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1. Introduction. Nagy [6](2) studied the class of polynomials in Em consist-

ing of all expressions of the type (1.1).

F(xi, Xi, ■ ■ ■ ,xm)

n

(1.1) = C II [(*1 - *U>)' + (X2 - Xi.k)2 +-h (xm - xm.k)2],        c > 0.
*-l

The function F, to which the name of "distance polynomial" was given, is a

non-negative, real function of the form e(E"-i x\n)-\-Q(xi, x2, ■ ■ • , xm)

where $ is a real polynomial of degree at most 2n —1. The "derivative" of F

was defined to be

(1.2) F'(Xl, Xi,---,xm)=   JZ Flj*F,       F*b = ^->
n-i oXh

Nagy extended some theorems of Gauss, Lucas, Jensen, and Laguerre, con-

cerning the location of the zeros of the derivative of a polynomial in two real

variables, to the class of distance polynomials in Em.

In this paper several other results concerning the geometry of the zeros

of a polynomial in a single complex variable are extended to En. It is found

convenient to introduce vector methods. 1/A = A/AA = A/A2 denotes a par-

ticular reciprocal with respect to scalar multiplication; ||a|| = [A-A]112 the

norm or length of the vector A; Q:w the point Q with position vector w;

ei i= 1, 2, • • • , n a basis for En.

(1.3) is a distance polynomial of degree r in En.

P P

F(XU Xi, ■ ■ ■ , Xn)   =  C XI || V — Vj||        = C H dj'(xU Xi, • • • , xn), c > 0,
J-1 J-1

P n n

(1.3) zZmi= r.       v = zZ *<•<•       vi = E *i ei-
j=i i=i «-i

di = \\v - viW*.

Presented to the Society September 4, 1952; received by the editors January 18, 1957.

0) These results were obtained in a doctoral dissertation completed under the direction

of Professor Morris Marden of the University of Wisconsin.

(2) [6] indicates item 6 in the attached bibliography.
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Its derivative is (1.4).

IIvfII2    f .. .,
(1.4) F'(xh xi,---, xn) = V—£- = — || V log F||2

4F 4

where VF= E?-i p»fl* and FXi=*dF/dxt.

9 /      P

(1.5) F(xi, xi, • • ■ xn) = II Fy(xi, x2, • • •,  xn) /   II  F,-(xi x2, • • • , x„)
J-0 '       3=9+1

0 ^ q ^ p

and F0(xi, x2, • • • , x»)—l.

(1.5) is a rational function of the distance polynomials F/. It will be as-

sumed that F has been "reduced to lowest terms," i.e. that IT'_o Fj and

[Xj=9+i Fj have no zeros in common. The "derivative" of (1.5) is

I|vf||2     f „ „
(1.6) R = )L^L = _-   VlogF||2

AR 4

where VR= E"-i F^e,- and RXi=dR/dxi.

Theorem I, the central result of this paper, is an extension to the class of

distance polynomials in E„ of a theorem due to Marden [4, Theorem I].

Theorem I. Let F,-(xi, x2, • • • , x„) be a distance polynomial of degree n,-

all of whose zeros lie in the spherical region <TjSj(v)=crj[(v —Cj)2 — r)] ^0, r,->0

and crj= +1 for j=l, 2, • • • , p. Then every finite zero P:V of R' (1.6) is such

that V satisfies at least one of the inequalities

(1.7) 'Mv)£0, j=l,2,---,p,

or

(i.8)     Wfr*y(v) = £^- e  NjNkT* * o
/    ,=l ,_i Sj(v)     fi.i*-j+iSj(v)Sk(v)

where Nj = Vjtij, Vj = 1 for j^q and v,= — 1 for j>q,i.e., N, and n, are the signed

and unsigned degrees respectively of Fj. N= E*-i ^y ^s the total degree of R.

Tjk = 11 Cj—c*| |2 — (KjTj — \krk)2 where \j = VjCTj.

