
STONE-CECH COMPACTIFICATTONS OF PRODUCTSC1)

BY

IRVING GLICKSBERG

1. Introduction. As is well known from the work of Tychonoff [10],

Stone [8], and Cech [l ], every completely regular space X can be imbedded

as a dense subspace of a compact Hausdorff space fi(X) in such a way that

continuous (real valued and bounded) functions on X extend continuously

to fi(X); indeed the resulting compactification of X, the Stone-Cech com-

pactification, is uniquely determined by just these properties. For a set of

completely regular spaces, the naturally induced imbedding of their product

PXa as a dense subspace of Pj3(Xa) yields a compactification of their prod-

uct, and the question arises as to when one can identify(2) this with the

Stone-Cech compactification. The main purpose of this paper is to show that

aside from a trivial case, this identification is possible if and only if PXa is

pseudo-compact(3) [5], i.e., if and only if every real valued continuous func-

tion on it is bounded, or, equivalently, every bounded continuous function

assumes its bounds(4). A side result of the investigation is the fact that every

product of uncountably many compact spaces, each having at least two

points, is the Stone-Cech compactification of certain proper subspaces, yield-

ing a fairly accessible body of nontrivial Stone-Cech compactifications.

Finally we shall give several conditions sufficient to insure that a product of

pseudo-compact spaces be pseudo-compact, and briefly discuss a related

question.

2. Pseudo-compact spaces. Several facts concerning pseudo-compact

spaces will be used repeatedly in the following pages, and we shall collect

them here. One of our main tools is a characteristic property, that Ascoli's

theorem holds [3, Theorem 2], that is, every bounded equicontinuous set of

functions on a pseudo-compact space X has compact closure in the Banach
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(1) Some of the results of this paper (essentially the necessity in Theorem 1, and Theorem

3) were originally included in a separate note submitted to the Proc. Amer. Math. Soc. in 1955,

and were obtained while the writer was at The RAND Corporation. The same part of Theorem

1 has been obtained by M. Henriksen and J. R. Isbell [4] who also obtained some results in the

converse direction. The writer would like to express his thanks to Professors Henriksen and

Isbell for allowing him to read their manuscript.

(2) We shall simply write 0{PXa)=Pp{Xa) to express this identity (rather than the

identity of the compact spaces involved (cf. §6)); when the meaning is clear we shall speak of

fi(X) as the compactification. It will be convenient to always consider X as a subspace of

/3(X), and thus PXa as a subspace of Pfi(Xa).

(3) It should perhaps be noted that this corrects an erroneous assertion made by Hewitt

[5, Theorem 14].

(4) In addition pseudo-compactness requires complete regularity.
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space C(X) of all bounded real valued continuous functions on X. A direct

corollary is the fact that, for a bounded set of functions on such a space,

equicontinuity is equivalent to equicontinuity of each countable subset, since con-

ditional compactness and conditional countable compactness coincide in

C(X).
Another characteristic property of these spaces which will prove useful is

purely topological in form [3, Theorem 2]: every sequence of nonvoid, pairwise

disjoint open sets has a cluster point (which by definition has the property that

each of its neighborhoods meets infinitely many elements of the sequence).

Of course such a cluster point prevents the sequence from forming a locally

finite collection of open sets. On the other hand, given an infinite locally finite

collection C of open sets, on any space, we can produce a sequence of the

type described with no cluster point: we simply choose an open neighbor-

hood Ni contained in one element of C and meeting only finitely many;

deleting these from C to form & we obtain a similar neighborhood N2 for Ci,

and continue. Clearly the sequence [Ni] we obtain, being locally finite, has

no cluster point, and is easily seen to satisfy our other requirements. Conse-

quently, if a space is pseudo-compact then every locally finite collection of

open sets is finite. The converse of this assertion is obvious, so we have

another characteristic property, which in turn yields the following strength-

ened form of our original topological condition: every sequence of nonvoid open

sets has a cluster point if and only if the space is pseudo-compact. We need only

verify that a pseudo-compact space has the required property. But a sequence

of nonvoid open sets yields a collection of sets which is locally finite or not;

in the first case the collection is finite so that some point lies in infinitely

many sets of the sequence, and is thus a cluster point. In the second case

some point prohibits local finiteness, and clearly this point is the required

cluster point.

Pseudo-compactness is also reflected in the relationship between f3(X) and

its subspace X: X is pseudo-compact if and only if there is no nonvoid closed

Gi in f3(X)\X. For, given a nonvoid closed Gs in (1(X)\X, we can produce by

Urysohn's lemma a continuous function on fi(X) that does not assume its

maximum value on the dense subspace X; conversely, given a continuous

bounded function on X which does not assume its least upper bound, the set

where the continuous extension of this function to B(X) assumes its maxi-

mum is a nonvoid closed Gs in j3(X)\X.

If a product PXa is pseudo-compact, clearly each factor space and each

partial product is also pseudo-compact, since continuous functions on these

spaces may be considered as continuous functions on the full product.

Further, pseudo-compactness of the product is equivalent to pseudo-compactness

of every countable partial product P^-i Xai. For, since it suffices to show that

every sequence of (nonvoid) canonical neighborhoods in PXa has a cluster
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point, and each neighborhood places restrictions on only finitely many co-

ordinates, only countably many coordinates are involved, say those cor-

responding to ax, a2, ■ ■ ■ . Choosing any cluster point of the projection of

our sequence into PXai, we can (by any arbitrary choice of all other coordi-

nates) clearly extend this point to a cluster point of the original sequence.

