then M is a triod.

Added in proof. The theorems in this paper that apply to continua that

are 2-homogeneous can be strengthened to include continua that are re-

homogeneous, where «>2, by using Morton Brown's result that every re-

homogeneous continuum is (re —1)-homogeneous [n-Homogeneity implies

(n—l)-homogeneity, Bull. Amer. Math. Soc. Abstract 60-4-448].

I have recently noticed that a locally connected compact metric con-

tinuum is a simple closed curve provided it is nearly homogeneous and is

not a triod. Hence it can be concluded in Theorem 15 and Corollary 15.1

that Af is a simple closed curve. A note on this will be submitted in another

paper.
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