This theorem determines a closed region of space, bounded by the surface

E(v)=0, which contains all the zeros of R'/R, the "logarithmic derivative"

of (1.5), as soon as the spherical regions over which the zeros of the Fj are

distributed are known. The class of spherical regions consists of the closed

interiors and exteriors of spheres as well as of closed half spaces. This Marden-

type theorem, applied to finite products and quotients, yields sharper results

than those arising from the application of the extended Gauss-Lucas type

theorem of Nagy [6, Theorem I].
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2. Some lemmas. In the subsequent work one finds the following lemmas

useful.

Lemma I. Let (1) P:V, Qi'.vi, and Qi :wi = l/(V—vi)^0 be points in En.

(2) S(v) = (v-c)2-r2 = 0, r>0, and S'(v) = (v-c')2-r'2 = 0, r'>0, be the

equations of two spheres in En with center and radius

C:c, r    and    C'\c' = V - c/S(V),    r' = r/\ S(V) \

respectively. Then the point QI lies (1) inside or outside the sphere S' according

as the sphere S does or does not separate the two points P and Qu or

(2) on the sphere S' if S passes through Qi and not through P, and conversely.

Proof.

S'(wi) = (wi - c')2 - r'2

~     1 V - c"j2 r2
~ ,V-Vi~   S(V) J     "   | S(V) |2

—J_rj^cirF-vii   ^0

(V -vi)2        I S(V) J L (V - vi)2 J      S2(V)

_ S(V) - 2(V - c) ■ (V - vi) 1

S(V)(V - vi)2 +S(V)

S(vi)     i
= -    Wi.

S(V)

w2^0. w2 = 0 if, and only if, wi = 0. Since Wi^O, the sign of S'(wi) is the same

as that of S(vi)/S(V). It follows that if

(1) S(v) =0 separates P and Qi, S(V) and S(vi) are opposite in sign and

S'(wi) <0. Qi is in the sphere S'(v) =0.

(2) the points P and Qi are both exterior to or interior to S(v) =0, S(V)

and S(vi) are similarly signed and S'(wi)>0. Qi is outside of the sphere

S'(v)=Q.

(3) S passes through Qi, S(vi) =0. If 5 does not pass through P, 5(V)?^0.

If P is understood to be distinct from Qu it follows that S'(wi)=0, i.e. S'

passes through Qi.

Starting with any one of the statements S'(wi)<0, S'(wi)>0, or S'(wi)

= 0, one may without difficulty retrace his steps and establish the converse.

Lemma II. If for j= I, 2, ■ • ■ , p the points Qj'.wj vary independently over

the closed interiors of the spheres Sj(v) = (v—cf)2 — r] = 0, rj>0, the locus of the

point Q\w= zZj-i tnjWj where the m, are real will be the closed interior of the

sphere S(v) =0 of radius r= zZj-i I mi\ ri and center C:c= Ej-i mfii-
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Proof.

V I V

|| w - c|| =     E mj(wj - Cj)    g E I mi\ \\wi - ci\\-
y-i I       y-i

By hypothesis Qj is in the closed interior of Sj, i.e., \\wj — Cj\\ ̂ rv,-, for j

= 1, 2, ■ ■ ■ , p. It follows that ||w-c||^Ey-i \mi\ri = r and (w-c)2-r2

— 0. Consequently Q lies in the closed interior of the sphere S(v) =0.

Conversely, it can be established that if Q:w lies in the closed interior of

S(v) = 0, there exists a point Qj'.wj in each of the spheres Sj(v) = 0, j

= 1,2, ■ • ■ , p, such that w= Ey=i *»ywy.
If (2: w= E"-i w»e* nes m the closed interior of 5(v) =0 and c= E"=i aie«>

w — c = crrzZl~i Aie, where O^cr^l and X,= (Wi — ai) [E"=i (Wi — ai)2}~112.

Consider the set of points Qj'. Wj = Cj + (o\ mj\ /mj)rjzZi-i Aie;, O^cr^l,

j=l, 2, • • ■ , p. Since E"=iA2 = l and e,-ey = S,y, (wj- cy)2 = ff2rj(E"=i A2)

^r*. Consequently Qj'.wj lies in the closed interior of the sphere Sj(v)=0.