Notation. We shall allow x to represent a generic element of fi(X) rather

than of X. For fCC(X), /* will denote its unique continuous extension to

P(X), f\ F its restriction to a subset F of X. For such a subset F~ and F'

will denote closure and complement, respectively, in X. Where no confusion

can arise we shall refer to $(X)\X as the set of ideal points of fi(X). All spaces

will be assumed completely regular, and all functions real valued.

3. The main result. If, for some a0, Pa^a„Xa forms a finite set, then every

fCC(PXa) clearly has a continuous extension to Pf3(Xa), and we may write

(3(PXa) = Pj3(Xa). This is precisely the trivial case mentioned in the introduc-

tion.

Theorem 1. Let \Xa} be a set of completely regular spaces, and suppose the

set Pa^a,, Xa is infinite for every a0. Then a necessary and sufficient condition

that f3(PXa) = Pj3(Xa) is that PXa be pseudo-compact.

Proof of the necessity. A moment's reflection shows that the property

P(PXa)=Pfi(Xa) is inherited by all partial products(6); consequently, for

any subset B of our index set, we may evidently write

0 ( P Xa X   P   X^ = pp(Xa) =   P P(Xa) X   P 0(XJ
\a€B a$.B / aES a€B

= p( P   X„) Xp( P X„V
\a£B / \ aiB        /

Thus it will suffice to prove that if X and Y are infinite spaces such that

j3(XX Y) =f3(X)X(3(Y), then XX Y is pseudo-compact. We shall first show

that each of the spaces X and Y is pseudo-compact. In showing Y is pseudo-

compact, we can assume X is compact. For ilfCC(fi(X) X Y), then (f\XX Y)*

clearly must coincide with / on (3(X) X Y, and thus continuously extends / to

(3(X)X/3(F); thus j3(/3(X) X Y) =j3(X) X(3(Y), and we may replace X by
I3(X).

Suppose then that Y is not pseudo-compact and that X is compact. Then

there is a g in C( Y) which never vanishes on Y but has zero as its greatest

lower bound, and hence has a sequence of values g(yn)—»0. Since X is infinite,

(s) For we may identify the partial product PaeBXa with the subspace PaeBXaX {x} of

PP(Xa) (where x £ Pa<£BXa), and similarly PatEBP(Xa) with PaeB0(Xa) X {x}; since

fCC(Pa£BXaX \x]) has an obvious continuous extension to PXa, it has one to Pfi{Xa), hence

toPaf=B0(X«)X{x\.
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there is an fEC(X) having infinitely many values(6), and we may assume

that a sequence of these, {f(xn) ], strictly decreases to zero. By linear inter-

polation, we can construct a non-negative, continuous, bounded function h

on the reals for which h(f(xn))=g(yn), and setting

*(*, y) = 2h(f(x))g(y)/(h(f(x))2 + g(y)2),

we obtain an element </> of C(XXY): for g never vanishes and 0^</>^l.

But consider 0*. If (x, y) is a cluster point of the sequence {(x„, yn)} in

the compact space XXB( Y), then 4>*(x, y) = 1 since 4>*(x„, yn) = <A(x„, yn) = l.

On the other hand, x is a cluster point of [xn] and, since (p*(xn, y') =(j>(xn, y')

—>0 for each y' in Y, we have (j>*(x, y') =0 ior each y' in Y. Since Y is dense

in /3(F), it follows that 4>*(x, y) =0, which is the desired contradiction.

Returning to the general case, we see that both X and Y must be pseudo-

compact. In order to see that this is also the case for XX Y, we need only

prove that any closed Gs in the set of ideal points of B(XX Y) must be void

(cf. §2). But if F is such a subset of the set of ideal points of B(XX Y), then,

for each x in X, PH({x} X|3(F)) is a closed Gs in the set of ideal points of

B({x} XY) = [x] X|8(F), and thus is void since {x} X Y is pseudo-compact.

Hence F(~\(XXB(Y)) is void and FE(B(X)\X) XB( Y). But now for every y

in B(F), Fr\(B(X) X {y}) is a closed G8 in the set of ideal points of j3(XX {y})

= B(X)x{y}, hence void, so that F = Fr\(B(X)XB(Y)) must be void, and

XX Y must be pseudo-compact.

Our proof of the sufficiency is based on the possibility of coordinate-wise

extension of an element of C(PXa), which results, in the case of finitely

many factors, from the following lemmas.

Lemma 1. If XXY is pseudo-compact and fEC(XX Y), then the family

\f(x, -):xEX] is equicontinuous on Y. Consequently the mapping y—>f(-,y)

of Y into C(X) is continuous.

