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Introduction

1. Objectives and summary. Much of elementary differential algebra can

be regarded as a generalization of the algebraic geometry of polynomial rings

over a field to an analogous theory for rings of differential polynomials (d.p.)

over a differential field(1). To date, however, considerable parts of basic

algebraic geometry have yet to be "lifted" into differential algebra. The pur-

pose of the present paper is to fill one such conspicuous gap by developing

fundamental parts of a theory of specializations and dimensions over differ-

ential fields.
Chapter I is devoted to certain necessary preliminaries. Among the con-

cepts introduced is a useful weakening of the notion of reducedness of d.p.

In terms of this, a type of set of d.p., called a coherent autoreduced set, is de-

fined, for which a certain close relationship holds between the ideal and the

differential ideal (d.i.) generated by the set. Coherent autoreduced sets of

d.p. figure centrally in the proofs of the main theorems, since it turns out

that their use enables one to reduce these theorems to analogous theorems

for suitable polynomial rings.

Chapter II contains the proofs of two basic theorems on extensions of

specializations over differential fields. Roughly stated, these are:

(1) Any specialization not annihilating a certain d.p. can be extended to

a specialization not annihilating a given d.p.(2).

(2) If certain "properness" conditions hold, any intermediate specializa-

tion of parametric indeterminates can be extended to an intermediate special-

ization.

In Chapter III some applications of the above results are given. First

among these are three propositions on the constructibility of ascending and

descending chains of prime d.i. between various bounds. Second is a theorem

concerning the dimensions of certain "nonsingular" prime d.i. components of

a coherent autoreduced set; this theorem provides a partial answer to a ques-

Received by the editors May 13, 1957.
(') For the basic terminology and theorems of differential algebra see Ritt [6, Chapter I,

pp. 1-14, Chapter II, pp. 21-23, 26-28, 33-34 and the parallels in Chapter IX]; Kolchin [3, pp.
23-26]; and Kolchin [4, pp. 761-771]. An acquaintance on the part of the reader with this

material will be assumed.

(2) The theorem referred to here was proved for ordinary differential fields by Ritt (see

Ritt [5, pp. 543-545]). A proof using elimination-theoretic methods has just (late 1956) ap-

peared in Seidenberg [8].
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tion posed by Ritt (see Ritt [6, p. 178]). Finally, an indication is given of

how these results furnish the first steps toward the development of a theory

of the dimensions of the components of the intersection of two algebraic

differential manifolds (in this paper called "varieties").

The author wishes to express his indebtedness to Dr. Ellis R. Kolchin for

his many helpful suggestions concerning the present paper.

2. Open questions. A number of the theorems in this paper are proved

only on the basis of "properness" or "nonsingularity" hypotheses, which

turn out to be conditions of the form: The initials and separants of certain

d.p. do not vanish at a certain point. These particular hypotheses have to be

introduced on account of the nature of the methods of proof being used—

for example, on account of our use of the process of reduction of d.p. Exam-

ples show, furthermore, that some sort of hypotheses of "nonsingularity"

must be required, since the theorems in question do not hold unrestrictedly.

However, other examples show that the particular hypotheses actually used

here are by no means necessary conditions for the correctness of the respec-

tive theorems. Thus the problem is posed: Can analogous conditions be

formulated which are both necessary and sufficient?

I: Preparations

1. Some notation and terminology. Throughout what follows, ff will de-

note a fixed differential field of characteristic zero; the derivations under which

ff is a differential field will be denoted by Si, ■ ■ • , Sm. All "points" or "zeros"

which come under consideration are understood to have their coordinates

in a preselected universal extension £2 of ff.

If S is any subset of fl, we denote by ff [§], ff(S), fffs} and ff(S) respectively

the ring, the field, the differential ring and the differential field generated in

fl by adjoining S to ff. (It will be recalled that if § is the closure of S in 12

under the 5's, then ff {§} =ff [§] and ff(S) = 3r(§).)

If <Jt is any differential ring and 2 any subset of ffi, we denote by (2),

(2), [2] and {2} respectively the ideal, the radical ideal, the differential

ideal and the perfect differential ideal generated by 2 in 61. (If 2 is defined

analogously to S of the last paragraph, one sees that [2] = (2). Furthermore

it can be shown (Ritt [6, p. 8]) that in the cases of present interest one also

has {2}=(2),or {2}=<[S]>.)