Moreover, since

V P /    P \ /    n \ /n\

E mjWj = E wicJ + °" (  E I wi I ry I  ) (  E A.e, 1 = c + err (   E A,-e,- j
y— i y—i \ y—i / \ i=i       / \ i=i        /

= c + (w — c) = w ,

the desired locus is the closed interior of the sphere S(v) =0.

Lemma II is the re space analogue of Lemma I in Marden [4].

Lemma III. If P: V is a finite zero of R'/R, the "logarithmic derivative" of

the rational function (1.5) of the distance polynomials Fj, Fj(xit x2, • • • , x„)

= Cj-XT*y_i+i ^t*(^i, xt,   • • • , xn), 50 = 0, Cj>0, dk = \\v — vk\\2, mk>0 and real,

j=l, 2, • • • , p, V must satisfy (2.1).

&     Mk
(2-1) zZ~- = 0,

*_i V — vk

Mk=pkmk. pk = l for l^k^q. pk= —1 for q + 1 ̂ k^p.

Proof. A necessary and sufficient condition that P'.V be a finite zero of

R'/R is that V log F vanish at P. V log R = zZUi v loS F- Ey-9+i V log Fy
= Ey-iM;V log Fy where pj=l for Og^jg-q and /xy = — 1 for g + lgjg£. If

" = E?-i *<e. and vt = E?-i *rV-. & = |k-n||» = E?_i (*,—xf )*.
5)

log Fy = log Cy +        E       W* log 4
Jr-iy^+1

and therefore

3 log Fy X /d log dk\ X      2m(xi - Xi)
—-— =    2u   mk\- J =    E   -•

oXi k-ij-i+i        \    dXi     /       k-Sj-i+i dk
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Since

2mk\   zZ(xi- xt )e,-
_.     „       ^ ^ log F,              ^            L <-i                    J
V log Fj = £ —-e<=      E .-

,=i      oXi *=jj_i+i a*

=     E   -'        V log 7? =£My(    X)    -
*-«y-l+l V — V* y_!        \l_a,_1+l  V  —  Vk/

and (2.2) holds.

X    2Mk
(2.2) V log 7? = zZ -i Jf* = p*w*.

t_i  v — vt

Clearly V must satisfy (2.1).

Lemma IV. If (1) Qj\ Vy lies in the spherical region o>Sy(v) so-,-[(y-cy)' — ij]

=§0,

fy > 0, a = ± 1,       j=l,2,---,p.

(2) P'.V is exterior to all of the spherical regions a jSj(y)^Q,j = 1,2, ■ ■ ■ ,p

and

(3) Ej-i titj/(V—Vj) =0, mj real,
V must satisfy inequality (2.3).

r p wj(v - cj)"i2    r *   \m<\ tjy

<2-3)     7W"[£-3>r]-[£^]S0-

Proof. By hypothesis S.-(v) =0 separates Qj and P. It follows from Lemma

I that the point Qj :wj = 1(V—Vj) is in the sphere

If we let w = E"-i wjwj where the mj are real, by Lemma II, the locus of

Q'.w is the closed interior of the sphere 7\v) =0, i.e. (2.4) holds.

/ *    mj(V - c,)\2      (  '     | my | n \2
(2.4) T(w)^[w-zZ—-— 1   -(Ei ,1^0.

V jti       S^V)     )       Vytx   \Sj(V)\)

By hypothesis 0= E?-i mj/(V—v,-) = E?-i tn,-Wj = w. Therefore w = 0 is
a value corresponding to a set of suitably chosen points Qj in the given regions

GjSjiy) —0. w = 0 must satisfy (2.4) and it follows that, under the hypotheses

of this lemma, (2.3) holds.

3. A Marden-type theorem. Theorem I can now be established.

Proof. Let P: V be a finite zero of 7?'. If P is also a zero of 7?, P must coin-

cide with at least one zero of some Fj for 1 = j s£ q. Therefore it must lie in at
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least one of the given spherical regions and (1.7) holds. If P is not a zero of R,

either F lies in at least one of the given spherical regions, in which event V

satisfies at least one of the inequalities (1.7), or P is exterior to all of the given

regions. It will be shown that in the latter case V satisfies (1.8).