Proof. Since the second statement of the lemma is an obvious consequence

of the first, and since F is pseudo-compact, it is sufficient to prove that any

sequence {f(xf, •)} is equicontinuous on F (cf. §2). Suppose not. Then for

some yo in F and e>0, no neighborhood IF of y0 satisfies the condition

(*) I /(*»', y) - /(*»', yo) |  < e for y E W,

for all re. We now select a subsequence {xn} of \xn' } and open neighborhoods

F« of x„, IF„ of y0 as follows. Let Wi=Y and xx be the first x„' for which

(*) fails for W= Wi. We choose a neighborhood FiX IF2 of (xi, yo) on which/

varies by  < 1; having chosen Xi, ■ • ■ , xk,  V\, ■ • • ,  Vk, Wi, ■ ■ ■ , Wk+i we

(6) The following argument is due to the referee. If continuous functions with only finitely

many values suffice to separate every pair of points, then it is easy to see that X contains a

strictly decreasing sequence of open and closed subsets. Taking /„ as the characteristic function

of the nth subset, then/= ]C2-"/n is continuous and assumes infinitely many values.
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select Xk+i as the first xl for which (*) fails for W= Wk+i, and select an open

neighborhood Vk+iXWk+i of (xk+x, y0) on which/varies by <l/(k + l), with

Wt+iCWk+i.
From our choice of xn we have a yn in Wn lor which \f(xn, yf) —f(xn, yo) \

2je; consequently we may choose an open neighborhood VnXWn of (xn, yf)

lying within VnX Wn which yields |/(x, y) —f(x, y0) \ > e/2 lor (x, y)CVnX Wn-

But by one of our topological conditions for pseudo-compactness, { VnXWn]

has a cluster point (oc, y) in XX Y, so that \f(x, y)—f(x, y0)\ ^e/2 by con-

tinuity. On the other hand, as a cluster point of {lF„}, yCOjLi Wj; for

yQWk implies y(£Wk+x so that Wji+i is a neighborhood of y meeting only

finitely many Wn- Thus for xCVnCVn, \f(x, y)—f(x, y0)\ <l/n since both

(x, y) and (x, y0) lie in V„XWn+x. Since x is a cluster point of \Vn}, 0

— |/(*i y) ~/(*> y»)\ ^e/2, a contradiction establishing equicontinuity, and

completing the proof.

Lemma 2. Let X and Y be completely regular and fCC(XX Y). If the map-

ping y—>f( ■, y) of Y into C(X) is continuous, then f has a continuous extension

to 0(X) X Y.

Proof. In view of the natural isomorphism of C(X) and C(fi(X)), con-

tinuity of the mapping y—>/( •, y) implies continuity of the mapping y—>/( •, y)

of Y into C(f3(X)), where/(•, y) is the unique continuous extension of/(•, y)

to p\X). But as a function on f3(X)X Y, f is continuous. For given (xB, yo)

CP(X)XY and €>0, we have a neighborhood V of x0 satisfying |/(x, y0)

—f(xo, yo) | < e for xG V, since /(•, yo) G C(/3(X)); since y—>J( ■, y) is continu-

ous, y0 has a neighborhood IF satisfying |/(x, y)—J(x, yo)| <e for yG W and

all * in /3(X). Thus for (*, y) G VX W, \f(x, y) -f(x0, y„) | g |/(x, y) -/(*, y„) |

+ 1/(^1 Jo) ~f(xo, yo) I < 2 e, which establishes continuity and completes the

proof of Lemma 2.

Proof of the sufficiency in Theorem 1. If XX Y is pseudo-compact, then

by Lemmas 1 and 2 we may extend fCC(XX Y) continuously to (S(X) X Y.

Now any space containing a dense pseudo-compact subspace is pseudo-

compact (since any continuous function on the space, being bounded on the

dense subspace, is bounded); thus f3(X) X Y is pseudo-compact and applying

the lemmas once more we obtain a continuous extension to/3(X) X/3(F),

and the proof is complete for the case of two factor spaces. Since the result

now follows immediately for a finite set of factors, we may turn to the

infinite case.

Suppose that PXa is pseudo-compact and fCC(PXa). Then for every

€>0, there is a finite set ax, ■ ■ ■ , an of indices for which x, yCPXa, xai=yai,

i = l, ■ ■ ■ , n, imply \f(x)—f(y)\ <e. Suppose not, and let F0 be any finite

set of coordinate indices. Then we have points x1 and y1, agreeing in those

coordinates with aCFo, with \f(xx) — /(y')| ^e. By continuity and the form

of neighborhoods in the product we may clearly assume, if we replace e by
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e/2, that x1 and y1 differ in only finitely many coordinates, say those cor-

responding to aEFi. Considering the finite set P0WPi, we can arrive in the

same fashion at two points x2 and y2 with |/(x2) — fiy2) | i^e/2, agreeing in

those coordinates with aEF0VJFi and differing in just those coordinates with

aEF2, P2 finite. Continuing, we obtain sequences {x'|, {y1}, { Fi} for which

|/(x*) — fiy1) | ^e/2, x' and y' differ in only those coordinates with aEFi, and

the Pj are finite and pairwise disjoint.

Now, by continuity, we can enlarge each x* to a canonical open neighbor-

hood U' and each y* to a canonical open neighborhood F* so that |/(x) —fiy) \

> e/4 for xE U\ yE V\ Indeed we can clearly insist that Ui and F* agree in

all their components except those in which x* and y* disagree, i.e., for aEFi.

But { £/'} has a cluster point x, and if IF is a canonical open neighborhood

of x, placing restrictions on only those coordinates corresponding to ait • ■ ■ ,

an, then we have IF meeting U* if and only if IF meets F' for i large enough

to yield {ai, • • • , an}r\U'.i PyCUJl} Fj (since U{ and Vi then have the

same exist, • • ■ , a„th components). Consequently each neighborhood of x

contains a pair of points satisfying |/(x) — f(y)\ >e/4, contradicting con-

tinuity, and establishing our assertion.

Now let us consider/as defined on the subspace PXa of PB(Xa). If /has

no continuous extension to PB(Xa), we have an element x° of this space for

which lim sup,,^ f(x) — lim inix^xof(x) =a>0, where x is taken from the

dense subspace PXa. Let 0<3€<ci and ai, ■ ■ ■ , an be the finite set of indices

obtained for this e in the previous paragraph. For brevity let us now write

X = P?„i Xav Y=Pa*ci,...,an Xa and the values of / as for a function onXXY.