In what follows, (R will always denote the differential polynomial ring

${yi, • • • , yn}, where the y's are indeterminates.

By a derivative operator we mean a formal power product 0 = S{' • • -5^*

(where the i's are non-negative integers); we call 6 proper if XX i *i (the

order of 6) is positive. If FCdl, the expressions of the form dF (8 a derivative

operator) are called F-derivatives; in particular, the expressions dyt (1 ^i^n)

are called y-derivatives.
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A well-ordering of the y-derivatives of (R, written "higher than," is called

a ranking if it satisfies the following two conditions:

(1) b/9y, is higher than dy{ il^j^m, l^i^n, all d).

(2) (py, higher than 6yh implies 5yc/>y; higher than hfiyh (l^j^rez, l^h,

i^n, all derivative operators 6 and </>).

It can be shown that any total ordering of the y-derivatives of (R which

satisfies (1) and (2) is a ranking. Examples are the "marks" of Riquier (Ritt

[6, pp. 151-152]); one sees in fact that an arbitrary ranking has just the

properties of a "complete system of marks" required for developing partial

differential algebra. In particular, the leader, initial and separant of a d.p.,

and the notion of reducedness, can all be defined in terms of any ranking(3).

A ranking is called unmixed if it satisfies also

(3) y,- higher than yn implies c/>y,- higher than c9y„ (1 ^h, ifsti; all 9, </>).

By an autoreduced set (Ritt: "chain") we mean a set of d.p. of (R such that

each member is reduced with respect to every other member. (It can be

shown—compare Ritt [6, p. 164]—that such a set must be finite.) We adopt

the standard notation 4 = 4i, • • • , Ak, where the 4's are written with

leaders in order of ascending rank, for an autoreduced set of 61. The leader,

initial and separant of 4,- will be denoted respectively by «,-, 7*, 5,-; we will

write for short 7= JI*-i 7,-, S= n*-i Si. We will use, e.g., the notation "S=°"

when we mean "some (sufficiently high) power of S".

We call FE& partially reduced (PR) with respect to A if F is free of

proper derivatives of the Ui. (Thus "reduced" breaks up into "PR" + "of

lower degree in u, than 4,- (1 ^i^k)"). In terms of this notion, the reduction

algorithm (Ritt [6, pp. 5-7 and p. 165]) can be broken up as follows:

(1) For any PG<R there are defined nonnegative integers Si, ■ • ■ , sk,

and an PoGCR, PR with respect to A, such that 5? • • • SlkF=F0 modulo [A].

(Po is called the partial remainder of P with respect to 4(4).)

(2) For any GG<JL PR with respect to A, there are defined nonnegative

integers ii, ■ • ■ , ik, and a G°G(R reduced with respect to A, such that

7}1 • • • IkkG = G° modulo (4). (If G is the partial remainder P0 of P with

respect to A, G° is called the remainder of P with respect to A; evidently this

is the same as the usual definition of "remainder".)

Let Q,k denote the &th Cartesian power of 9,. The subset U of 0" consisting

of the zeros of a subset 2 of (R will be called the variety (Ritt: "algebraic

differential manifold") associated with 2. As in algebraic geometry, through

the use of the Theorem of Zeros (Nullstellensatz) one establishes a one-to-one

correspondence between the varieties of £2n and the perfect d.i. of 61. One

then further proceeds to establish a correspondence between (union-) irre-

ducible varieties of fln, prime d.i. of (R, and equivalence classes (under "generic

(3) Strictly speaking, these are only denned for d.p. which G^- I'1 what follows, no explicit

mention of the exceptions is made; it can be verified that for our purposes they are trivial.

(4) For this process of partial reduction, and through much of §2 of this chapter, A could be

taken somewhat more generally.
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specialization over ff") of points of £2". The (irreducible) components of a

variety (or, correspondingly: the (prime d.i.) components of a perfect d.i.

of 61), and the concepts of order ( = transcendence degree) and dimension

(= differential transcendence degree), are all defined as usual.