Since F is a zero of R! and not of R, it follows from Lemma III that

Et-i Mk/(V—v*)=0 where Mk=pkmk, Mk7±0 and real, mk>0 and real,

ju* = l for k^q and pk = — 1 tor k>q.

It is convenient to first consider distance polynomials Fy each of which

has a single zero of multiplicity «y which lies in the spherical region <rySy(v) ̂0

for j = l, 2, • • • , p, i.e.

(3.1) Fj(Xi, Xi,  ■  ■  ■ , Xn)  = Cjdj(Xi, Xi, ■  •  ■ , Xn), Cj > 0.

Since P is exterior to all p of the given spherical regions, Lemma IV ap-

plies and it follows that V must satisfy inequality (2.3), 7(v)^0, with Nj

= ryWy replacing reiy. Vj=l for j^q and Vj= —1 iorj>q. When I(v) is expanded

and simplified it becomes

/, on    r, ^      ^   ^ V-      2NjNk\(v-c3)-(v-ck) -\j\krjrk]
(3.2) /(v) = E—TT+      E     -_. ._, .-

j-i Sj(v)       y=i,*_y+i Sj(v)Sk(v)

where Xy = jUycry.

Since (cy—c*)2=(v-cy)2+(v-c*)2 — 2(v-cy)-(v-c*) and (Xyfy-Xtr*)2

= A+r\ - 2XyX*ryr*, 2 [ (v - cy) • (v - ck) - XyX^ryr* ] = Sj (v) + Sk (v) — r# where rjk

= [(cj—ck)2 — (Xyry—\krk)2 ].

If Ey-i -Wy is replaced by N, (3.2) reduces to (3.3)

(3.3) m-±¥-   t  -02*-.
y_l Sj(v)        j-i.k-j+i Sj(v)Sk(v)

It follows that V must satisfy condition (1.8).

Now consider the distance polynomials (3.4)

Fy(Xi, x2, • • • , xn)

p

(3.4) = Cj JI dik   (Xi, Xi,  •   •  • , Xn),j =   1, 2,  •  •  • , P, Cj > 0
k-l

each of which has all of its zeros in the spherical region ajSf(v)^=0 where

Sf(v) = (v—c*)2 — r*2, rf >0. Let Qmk be the zero corresponding to the first

degree distance polynomial dmk. The zeros Qmk, k = l, 2, ■ • ■ , pm, of Fm all

lie in amSZ(v) ^0. This is a specialization of the preceding case in which the

pm spheres Sy coalesce in the sphere S£. The derivation of the desired vector

inequalities follows* as above.

The boundary surface £(v)=0 of the region of space described by the

inequality (1.8) can be written in the form (E"=i ^2)p+^>(xi, x2, • • • , x„) =0

where f> is a real polynomial of degree at most 2p — 1. In En this surface con-
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tains the circle at infinity as a p-iold curve and it will be referred to as a p

spherical 2p — ic surface. When p = 2 the surface is a cyclide. These surfaces

were studied in detail by Darboux [2].

It is not difficult to show that in certain cases when the spheres Sy are all

symmetrically located with respect to a fixed point 0 and o"y= 1 for all j, the

surface E(v) =0 degenerates into a set of spheres centered at 0, and the de-

sired region E(v) ^0 is the closed interior of the largest sphere in that set.

4. The zeros of R—\2R'. An interesting application of Theorem I is dis-

played in the next result.

Theorem II. Under the hypotheses of Theorem I every finite zero of R—\2R',

X real, satisfies at least one of the p + l inequalities

(4.1) »AW^0, j = 1,2, •••,/>.

(4.2) *W     =±J^Tj(V)-      V     I***-**
IljUSito £   NSj(v) y-llt_y+1  Sj(v)Sk(v)

where Tj(v)= [v —(c, + A7w)]2 —r2, w=Xe, and e is the unit vector in the VR

direction.