By Lemmas 1 and 2, / has a continuous extension J to B(X) X Y

= P"_X B(Xai) X Y, a subspace of P8(Xa). Moreover since B(X) X Y is pseudo-

compact, by Lemma 1 {/(■, y) }vSy is equicontinuous on B(X). In particular,

this is the case at (x°t, • • ■ , x°n)GP"_i B(Xai) =B(X), so that this point has

a neighborhood V on which /(■, y) varies by < e, for each y in F. But con-

sider the corresponding neighborhood VXPa^au- ■ -,»„ B(Xa) of x° in PB(Xa).

It contains elements (x1, y1) and (x2, y2) of XX Y for which a — e<f(x1, y1)

—f(x2, y2) so that

a - e <  | /(x1, y1) - f(x\ y2)\   +\ f(x\ y2) - f(x2, y2) |

=   I fix1, y1) - fix1, y2)\   +| fix1, y2) - fix2, y2) |   < 2e,

and 3e<a<3e, contradicting our assumption that/ has no continuous ex-

tension to PBiXa), and completing the proof.

4. Some particular nontrivial Stone-Cech compactifications. The final

portion of our proof of Theorem 1 reveals a class of Stone-Cech compactifica-

tions of a nontrivial, although certainly a very special, sort.

Theorem 2. Let [Xa] be a set of uncountably many compact Hausdorff

spaces, each having at least two points. For bEPXa let Xb be the subspace of the
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product consisting of all points xCPXa with xa^bafor at most countably many

a. Then PXa is the Stone-Cech compactification of the proper subspace Xb.

The cardinality restrictions are only required to yield X6 a proper sub-

space. Trivially Xb is dense, and countably compact, since any sequence of

points of Xb has a cluster point (in the full product) which must, of course,

lie in X6. Just as in the proof of Theorem 1 we may assert that lor fCC(Xb)

and e>0 there are indices ax, • • • , an, for which x, yCXb, xai = yai,

i = l, • • • , n imply \f(x) —f(y)\ <e. For if not, we may proceed as in the

previous proof (since we may alter countably many coordinates of a point

in X6 and remain in X6) to sequences {x'}, {y'f in X6 and a sequence {T7,}

with just the properties which held there. But here {x*} has a cluster point

in Xb, and any of its neighborhoods must contain x* and y* simultaneously

for i sufficiently large, so that we obtain the same contradiction.

Again, if / does not have a continuous extension to PXa, we have an x°

lor which lim supx^o f(x)— lim infx^x„ f(x) =a>0. Taking 0<3e<a and

oti, • • • , a* the corresponding set of indices then, since we may write X6

= XX Y with X = P"=1 Xai, and X6 is pseudo-compact, we arrive at the same

final contradiction.

Some particular examples are intriguing. Take, for example, each Xa a

compact topological group, b the identity of the product group, so that Xb

and j3(Xb) are topological groups. Indeed take the simplest case with each

Xa the two element group {0, 1}, and let 0, 1 be respectively the identity and

(1, 1, • • • )• Extending the subgroup X° of the full product to a maximal

subgroup Z not containing 1, we have Z and 1+Z complementary, since, for

x£Z, 1 lies in the subgroup generated by x and Z, or l=x+z, zCZ, and

x = l+zCl+Z. Thus in this case Z and (3Z\Z are homeomorphic, and all of

the spaces Z, fi(Z)\Z and fi(Z) are homogeneous (cf. [7])(7).

5. Products of pseudo-compact spaces. It is not true that a product of

pseudo-compact spaces must be pseudo-compact. Indeed Novak [6] has

recently given an example of a pair of countably compact completely regular

spaces whose product is not even pseudo-compact(8). In this section we shall

(7) Numerous companions to Rudin's example of a homogeneous X with (s(X)\X not

homogeneous can also be constructed via Theorem 2. Let if be a compact space, not totally

disconnected, with an isolated point ko and cardinality H >K0. Let Y be the product of K replicas

of K, which, since fo2 = k<, contains the nonvoid subspace X= {y.ya — k for it as, for each kCK}-

Then X is homogeneous since to take x1 into x2 only requires a permutation of the as. But

£l implies Y'CX and xG T\* implies F*C Y\X so that P(X) = Y and P(Y\X) = Y. Thus
any homeomorphism of f)(X)\X = Y\X with itself extends to one of t)(Y\X) = Y with itself.

Consequently 0(X)\X cannot be homogeneous since (£o, ko, ■ ■ ■ ) is obviously its own com-

ponent in Y, and Y is not totally disconnected.

(8) Novak's example was designed as a noncountably compact product of a pair of count-

ably compact spaces. However, it contains an open and closed discrete infinite subspace, hence

is clearly not pseudo-compact. A similar example has been given by Terasaka [9]. The writer

is indebted to Dr. D. O. Ellis for reference to Novak's result.
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give some conditions which are sufficient to insure that a product be pseudo-

compact, and yield some analogous facts for other forms of compactness.

The generality of our results is increased somewhat by utilizing the notion

of a P-point introduced by Gillman and Henriksen [2]. Such a point has the

property that every countable intersection of its neighborhoods is a neighbor-

hood (not necessarily open).