2. A fundamental lemma. Let A be an autoreduced set in 6t. Let

ua (1 ^i, j^k; iy^j) be the lowest common derivative of M; and My, if such

exists. (Evidently it exists provided both u's are derivatives of the same yi)

Suppose 8ijUi = djiUj = Uij; let Aij = 0ijAi, Aji=9jiAj, and A»y = Sy4<y — SiAji.

We call A coherent if, for every such pair i, j, (75)°°A,y can be written as a

linear combination (with coefficients in 6t) of 4-derivatives which have lead-

ers lower than w,-y (in rank). (Example. If A is a characteristic set for a d.i.

of ffi, then evidently each Ay has remainder zero with respect to A; hence A

is coherent.)

The fundamental property of coherent autoreduced sets can be stated as

follows:

Lemma. A is coherent autoreduced if and only if any G in [A]: (IS)" which

is PR with respect to A must actually be in (A): (IS)°°(b).

Proof. To see the sufficiency, suppose that the hypothesis on the A's

fails to hold for some A,y. Then in particular this A<y has remainder t^O with

respect to A. This remainder is of course PR with respect to A and is in

[A]: (IS)°°; but by the failure of the hypothesis, it cannot be in (A): (IS)",

since the m's themselves are certainly all lower in rank than M;y.

We prove the necessity. If G is in [A]: (IS)™, we can write

k

(1) (ISyG ="£,CiAi+ £        d.jAi (with the C's in ffi).
i=l l£i<.k;8 proper

Let @yt=6ilUil=9iiUi2= ■ ■ ■ =0ihuih be the highest ranking y-derivative ef-

fectively present in the right member of the identity (1) as the leader of a

proper 4-derivative.

If h — 1, make the substitution a: <dyi = (SildilUil—di,Aii)/Sil. Since this

replaces &yi by something involving only y-derivatives lower in rank than

itself, it is seen that it transforms (1) into an identity with the same left

member, with new C's in the right member, and with the highest leader of

an A -derivative effectively present in the right member now lower than ©y;.

If h>l, note first that the group of terms ^*=i C,J.,»,iff,i^4iJ. in the right

member of (1) can be rewritten in the form

h

(2) DxehAil + YJ Dj(SijdhAh - SifaAif)
y=2

(6) The very simple case of this lemma where A is a single d.p. is in Ritt [6, p. 30]. An

analogous, but apparently somewhat weaker, result is in the recent Seidenberg [8, p. 51,

Theorem 6],
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where

Di = E ^ C,,.s;       Dj = —^ (2 g > ̂  *).
y=l o,'j o^j

Now diiiii1=dijUij implies 6i1=(j>jdi1ij, &ij=(t>fiijil for some (not necessarily

proper) derivative operator (bj; this means that dilAil=(pjA,lij and 8ijAij

= <pjAijil (2^j^k). We proceed by induction on the order of each of these

(pi's.

If <pj is the identity operator, then Sij9i1Ail — Sil6ijAij is just A,,,-., which

by hypothesis on A can be written as a linear combination (over (R: (IS)")

of 4-derivatives with leaders lower in rank than m,-^. (and thus a fortiori

lower than &y{).

On the other hand, if 4>j is proper, we can write it as 5,-c/>/ (1 ^i^m), and

we then have

Oi-UilAi1       OiftijAjj = Oij0i<pjAi1ij       OifiitpjA ,ji1

= SiiSi^jA^ij — SirfjAiji/) — ioiSij-QjA^ij — diSi^^jAipA.

But since c/>/ has order strictly less than that of (pj, by induction hypothesis

Sij(pj Aj^j — Si^l4,-y,-! can be written as a linear combination (over (R: (7S)°°)

of 4-derivatives with leaders lower than (0/5,-)y(, so that the first term of (3)

can be written as such a linear combination with leaders lower than ®yv, and

the second term of (3) is already a linear combination of these over 01.

We have thus shown that for each j i2^j^h), Sij6ilAi1 — SildijAij can be

written as a linear combination (over (R: (IS)°°) of 4-derivatives with leaders

lower than 0y;. If we apply this result to (2), we see that it actually enables

us to rewrite the right member of (1) so as to leave only one 4-derivative in

it with leader 6y* (namely: B^AiA; in other words, we can rewrite (1) so as

to make h = l. The leader ®yi can now be eliminated entirely by means of the

substitution cr.