Proof. Let P:Vbea zero of 7?—X27?'. If P is a zero of 7?, it is also a zero of

7?' and V corresponds to a point which lies in at least one of the spherical

regions described by (4.1). If P is not a zero of 7?, either P lies in one of the

given spherical regions, in which case V satisfies at least one of the vector

inequalities (4.1), or P is exterior to all of these regions. In the latter event

it will be shown that V must satisfy (4.2).

Since P is a zero of R—\2R' and not of 7?,

R' ||V7?||2 1  .. ..,
—     =--—     = —   VlogT? P = A-2
R   P        47c2     p      4  " "

and from (2.2) one obtains

1 VR V log R *       TVy 1

2 R   P 2        P       ~i V - Vj      A

where e is the unit vector in the VR direction.

Since P is exterior to all of the given spherical regions one can proceed as

in the proof of Lemma II and it follows that E?-i Nj/V—Vj = w, a value

corresponding to a suitably chosen set of points Qj'-Wj j=l, 2, • • ■ , p, each

of which lies in the corresponding spherical region a,Sj(v) —0, must satisfy

(2.4). That is

(w - JZ Nj(V - cy)/Sy(V))   - ( JZ I N,\ w/SAV?)   = 0.
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When the left hand side is expanded this inequality reduces to (4.2). Tj(v) =0

is the sphere obtained by translating Sj(v) = 0 in the direction of A^Xe by an

amount equal to the magnitude of that vector.

Corollary. If all the zeros of a distance polynomial F(xu x2, • • • , x„) of

degree m lie in a sphere Si(v) =0, any zero of F~\2F', X real, will lie either in Sx

or in the sphere obtained by translating Si in the direction of mke by an amount

equal to the magnitude of that vector, e is the unit vector in the VF direction.

Proof. \ip = q = l,cri — l, i.e. R = F, a distance polynomial of degree m with

all of its zeros in Si(v)=0, it follows from Theorem II that the zeros of

F —X2F' either lie in Si or are such that their position vectors satisfy (4.2).

In this case (4.2) reduces to mw2T(V)/mSi(V) =0. Since P is exterior to

Si, Si(V)>0 and consequently TX(V) = [V- \ci+m\e} ]2-r\ = 0.

The results of this section are generalizations of Theorem II in Marden

[4]-
5. The critical points of finite products of distance polynomials in E3.

Nagy [6] developed the following Gauss-Lucas type theorem for the class of

distance polynomials in E3: "Let F(xi, x2, xi) be a distance polynomial with

zeros Qj, j=l, 2, • ■ • , re, and let K be the smallest convex region of space

which contains those zeros. Then all the zeros of F' also lie in K. No zero of F'

is on the boundary of K unless it is a multiple zero of F or unless all the Qj

are coplanar."

As soon as the location of all the zeros of F is known Nagy's theorem

singles out a portion of space which must contain the zeros of the logarithmic

derivative of F. If F is a finite product of distance polynomials, Theorem I

will restrict even further the region of space within which the critical points

may lie.

Let F(xi, x2, x3) = Ily-i Fy(xi, Xi, x3) be a finite product of the distance

Fy where each Fj is of degree rey and has all of its zeros in the closed interior

of the sphere Sj. In this section the region containing the critical points of F

is determined for p — 2 and p = 3 when the spheres in question have collinear

centers and a common external center of similitude. In each case the desired

region consists not only of the closed interiors of the given spheres but also

of the closed interiors of another set of spheres having the same external

center of similitude as the given set. The centers of the second set are located

at the zeros of the logarithmic derivative of the distance polynomial

G(xi, x2, x3) obtained from F by coalescing all the zeros of each Fy at the center
of the corresponding sphere Sj.

Theorem III. If F(xi, x2, x3) is an nth degree distance polynomial nx of

whose zeros lie in the closed interior of the sphere Si and the remainder of whose

zeros, re2 = re —«! in number, lie in the closed interior of the sphere Si, all the

zeros of F'(xi, x2, x3) lie either in the closed interior of Si or Si, or in the closed

interior of a third sphere S(v) = 0 where



108 AUGUSTA SCHURRER [September

/        »ic2 + n2cA2      /nir2 + «2ri \2
S(v) = ( v- 1   - I-) .