Theorem 3. Let X and Y be pseudo-compact. If X is locally fc"$7 compact^),

and each non-P-point of Y has a base of neighborhoods of cardinality ^&y,

then XXY is pseudo-compact.

In particular this yields the fact that a product of two pseudo-compact

spaces is pseudo-compact if one of the spaces is locally compact.

Proof. We shall show directly that B(XXY)=B(X)XB(Y), so that the

conclusion will follow from Theorem 1 (unless either space is finite, in which

case the conclusion is obvious). Let fEC(XXY). For x0EX, we have an

t$7 compact neighborhood V, and, as a consequence, we can assert that

{fix, -)}ief is equicontinuous at any non-P-point yo in F. Suppose not, so

that for some e>0, Fw= \x: xE V, sup„ej7 |/(x, y) —fix, y0)| ^e} is nonvoid

for each neighborhood W oi yo. Allowing IF to range over a base of neighbor-

hoods B, of cardinality 5=K7, {Pjr} forms a filter base on V which has to

have an adherent point Xi in F. On the other hand, (xi, y0) has a neighborhood

F1XIF1, WiEB, on which / varies by at most e/2 so that Fi cannot meet

Fw„ and Xi cannot be adherent to {Pif}.

Since equicontinuity of any countable subset of C( F) is automatic at P-

points, every countable subset of {fix, ■)} xeY is equicontinuous on F. As we

have noted, this implies that the full set is equicontinuous on F, and by

Ascoli's theorem it thus has compact closure in CiY). But this implies that

the mapping x—»/(x, •) of V into C(F) is continuous at x0; for if the filter

J on F converges to Xo, then limgr/(x, y) =/(xo, y) for yEY and the image

of the filter has at most the single adherent point /(x0, •), hence must con-

verge to/(x0, •) by compactness. Since V is a neighborhood of x0, the mapping

x—*/(x, •) of X into C( F) is continuous at Xo, hence everywhere since Xo was

arbitrary, and, by Lemma 2,/has a continuous extension/to XXBiY). Since

|3( F) is locally compact, the same argument (with /3( F) taking the role of X)

yields the desired extension of/ to /3(X)X/3(F), and the proof is complete.

Because of the basic asymmetry of the hypotheses on X and F in Theo-

rem 3, its applicability is somewhat enhanced, as is easily seen by examples,

by the trivial fact that a space which is a finite union of pseudo-compact sub-

spaces is pseudo-compact (or the equally trivial fact that having a dense

pseudo-compact subspace makes a space pseudo-compact, e.g. if X is not

locally N7 compact but contains a dense pseudo-compact subspace which is).

One particular instance of the use of a finite decomposition in showing a

(9) That is, every point of X has a neighborhood V such that every open covering of V,

of cardinality g^, has a finite subcovering.
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product XX Y is pseudo-compact should be mentioned, since it is a conse-

quence of Theorem 3; we may disregard any open subset (of either space)

which has compact closure. Specifically, if X and Y are pseudo-com pact, and

WE Y is open and has compact closure, then X X W is pseudo-compact if and

only if XXY is pseudo-compact. For, as one easily sees from the topological

conditions for pseudo-compactness, the closure of an open subset inherits this

property. Thus if XX F is pseudo-compact, XXW~'~ inherits the property;

since XX (boundary IF) is pseudo-compact by Theorem 3, the same is true

of XXW' as the union of these two sets. On the other hand, if XXW' is

pseudo-compact the same is true of XX Fas the union of this set and XXW~,

which is pseudo-compact by Theorem 3(10).

In showing an infinite product is pseudo-compact we need only consider

countable partial products (cf. §2). This suggests use of the diagonal process

which leads to the following, somewhat restricted, extensions of Theorem 3.

Theorem 4. Let {Xa\ be a set of pseudo-compact spaces. Then PXa is

pseudo-compact in each of the following cases:

(a) all but one Xa is locally compact;

(b) for all but one a, each non-P-point of Xa is a Gi;    ^

(c) for every a, Xa is &y compact and each non-P-point of Xa has a base of

neighborhoods of cardinality ^=b$y.

Proof, (a) Since we need only consider, at worst, the countable case, let

Xo, Xi, • ■ • be a sequence of spaces of the type described with X0 the ex-

ceptional space. We shall show that any sequence { U"} of nonvoid canonical

open neighborhoods in PXj has a cluster point.

Let Un = PU", with UJ = Xj for j^mn. Set Xf=Xj torj = 0 and all com-

pact factors, and, for Xj noncompact let X* be the one-point Atexandroff

compactification of Xj, with x* the (nonisolated) point at infinity. Then UJ

remains open in X*, and if we set Vf=Uj for j<ma, VJ = X* ior jtjtntn, and

Vn = PVf, then { F"} forms a sequence of nonvoid open subsets of PX*

= XoXPjn Xf, which is pseudo-compact by Tychonoff's theorem and Theo-

rem 3. Moreover U" is dense in V" so that any cluster point of { V"} is also

a cluster point of { U"}. Thus if we can produce a cluster point of { Vn\

lying in the subspace PXj of PX* our proof will be complete.

Let Xj-j be the first noncompact factor with j=il. { FJj} has a cluster

point in Xjv so that some closed neighborhood Wjl of x^ does not meet some

neighborhood of this cluster point, and, for infinitely many re, V\C\Wj^0.