In conclusion, then, if we iterate this entire process, lowering the rank of

the highest leader of a proper 4-derivative effectively present in the right

member of (1) at each step, we can ultimately reduce (1) to an identity of

the form (IS)a'G= ^f-i E,Ai (P's in 31); which of course means that G is in

(A): (IS)', Q.E.D.
The lemma has the following useful corollaries:

(1) If A is coherent autoreduced, then for any P in {A} : IS, the partial

remainder of P with respect to A is in (A): IS.

(2) If A is coherent autoreduced, then for any P in (R PR with respect to

4, if A considered as a set of polynomials (in ?[ • • • 9y, • ■ ■ ]) has a zero

which does not annihilate ISF, then even considered as a set of differential

polynomials (in (R) 4 has a zero which does not annihilate 7SP(6). (A zero of

(6) Compare Seidenberg [8, p. 52, Theorem 7].
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a subset 2 of 61 regarded as a polynomial ring will be called an "ordinary" zero

of 2.)
We close this chapter by mentioning some additional properties of coher-

ent autoreduced sets which indicate how these sets can be used to bridge the

gap between (R and the "underlying" polynomial ring. (We omit the proofs,

which are not difficult.)

(1) If A is coherent autoreduced, then A is a characteristic set for

{A}: IS if and only if it is a characteristic set for (A): IS.

(2) ll A is coherent autoreduced, then {A}: IS is a prime d.i. if and only

if (A): IS is a prime ideal.

The case where A is such that IS=1 (i.e.: Where A is an orthonomic set

of d.p.; see Ritt [6, Chapter VIII]) is of special interest:

(3) Let A be an orthonomic autoreduced set. Then A is coherent if and

only if A is a characteristic set for a prime d.i. of 6t.

II. The specialization theorems

1. Extension of specializations. In this section we prove the following

theorem (7):

Theorem 1. Let (£i, ■ • • , £„) be a point, and N a d.p. in ffi such that

7V(§i, • • • , £,0^0; let l^i^n. Then there exists a d.p. Nt in Sfjyi, • • ■ , yi},

withNi(t;i, ■ ■ ■ , £i) 5*0, such that any specialization (ni, ■ ■ ■ ,vi)of(^x, ■ ■ ■ ,(•*)

over ff for which Ni(ni, • • ■ , r]i)9*0 can be extended to a specialization

(lu ■ ■ ■ , iln) of (£i, •••,£„) over if for which N(r]i, ■ ■ ■ , nf) ^0.

To facilitate the proof, it is convenient to restate the theorem in an

equivalent form. To this end, let LT be the prime d.i. consisting of those d.p.

of ffi which vanish at the point (£i, • • • , £„) (i.e.: the prime d.i. of ffi with

generic zero (£i, • • • , £„)). In particular, 7V(j;i, • • • , £»)^0 means just:

XGIL The set of d.p. of ff }yi, • • • , y{) which vanish at (£i, • • ■ , £;) is
evidently just LTf^ff {yi, • ■ • , y,}. Finally, "specialization of a point" is the

same thing as "zero of the prime d.i. having the point for generic zero."

Hence in these terms Theorem 1 becomes:

Theorem 1'. Let II be a prime d.i. of ffi; let iVGffl, Gil; let l^i^n. Then
there exists a d.p. Nt, in ff [yx, ■ ■ • , yf] but not in II, such that any zero

(ii, ■ ■ ■ , vi) of Iinff [yx, ■ • • , y,} not annihilating Nt can be extended to a

zero (r)X, ■ ■ ■ , tj„) of II not annihilating N.

We preface the proof with two major simplifications:

(a) It suffices to prove the case i = n — 1—for, if we could find an 7V„_i

(as in the theorem) "permitting extensibility" to a zero of II not annihilating

TV, we could then find an analogous Nn~2 permitting extensibility to a zero

(') This is the differential-algebraic "lifting" of Lemma 1 of Chevalley [l].
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of Lir^ff (yi, • • • , yn-i} not annihilating Nn-i, and so on (induction on

n — i). (Below we abbreviate Srjyi, • • • , y„-i} by fft„_i; Ur\<Rn-i by n„_i.)