\ ni + n2   /        \   ni + n2    /

5 has a common center of similitude with Si and S2 and its center is located at

the centroid of a system of two particles, one of mass n2 located at the center of the

sphere Si and the other of mass «i located at the center of the sphere S2.

Proof. This is a special case of Theorem I for which q = 2; Nj = njj=l, 2;

N = ni+n2; i>i = l, <r,=l, X< = 1 for *—1, 2.
F(xi, Xi, x3) = Fi(xi, Xi, x3)F2(xi, x2, x3). Each Fj, a distance polynomial of

degree »y, has all of its zeros in the closed interior of the sphere Sj. As a con-

sequence of Theorem I P:V, a zero of F', lies either in the closed interior of

Si or Si or, if P is exterior to both of these spheres, V satisfies (1.8) which in

this case reduces to

f   «i «2   "1 Min2Ti2
(ni + m)   -+--^—  ^ 0.

LSi(V)      Si(V)]     Si(V)Si(V)

li both sides of the inequality are multiplied by Si(V)S2(V) >0 and the Sj and

Ti2 are replaced by their equivalents, this condition reduces to

[(ni+n2)V-(niCi+nici)]2-(niri+niri)2 = (ni+ni)2S(V) = 0.

Consequently if P is exterior to both Si and S2, it must lie in the closed interior

of 5.
This theorem is an extension of a result due to Walsh [7].

Theorem IV. If all the zeros of the distance polynomial Fj(xi, x2, x3)

= JXtLj || v— Vill2"** of degree **/, J —1, 2, 3, lie in the closed interior of the sphere

Sj and if all the Sj have a common external center of similitude 0, then each zero

of the derivative of F= Ylj-i Fy(*i, x2, x3) lies either in the closed interior of one

of the Sj or in the closed interior of one of the spheres Si or S2'. The spheres Si

and Si also have the external center of similitude 0 and their centers correspond

to the zeros of the logarithmic derivative of the distance polynomial G(v)

= IX?-i Gj(v) = IIy_i ||v—c,j|2n> where the cy are the position vectors of the cen-

ters Cj of the spheres Sj.

Proof. Without any loss of generality the line of centers may be taken as

the xi axis and the center of similitiude 0 as the origin of a rectangular co-

ordinate system. Cj'.Cj where cy = cyei is the center of Sj. Since 0 is a center of

similitude ryCy_1=X for j = l, 2, 3. It follows that Sy has the form Sy^E'-i**)

— 2cjXi+fix\ and Tyi = ||cy-Ci||2 — (ry-fi)2=Ai(cy-Ci)2 where p = l-X2.

As a consequence of Theorem I all the zeros P: V oi F' lie either in one of

the given spheres Sj or in the closed region of space described by (1.8). Under

these hypotheses p = 3, Py —1, <ry=l, Xy = l, and consequently A7y = »y for

j-i, 2, 3. If P is exterior to all of the Sy, Uj.j Sj(V) >0 and (1.8) reduces to
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E        [NNiSj(V)Sk(V) - pNjNk(cj - ckySf(V)] = 0
i,j.k,—l;»V;>*

where N= zZt-i N* The boundary surface of the desired region of space is

clearly of order 4.

After substituting the appropriate expressions for the Sj, the equation of

the boundary surface, E(v) =0, reduces to

(5.1) re2( zZ*£)  - VAxi - B)( zZxt) + 4CxI - 2Z?X! + E = 0

where

3

A = re E (n ~ n<)ci>
i—l

B = p\ < E (n — ni)2d> + 2(niCi + »2c2)n3c3

C = re < E niCjCk > ;
\i,j,k—l,tej?tk;j<k )

D = p\ E niCjCk{(n — n,)cj + (re — nk)ck) + 2cidC3      E       w«wy  5
L»,y,*=i;»vjy*,y<* i,y—i:«yy,«<y       J

and

F = M    ci(       E       w«cy) + 2cic2c3( E CiHjnA   .
L    \i,y=i;ivy,t<y        / \»,y,t=i;t>jy*;y<* /J

Consider the function G(v) = JJ*_! ||v—cy||2"'. This function can be ob-

tained by coalescing all the zeros of each Fy at the center of the sphere Sj.