Let {n\} he the infinite sequence of integers re for which this holds. Consider-

ing the next noncompact factor Xj2 and { F£ } we can obtain in the same

fashion a closed neighborhood PFj2 of x\ and a subsequence {n2} of \n\] for

which VJ>r\Wj2?£0. We continue; replacing {Fn} by the diagonal subse-

quence  (or the final subsequence,  if  the process terminates)  and setting

(10) Indeed we only need to have W~ locally compact to conclude XX Fis pseudo-compact.
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Wj = 0 lor all other j we have V^r\W'j^0 for all n and j with n^j. Let
F;=Fj"rMF/ for j^n and =Xf otherwise; setting V" = PV", {?n} again

forms a sequence of nonvoid open sets in PX*, and as such has a cluster

point x in PX*. But x must also be a cluster point of { V"}; for if V = PVj

is a neighborhood of x with Vj = X* for j^fc, then FV^F^^f implies

VnC\V7^0 if w exceeds k, since V"CVj for jgw. Moreover x must lie in the

subspace PX, of PX*. For if xk = x* for some k then the neighborhood

{x': xk G IF*} of x in PX* meets infinitely many Fn despite the fact that

WkC\ Vi is void as soon as n exceeds k. Thus x is the required cluster point in

PXyOf   {[/"}.

(b) We note first that if a point y is a Gj in a pseudo-compact space,

then it has a countable base of neighborhoods. For by regularity: (i) \y\

= C\Wj with Wj open and Wf+iCWj; (ii) in order to show {Wj} is a base of

neighborhoods it suffices to show each closed neighborhood IF contains some

Wj. But the collection {IF,PiIF'} is locally finite so that only finitely many

elements of the collection are nonvoid; since D(Wjr\W') =0 and the sets

decrease some element of our sequence {WjC\W'} must be void.

Again we need only consider X0, Xi, • • • with X0 the exceptional space.

Let { F"} be a sequence of canonical open neighborhoods in PXj with

Un = PV". Consider { F"}. If possible, we select an xi in Xi which lies in the

closure of infinitely many of these sets, say those corresponding to n\, n\, • ■ • ;

if not, the corresponding collection of open sets in Xi cannot be locally finite

so that for some Xi each neighborhood of Xi meets infinitely many of the sets

while Xi lies in the closure of only finitely many. Clearly Xi cannot be a P-

point, and thus has a countable base of neighborhoods; by the diagonal

process we may then select a subsequence {n\} of the integers for which each

neighborhood of Xi meets almost all Vf. Hence in either case we have an

xi in Xi and a subsequence {n]} with this property.

Considering { F£* }, we then select in the same fashion an x2 in Xi and a

subsequence {n2} of \n\] for which each neighborhood of Xi meets almost

all Vf/. Continuing, we obtain a point (xi, x2, ■ ■ • ) of Pj^i Xj and a sub-

sequence { F"'*} of our original sequence for which each neighborhood of

(xi, x2, • • ■ ) in PjiX Xj meets almost all of the sets V"*' = P,&x Vf'. Hence

taking x0 to be any cluster point in X0 of { F^*} yields the desired cluster

point (x0, Xi, x2, ■ ■ ■ ) of { F"}.

(c) Here any countable product is actually countably compact. Let {x™}

be any sequence of points in PX;; for notational convenience let us write the

sequence of integers as {n\}. Yet ji be the first j, if there are any, for which

sequence of jth coordinates {x"} has a cluster point Xj in Xy which is also

a P-point. Then evidently Xj1 occurs infinitely often in {x^}, and we have a

subsequence [n\\ of the integers for which x!£ =*/,. If possible we select a

least ji for which {x"^' } has a P-cluster point xJ2, and thus obtain a subse-

quence {«<} of [n\\ for which x"* =x,„ and continue. If the process termi-
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nates after k ( = 0, 1, • ■ ■) stages then Jx"* } has the corresponding j\st, • • • ,

jkth coordinates constant while, for each other j, {x"' J can have only non-P-

points as cluster points. If the process does not terminate, then for each

& = li x"l =Xjk for almost all i while, for every other j, jx"*'} has only non-P-

points as cluster points. Thus, in either case we may replace our sequence

{xn} by a subsequence {y"} with the property that for each i, ynli=Xji for

almost all re while, for every other/ {y"} has only non-P-points as cluster points.

Now the points x3l, Xy2, • • • are natural candidates for certain of the

coordinates of a cluster point of {yn}; we may select the remaining coordi-

nates as follows. Let Fn= {ym}min, SFo be the filter base {Pn}, and pj the

projection of our product into Xj. Let j* he the first j, if there are any, not in-

cluded in {ji], and select an adherent point xy* in Xj* of pj'fto- Since xj[ is then

a cluster point of {y™,*}, we know it is not a P-point, hence has a base of

neighborhoods, Bfv of cardinality ^N7. Thus the collection $i= {FCW:

PGSo, V=Vj\XPj*j\Xj, Vj'EBj'} forms a filter base of cardinality ^N7-NY

= K7, so that p*$i has an adherent point x,* in X,-*. Since Xj* is also adherent

to the less fine filter base p/fto, hence is a cluster point of {y";}, Xj* cannot be

a P-point. Again we obtain B*2 and form the filter base S2 = { FC\ V: FE&u V

= Vj*XPj*j\Xj, Vj\EBj\\ of cardinality ^N7; clearly we may continue in

this fashion to obtain filter bases 3^ and non-P-points Xy* as long as any in-

dices j are not included among the ji and j*. Whether this process terminates

or not (or even starts) we obtain a point (xi, x2, ■ ■ ■ ) in PXj which must be

a cluster point of {y"}. For any canonical neighborhood of this point con-

tains one given by constraints of the form yy.GFyj, i = l, ■ ■ ■ , k, yy*GF,*,

i = l, ■ • ■ , m, with Vj'EBj*. But almost all yn satisfy each of the constraints

of the first set, hence almost all yn satisfy all the constraints of this set. On

the other hand, infinitely many yn satisfy all constraints of the second set

since, for each PG^o, FC\ {y: yy*G Vj*, i^m] is an element of the filter base

ffy*, hence nonvoid. Thus we have obtained our cluster point and the proof

is complete.