(b) If A is a characteristic set for IT (in some given ranking), it suffices

to prove the case where TV is PR with respect to A—for, evidently the partial

remainder of an arbitrary TV Gil with respect to A is still Gn, and the TV„_i

of the theorem which by hypothesis exists for this partial remainder will

obviously serve even for the original TV(8).

For the completion of the proof, choose a ranking in which every y„-

derivative is higher than every y;-derivative (i<n); let A be a characteristic

set for IT in this ranking. Let vx, ■ ■ ■ , vt be those y-derivatives effectively

present in N or in a term of A; let vx, ■ ■ ■ , vs be those v's which are not y»-

derivatives. Let (R° =$[vx, ■ ■ ■ , vt]; R°.x=^[vi, •••,»,] (= (R°C\(Rn_x). Let

n°=npifft0; nn°_i=nnffi°_i(=n°n(Rn_i=n0nffi°_i). Note that n° is a
prime ideal of 61° and IL?_i a prime ideal of ffi£_i; note also that TV, /, SG6t°

but Gn°, while Acn°.
By the algebraic-geometry analog of the present theorem, then, there

exists an TV„_i, Gffl^-i but Gn£_i, such that any zero of II^_1 not annihilating

TV„_i can be extended to a zero of IT0 not annihilating ISN.

Now regard everything as reembedded in (R; then the choice of TV„_i

just made implies in particular: If (771, • • • , rj„_i) is a zero of IT„_i not anni-

hilating TV„_i (which of course Got»-i but Gn„-i), and we regard it as an

ordinary zero of IL_i, then it can be extended to an ordinary zero of A (in

fact: of IT0) not annihilating ISN. (In fact: The extension is effected by as-

signing certain values (in 0) to v8+i, - - - , vt, and then taking for the remain-

ing y„-derivatives, say, a set of new transcendental quantities of Q.) In other

words, we have shown that there exists an TV„_i, in 6t„_i but not in II„_i,

such that if (rji, ■ • ■ , r/n-i) is any zero of LTn_i not annihilating TV„_i, then,

working in the ring ff(7/i, • ■ • , nn-i){yn}, and denoting the substitution of

771, • • • , r?„_i for yi, ■ ■ ■ , y»_i in a subset of 61 by the superscript *, we have

I*S*N*C(A*)-
One sees that (the nonzero terms of) A* comprise a coherent autoreduced

set in ff(?7i, • • • , nn-i){yn} (in the ranking "inherited" from 61). In fact,

since we had 1*9*0, these terms have the same leaders (and degrees in them)

as their originals in A (which are of course just those yl's with y„-derivatives

for leaders); the needed properties of A* thus follow naturally from the cor-

responding properties of this subset of A.

Suppose I*S*N* were in JA*}, so that (/*S*TV*)°°G [A*]. Since A* is

coherent autoreduced, and I*S*N* (whence any power thereof) is PR with

respect to it, this implies by the lemma that (I*S*N*)XC(A*). Hence

I*S*N*C(A*); contradiction.

(8) Without extra effort we could have shown that it even suffices to prove the case where

N is reduced with respect to A; but the above is all we need.
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We have thus shown that our choice of (771, • • • , nn-i) actually implies

I*S*N*E {4*}. But this just means that there exists an nn (in 12) such that

(ni, ■ • • , nn) annihilates A but not ISN—i.e., that (rn, ■ ■ ■ , r}n-i) can be

extended to a zero of A not annihilating ISN. Since IIC[A]: (7S)°°, this

extended zero is actually a zero of II, and the theorem is proved.

In algebraic geometry one has the stronger theorem (Weil [9, p. 31,

Theorem 6]) that any specialization is extensible provided "infinity" is per-

mitted as a value. This is false for differential algebra; the following counter-

example is due to Dr. Kolchin: Working in 5{y, z) (where J is an ordinary

differential field with derivation denoted by '), let (rj, f) be a generic zero of

the general component of yz'2 + F(z), where F(z) is a cubic polynomial in z

with constant coefficients and with distinct roots; then the specializaton

■q—>0 is inextensible.