The zeros of the logarithmic derivative of G must satisfy the relation

Ey-i (ni/(v~ci)) =0- Nagy's Lucas-type theorem, cited at the beginning

of this section, shows that the zeros of G'(v) must lie on the Xi axis. If V

corresponds to a zero of G', V = Xei- The condition which must be satisfied

by the zeros of the logarithmic derivative of G may now be rewritten as

Ey-i (wy/(^ —Cy)ei) =0 which is equivalent to (5.2).

(5.2) nX2-     E (re - re<)c,- \X + E ».*yc* = 0.
L i—l J i,j,k—l;ir'J9tk,j<k

If 7t and 7s are the zeros of (5.2), re(7i+72) = Ei-i (n — ni)Ci and «7r72

= (Et5.*-i;i»y**,y<* w<c;c*)- The spheres Sj with centers CJ :yjOi and with 0

as their external center of similitude are described by the equation

S!(xh xt, xi) s I E x> J - 2yyxi + py) = 0, / = 1, 2.
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After forming the expression n2Si Si it is not difficult to show that it is

identical to (5.1). In short, £(v)=0, the boundary surface in question, de-

generates into two spheres Si and Si with centers whose position vectors

correspond to the zeros of the logarithmic derivative of G(v). The region of

space described by E(v) = n2Si (v)S2 (v) =0 consists of the closed interiors of

the spheres Si and Si and contains all the zeros of F' which do not lie in

any of the Sj.

By introducing a coordinate system with its origin at the center of Si and

proceeding as in Theorem IV, the following result may be obtained.

Theorem V. Let F(xu x2, x3) = XI}1.! Fj(xu x2, x3) where each Fj is a dis-

tance polynomial of degree nj all of whose zeros lie in the sphere Sj of radius r

and center Cj'.Cj. Then the zeros of F' lie either in the closed interiors of the given

spheres Sj or in the closed interiors of Si and Si. Si and Si are spheres of

radius r whose centers correspond to the zeros of the logarithmic derivative of

GW = iL3-ilk-cy|K
The general case of both of these theorems was developed for polynomials

in a single complex variable by Walsh [8b].

6. The critical points of finite quotients of distance polynomials in E3.

Proceeding as in Theorem III the following two theorems may easily be veri-

fied.

Theorem VI. If the distance polynomial F,(xi, x2, x3) of degree %j has all

of its zeros in or on the sphere Sj (v) = (v — cy)2 — r2. = 0, ry > 0, for j = 1, 2, ni t± n2,

all of the finite zeros of the derivative of the quotient F=Fi/Fi lie in the closed

interiors of Si, Si, and a third sphere

/       «2Ci — nic2\2       /n2ri + nir2\2
5(v)^(v-)   - [--1)   =0.

\ n2 — ni   /        \ | »s — »i| /

This is an extension of a result obtained by Walsh [8a].

Theorem VII. If the distance polynomial Fy(xi, x2, x3) of degree n has all

of its zeros in the spherical region o>Sy(v) s£0 where <ry= ±1, j=l, 2, and the

two spherical regions have no points in common, all the finite zeros of F = Fi/F2

lie in the two given spherical regions.

This result was obtained by Bocher [l] for a polynomial in a single com-

plex variable.
The special case of Theorem I for which A7i = Mi, Ar2 = n2, 7\f3= — m3, and

7V= E?-i A7» = Mi+m2—m3 = 0 leads to some interesting results which are sum-

marized in the final two theorems.