Remarks. Simple modifications of the proof of (a) yield the following

facts: (1) if PYa is pseudo-compact and Xa is an open pseudo-compact sub-

space of Ya then PXa is pseudo-compact; (2) a product of no more than N7

spaces, each N7 compact and all but one locally compact, is K7 compact. (1) con-

tains (a) and follows by allowing Xf to assume the role of x*; for (2) one

requires the simple result that the product of an ^7 compact space and a

compact space is N7 compact(n). Indeed take the indices to be the ordinals

(") Let X be compact, Y N7 compact, and J a filter base of closed subsets of XX Y, of

cardinality 5=K7. Assuming no point is adherent to SF we have, for each yE Y an FE^ for

which F(~\(XX {y}) =0, since XX \y\ is compact. By a standard compactness argument this

continues to hold in a neighborhood of y. Thus { Uf}fsJi with Uf= \y: F(~\(XX {y}) =0}

forms an open covering of Y of cardinality 5ttT; for a finite subcovering Upv • • • , Urn, we

obviously have FiPlPs/^ • • •C\Fn=0, the desired contradiction.
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^wT, Xi=Xf to be the exceptional space, and X* to be again the Alexan-

droff compactification of Xa for a> 1, so that PX* is N7 compact. Then given

a filter base ffi on PXa of cardinality ?S&$7 one chooses similarly restricted

filter bases ff„ and neighborhoods Wa of x* (taking IFi = 0) inductively by

requiring that Wp avoid some neighborhood of some point in Xp adherent to

pp(Ua<p$a) (which is possible since Ua<s $<* has cardinality 2=N7'^7 = K7)

and selecting ffp as the filter base generated by \}a<p 3a and the set {x: xaQWa} ■

Then ff„ has an adherent point in PX* which obviously must lie in PX„,

and is adherent to ffi.

Similarly the proof of (b) shows that (3) any countable product PJ°.0 Xy of

countably compact spaces for which, for j>0, we have each non-P-point of Xj a

Gi, is countably compact. The argument here is simpler; starting with a se-

quence } x"} of elements of PXy we choose Xi as any cluster point of {xx J;

if Xi is a P-point it must occur infinitely often in [xx\. Otherwise Xi has a

countable base of neighborhoods, but in either case we may clearly begin an

application of the diagonal process as before. Without reference to P-points

(3) has an analogue for 7 >0, whose proofs follows the final portion of that of

(c): (4) a product of no more than fc$7 spaces, each \&y compact and all but one

having at each point a base of neighborhoods of cardinality 5=N7, is N7 compact.

Again we take the indices to be the ordinals ^co7 and let Xi be the exceptional

space; given a filter base ffi of cardinality ^N7 one chooses, for a>l, simi-

larly restricted filter bases ffa and elements xa of Xa inductively by selecting

xp adherent to pp(\Ja<B ?„) and taking 5S as the filter base formed by the sets

PH [x': xj G VB] where PGUa<<3 ?„ and Vp is taken from our base of neigh-

borhoods at Xp. Choosing xx adherent to px3uy, clearly x = (xi, x2, ■ ■ • ) is

adherent to ffB , hence ffi.

Finally it should be noted that the argument used in (a) can be applied

in other situations where a substitute for Tychonoff's theorem is available.

For example (c) can be strengthened by replacing "Xa is N7 compact" by

"Xa is the union of K7 open sets each having N7 compact closure." For then

each Xa is locally fc$7 compact so that we can introduce, for each 11011 N7-

compact factor X„, its one-point N7-compactification X* in just the way one

constructs the Alexandroff compactification (with "fc$7-compact" replacing

"compact"). Since each point at infinity has a base of neighborhoods of

cardinality ^^7, (c) implies PX* is pseudo-compact. But now the remainder

of the argument given for (a) applies.

6. A related question. Even if it fails to be true that every continuous

function on the subspace PXa of Pf3(Xa) has a continuous extension to

P/3(X„), it still might be the case that this holds for some other dense sub-

space homeomorphic to PXa, so that the Stone-Cech compactification of

PXa might be obtained from the compact space Pj3(X„) via some other im-

bedding of PX„ therein. Some light is shed on this question by Theorem 4(a).

Call a point 2 inessential to the space Z if every /G C(Z\ {z}) has a con-
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tinuous extension to Z. Evidently any ideal point z of /3(Z) is inessential to

P(Z) and /3(j3(Z)\{z}) =p\Z). By a theorem of Cech [l] which asserts that a

nonvoid closed Gs in the set of ideal points of /3(X) has high cardinality, we

may conclude that /3(Z)\{z} is then pseudo-compact; consequently any

point x of PP(Xa)\PXa is inessential to P/?(Xa)(12). For letting Za=j3Xa

if XaCXa, Za=/3Xa\{xaJ if xa(£Xa, we have PZa pseudo-compact by Theo-

rem 4(a); thus/GC(P/3(X„)\{x}), being continuous on PZa, has a continuous

extension to P/3(Z„) =P(3(Xa) by Theorem 1, yielding the assertion.