If 7V= 1 in Theorem 1, it can be seen that we have proved: Let II be a

prime d.i. of Si, A a characteristic set for TI (in a ranking of the type chosen

above). Let (r)i, ■ ■ ■ , r?„_i) be a zero of TIn~i which, if regarded (partwise) as an

ordinary zero of n^_i, is extensible to an ordinary zero of H° not annihilating IS.

Then (171, • • • , yn-i) can be extended to a zero of II not annihilating IS.

Unfortunately, the "IS" cannot be struck out from both sentences in

this statement. (Example: Any case where 11°* properlyC 3{*li, ' ' ' > Vn-i)

■ [vs+i, ■ ■ ■ , Vi] but U* = 5(ni, ■ ■ • , 77„_i){yn}.) Furthermore, while with the

"IS" in the conclusion, the "IS" in the hypothesis is certainly necessary, it is

by no means a necessary condition if the "IS" is struck out from the conclu-

sion. (Example: II„_i = (0), ISGdU-i, [n, IS] properlyC CR, (rji, ■ ■ ■ , Vn-i)

the first part of a zero of a prime d.i. component of {ll, IS].)

2. Intermediate specializations. In this section we prove a differential-

algebraic analog of the following theorem of algebraic geometry(9).

Let (£1, ■ • • , £„)—»(fi, • ■ • , f„) be a specialization(10) over the field K,

and let (say) £1, • • ■ , £d be a transcendence base for K(%i, • • • , £„) over K.

Suppose that, for each d<i^n, there is an f,EK[yi, ■ - • , yi] such that

Mil, •••,?») =0 and/,-(fi, • • • , ti-i, y{) ̂ 0. LetO-^e^d. Then any special-

ization (171, • • • , ve)—>(fi, ••'•,?«) over K can be extended to an "inter-

mediate specialization" (£1, • • • , £re)^(i7i, • • • , »?„)—»(fi, • • • , f„) over K.

The analogous theorem which we shall prove for differential algebra re-

quires a specific choice for the analogs of the/'s(u):

(9) This follows readily from Proposition 12 of Weil [9, p. 65], and in turn implies the more

usual intermediate specialization theorem for which "integrality" is required. Weil's Proposition

12 does not itself "lift" to differential algebra; a counterexample can be constructed from the

example studied in Ritt [6, p. 133].

(10) In this section the term "specialization" refers to the map J—>f rather than to the image,

f, of I under the map as in §1. However, no confusion should result.

(u) Here again, however, our 7SGA is not a necessary condition. Example: FE$\z}

such that FE{ S\ (where 5 is the separant of P);II= {dF\ for suitable 8 (cf. Hillman [2, p. 166,

Theorem X]); A any component of {S}; work in (R = 9:{y, zj.
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Theorem 2. Let (£1, ■ • • , £«)—>(fi, • • • ,^f) be a specialization over ff; let

II, A be the prime d.i. of 61 with generic zeros (£i, • • • , £„), (fi, • • • , f„) re-

spectively. Suppose that there exists an unmixed ranking on 61 in which YL has

a characteristic set A such that JSGA. Without loss of generality, we can assume

that in this ranking yx, ■ ■ ■ , yd (where d = dim IT) are parametric indetermi-

nates for IT. Let O^e^d. Then any specialization (rji, ■ ■ ■ , ni)—»(fi, ■••,£«)

over ff can be extended to an "intermediate specialization" (£i, • • • , £„)

->(rii, ■ ■ ■ , Vn)-*(ti, ■ • ■ , In) over ff.

As in the last section, it is convenient to translate the statement of the

theorem from the terminology of specializations of points into that of zeros

of prime d.i. To complete this translation here we need only replace the first

two sentences of the statement of the theorem by "Let IIGA be prime d.i.

of 61," and the last sentence by "Then any point (771, ■ • • , ni) which annihi-

lates nothing in ffjyi, • • • ,ye} outside A can be extended to a zero (771, • • • ,nn)

of II which annihilates nothing in fft outside A."