Theorem VIII. If the points Qj'.tyj vary independently over the spherical

regions OjSj(v) =0 for J —1, 2, 3, any point P:V whose position vector forms a

constant cross ratio with the fy lies in a fourth spherical region.
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Theorem IX. If (1) F,(xi, x2, x3) is a distance polynomial of degree nj all

of whose zeros lie in the spherical region ajSj(v) ^0 for j= 1, 2, 3, (2) re3 = rei+w2

and (3) the given spherical regions have no point in common, every finite zero

of the derivative of F=FiF2/F3 is such that it lies in at least one of the given

spherical regions or in a fourth spherical region. This fourth region is described

by a point P whose position vector V forms a constant cross ratio, — re2/«i, with

the position vectors % of the points Qj which describe the given spherical regions

<TjSj(v)£Q,j=l, 2, 3.

Proof, Any zero F: V of F'(xi, x2, x3) which is exterior to all of the given

spherical regions must be such that V satisfies the following inequalities:

°~jSj(V)>0 for j= 1, 2, 3 and

e(v)       _ r NiNiTu -j _ r NiN3ru I _ r_w2r23_i

n^iPO"   " LSi(V)5,(V)J " L5!(V)5,(V)J ~ U,(V)S,s(V)J °

If the second inequality is multiplied through by IJjLi <TjSj(V)>0, it

becomes

cr iff icr3E(V) = — <Ji<jicr3[ — w2re3r23Si(V) — Mire3Ti352(F) + niniTi?S3(V)].

It is clear that the boundary surface E(v) =0 is again a sphere.

Since the conditions for Lemma III are satisfied (6.1) holds.

(6.D    0 = e —=E-^-+ £—- ±— ■
k-i V — vk       t_i V — vk     k-i+ti V — vk     k=i+e2 V — vk

Nagy [6] proved the following Laguerre-type theorem: "If the Qj,

j = l, 2, ■ ■ ■ , p, are points in the spherical region crS(v)^0, <r= +1, S(v)

= (v—c)2 —r2, r>0, and P:Vis exterior to crS(v)^0, it follows that

^OT* p       mk re

k-i v — vk     k-i v — y     " — r

where mk>0 and real, re= Et-i mk, and f is the position vector of a point in

aS(v)=0.

In short, if all the zeros Qj of F lie in a spherical region S, they may

be coalesced at at least one point Q in that region without altering the value

of the logarithmic derivative of F. This theorem indicates that there exists

a point Qj\ t(py in each of the spherical regions ctjSj(v) ^0, j= 1, 2, 3, such that

(6.2) holds.

(6-2)      -—— =     2^-'       «y =      E    «ti   80 = 0,      j= 1,2,3.
V  — Vlj k-ij-i+l  V — Vk k-Sj-i+1

(6.1) becomes «i/(V— ^i)+re2/(F— ijr2) =n3/(V— tyi) where i(ry is such that

OjSj(iij) —0. Since re3 = rei+re2, this expression may be rewritten in the form
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_L_+(^\^_ = (1+»)_L_,

which is equivalent to (6.3)

0 = {(V - «fci)2 + \(V - In)2 - (1 + \)(V - <kzy}V+ (V - tt3)2tfei

+ x(-v - ^)2*2 -i(y- ^y + w - 40,}4».
(6.3)

ni(V - ia)2

(6.3) is a relation of the type aV+ zZLi p\it, = 0 where a+E?-i 0< = o-

This leads one to the conclusion that the points P:V, and Qi'.fy, t = l, 2, 3

lie in the same plane II. If complex numbers are introduced into II and

z, Z\, Zi, and z3 represent P, Qi, Qi, and Q3 respectively, (6.3) becomes — n2/ni

= (z — Zi)(z3—zi)/(z—zi)(z3 — Zi). That is, the cross ratio formed by the points

P and Qi, i— 1, 2, 3 is a constant and the region of space bounded by £(v) =0

is the spherical region described by a point P: V which moves so as to form a

constant cross ratio, — m2/mi, with the points Qj'.fy as the Qj describes the

spherical region o>Sy(v) ̂ 0 for j' = l, 2, 3.

The final two cross ratio type theorems are generalizations of those

developed by Walsh [7] for polynomials in a single complex variable.
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