Moreover any z0 inessential to /3(Z) is inessential to Z. For suppose

fCC(Z\{z0}) has no continuous extension to Z. We can of course take/^1.

Let / be the extension of / to Z obtained by setting 7(z0) = l, and let G

= U-gCC(^(Z)), Ogggl, g vanishes near z0} so that JgCzC(Z) for gCG.

Finally, let F(z)=supa (fg)*(z) for zG(3(Z)\{z0}. For ziGj3(Z)\{z0} we have

disjoint neighborhoods U of z0 and V of Zi in j3(Z), and for any gxCG which

is 1 outside U (such an element of G exists by Urysohn's lemma), we have

P(z) = (/gi)*(z) f°r sG F. Indeed if this is not the case, for some g2 in G and

z in V we have (fg2)*(z) > (fgx)*(z); but some g in G satisfies ggi = g%, i=l, 2,

again by Urysohn's lemma, so that (fg)*(z)g2(z) =(fgg2)*(z) = (fg2)*(z)

>(/gi)*(z) = (/g)*(z)gi(z), and gi(z) >gx(z) = 1, a contradiction. Thus we

see that PGC(/3(Z)\{zo}); hut F has no continuous extension to /3(Z) since

clearly P|(Z\{z0})=/.

Suppose then that Z is a dense subspace of Pf$(Xa) with the property that

all continuous functions on Z extend continuously to P/3(Xa), i.e., with

/3(Z) =P/3(X«). Each point x of Z\PXa is inessential to B(Z) =Pj3(X«) as an

element of P/3(Xa)\PX«, and thus is inessential to Z. If we now assume that

the inessential points of Z form a discrete subspace, so does Z\PXa. Since it

is now simple to extend fCC(PXa) continuously to all of Z(n), we may

further extend it to @(Z) =P/3(X«), so that $(PXa) =Pfi(Xa). Thus if the in-

essential points of PX„ form a discrete subspace, the existence of any imbed-

ding of this space as a dense subspace of P@(Xa) which makes all elements of

C(PXa) continuously extendable yields the same property for the natural

imbedding.

Added in proof (January 26, 1959). The reader may have noted that the

example X° of §4 is a noncompact topological group on which all bounded

continuous functions are almost periodic (being, essentially, continuous func-

tions on the compact group /3(X0)). It is easily seen that any topological

02) Of course every point of Pf}(Xa) is inessential to this space if {/3(Xa)} satisfies the

cardinality requirements of Theorem 2.

(13) To assign the appropriate value for this extension at zCZ\PXa choose a gCC(P0(Xa))

which is 1 near z and vanishes on the remainder R of Z\PXa, and extend fg to Z\ {z ] by assign-

ing the value 0 to elements of R. This extension then lies in C(Z\{z]) since \z': |g(z')|<e} is

a neighborhood of R, and thus has a further continuous extension to Z since 0 is inessential; the

value at z of this last function obviously meets our requirements.
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group G ior which C(G) = A.P.(G)( = real almost periodic functions) must be

pseudo-compact; while the converse question must be left open we can note

that if G X G is pseudo-compact then CiG) = A.P.(G), and C(G X G)

= A.P.(GXG). For/GC(G) implies P: (x, y)-*f(xy) is an element of CiGXG)

so that, by Lemma 1, the left translates of / are equicontinuous, and by

Ascoli's theorem / is almost periodic. Since we may view BiG) and the Bohr

compactification of G as completions of G under the natural uniform struc-

tures provided by CiG) and A.P.(G) respectively, these coincide as spaces

and we may regard BiG) as a compact group of which G is a (albeit not closed,

topological) subgroup. Since we may thus view jS(GXG) =/3(G) X/3(G) as a

compact group of which GXG is a subgroup, every/GG(GXG) is also almost

periodic. Consequently C(GXG) =A.P.(GXG) iff GXG is pseudo-compact.

References

1. E. Cech, On bicompacl spaces, Ann. of Math. (2) vol. 38 (1937) pp. 823-844.
2. L. Gillman and M. Henriksen, Concerning rings of continuous functions, Trans. Amer.

Math. Soc. vol. 77 (1954) pp. 340-362.
3. I. Glicksberg, The representation of functionals by integrals, Duke Math. J. vol. 19

(1952) pp. 253-261.
4. M. Henriksen and J. R. Isbell, On the Stone-Cech compactification of a product of two

spaces, Bull. Amer. Math. Soc. Abstract 63-2-332.

5. E. Hewitt, Rings of real valued continuous functions, I, Trans. Amer. Math. Soc. vol.

64 (1948) pp. 45-99.
6. J. Novak, On the cartesian product of two compact spaces, Fund. Math. vol. 40 (1953) pp.

106-112.
7. W. Rudin, Homogeneity problems in the theory of Cech compactifications, Duke Math. J.

vol. 23 (1956) pp. 409-419.
8. M. H. Stone, Applications of the theory of Boolean rings to general topology, Trans. Amer.

Math. Soc. vol. 41 (1937) pp. 375-481.
9. H. Terasaka, On the cartesian product of compact spaces, Osaka Math. J. vol. 4 (1) (1952)

pp. 11-15.
10. A. Tychonoff, Ueber die topologische Erweiterungen von Raumen, Math. Ann. vol. 102

(1930) pp. 544-561.

University of Notre Dame,

Notre Dame, Ind.