(A specialization (£1, • ■ ■ , £«)—>(fi, • • • , £"„) satisfying the hypothesis of

the Theorem will be called proper (with respect to the given ranking);

similarly, if IT GA are prime d.i. of ffi satisfying the hypothesis of the theorem,

A will be called nonsingular over IT (with respect to this ranking). More

generally, given a ranking on ffi and an autoreduced set AG ffi, AG ffi will be

called nonsingular over A if ACA and /SGA.)

We preface the proof with two simplifying observations:

(a) It suffices to prove the case e = d, since extension "from e to d" can

always be effected by simply taking as ne+i, • • • , nd a set of differentially

algebraically independent quantities (of ft).

(b) As observed for Theorem 1, it suffices to show that (771, • • ■ , vf) is

extensible to a zero of IT which annihilates nothing outside A which is PR

with respect to A.

Let, then, GC®-, GA be PR with respect to A. Yet h, ■ ■ ■ , t, be those

y-derivatives other than ux, ■ ■ ■ , uk which are effectively present in a term

of A or in G; let ®° = 5[h, ■ ■ ■ , t„ ux, • • • , uk], II0 = im(R0, A° =APi(R°. Let

6t' = ff[ii, • • • , /,], A'=Anffl!. Clearly ITPiffl' = (0); from this and from

7GA° it follows, by the theorem of algebraic geometry stated at the beginning

of this section, that any point (px, ■ ■ ■ , pi) which annihilates nothing in ffi'

outside A' can be extended to a zero (pi, • • • , p„ n, • • • , rk) of IT0 which

annihilates nothing in 61° outside A°.

Let ffjyi, • • • , yd}=<&d, An«{d=Ad. (Clearly Iir\(Rd=(0).) Let <Rd

= Gl0r\G{d, K°d=Kr\<sCd. Evidently (Rd is just ff [tu • ■ • , tr] lor some r^s. We

are given a point (771, • • • , 77^) which annihilates nothing in SU outside Ad.

Yet the values which this point assigns to the y-derivatives h, ■ ■ ■ , tr be

pi, ■ ■ ■ , pr; (pi, ■ ■ ■ , pr) is thus a point which annihilates nothing in ffl^ out-

side Ad. If we then let pT+x, ■ ■ ■ , p, be new transcendental quantities of £2,
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we obtain a point (pi, • • • , p„) which annihilates nothing in GV outside A(.

Now reembed in (R and "extend" (r\i, ■ ■ ■ , r\f) by letting tr+i, • ■ ■ , ts,

Ui, ■ ■ ■ , uk go into pr+i, • • • , p„ Ti, • • • , Tfc as in the last two paragraphs,

and the remaining y-derivatives into new differentially transcendental quan-

tities of 12; the result is (in particular) an ordinary zero of A which does not

annihilate ISG. If we denote the substitution of ?ji, ■ • • , nA for yi, • • • , y<j

by the superscript *, we see that we have thus shown: GGA, PR with respect

to A=>I*S*G*E(A*). As in the proof of Theorem I, this implies that

I*S*G*E{A*\. It follows that some prime d.i. component T of {A*\ (in

5(yi, ■ • • . Vd){y<i+i, • • • , y»}) must fail to contain G* for any such G. Let

(Vd+i, ■ ■ • . In) be a generic zero of T; then (771, • • • , tj„) is a zero of A which

annihilates no such G. Since IS is such a G, and IIC [A]: (7S)°°, this

(*7ii " • " 1 fn) is actually a zero of II, and the theorem is proved.

III. Applications

1. Chain theorems.

Proposition 1. Let IIC6t be a prime d.i. of dimension d; let 0^e<d; let

PG(R, Gn. Then there exists a prime d.i. AC<R> of dimension e, such that

ncAarerf PGA(12).

Proof. By induction on d — e, it suffices to prove the case e = d — 1. Rank

they'sso IIAffjyi, • • • , yd} = (0). Choose GG^jyi, ■ • ■ , ya}, as in Theorem

1, so any zero of Hr\3{yi, ■ • ■ , yd\ not annihilating G can be extended to a

zero of II not annihilating 7P (where I is the product of the initials for some

characteristic set for II in the given ranking). Let »bea proper derivative of

the leader of G; let (771, • • • , nf) he a generic zero of the prime d.i. [v]

C^jyi, • • • , yd}- Then (171, • • • , nd) has dimension d — 1 and does not

annihilate G. It follows by Theorem 1 that (771, • • • , 77^) can be extended to a

zero (771, • • • , T)n) of II which does not annihilate 7P; this last implies in

particular that (77!, • • • , 77^) still has dimension d — 1. Take as A the prime

d.i. of (R with generic zero (771, • • • , 77„), and the proof is complete.

Proposition 2. Let IICA be prime d.i. of (R of dimensions d, e respectively,

such that A is nonsingular over II with respect to some unmixed ranking. Let

e<i<d. Then there is a prime d.i. TC<R, of dimension i, contained between II

czreci A.

Proof. Without loss of generality, we can assume that the given ranking

is such that Tir\5{yi, • • • , yd} =(0) (i.e., that yi, • • ■ , yd are parametric

indeterminates for II in this ranking). Since 7 (defined as in the proof of the

preceding proposition)   GA, Ad=A.r\s{yi, • ■ ■ , yd}  still has dimension e.

(12) This proposition is contained in the Hubert's Nullstellensatz (strong form) of Seidenberg

[7]. The present proof is somewhat more direct. (The author wishes to thank the referee for

calling his attention to this reference.)
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One can easily construct an TdCAd of dimension i (e.g., use the d.i. generated

inff{yi, • • • ,yd] by the intersection of Ad with some suitable ff {yi, • • • , yy}).

By Theorem 2, Td is the intersection with ff {yi, • • ■ , yd} of some prime d.i.

TC<R contained between LT and A; since A—and so a fortiori T—is nonsingu-

lar over II, T must still have dimension i, which completes the proof.

Proposition 3. Let IICA be prime d.i. of (R of dimensions d, d — 1 re-

spectively, such that A is nonsingular over H with respect to some unmixed rank-

ing. Then there exists an infinite descending chain of prime d.i., all of dimen-

sion d — 1, between A and II.

Proof. Let the ranking be as in the proof of Proposition 2. Since dim A

= d — l, we have Ad = AH3:{yi, ■ • • , yd}?"^(0). Let P be any irreducible d.p.

in Ad. By Theorem VIII of Hillman [2, p. 166], one can construct an infinite

strictly descending chain TdDT^2'3) • • ■ 3(0) consisting of components of

successive derivatives of P. In such a chain, let Tf he a component of F which

is contained in Ad. By Theorem 2, T^ is the intersection with ff {yi, ■ • • , yd}

of a prime d.i. T(1)C<R which is contained between II and A; evidently T(1)

has dimension d — 1. Since T(1) is a fortiori nonsingular over LT, by Theorem 2

again we can "extend" Td2) to a prime d.i. T(2)G<R contained between IT and

T(1) and with dimension d — 1. Since all these inclusions are evidently proper,

iteration of this argument completes the proof.

2. A theorem on dimensions.

Theorem 3. With respect to a given unmixed ranking on (R, let AC& be a

coherent autoreduced set for which the number of parametric indeterminates is d;

let A. be a nonsingular component of {a}. Then dim A = d.

Proof. Without loss of generality, we can assume that yi, • • • , yd are

parametric indeterminates for A. Let Q he a minimal prime ideal divisor of

4 contained in A. Evidently Q is generated in (R by d.p. involving only those

y-derivatives which occur in the terms of A; suppose there are N of these

and look at the restriction of Q to the polynomial ring which they generate

over ff. By algebraic geometry, it follows that ord Q^N — k (where k is the

number of terms in 4). But since AC<2 and IEQ, ord Q cannot exceed this,

hence must equal it. Thus a generic zero for Q puts quantities which are alge-

biaically independent over ff for all the y-derivatives other than the re's

( = the leaders of the terms of 4).

Let £i, • • • , £d be elements of £2 which are differentially algebraically in-

dependent over ff; then by what we have just seen, this set of elements

taken together with all their derivatives has an extension to an ordinary zero

of A which annihilates nothing outside Q—namely: to a generic zero of Q.

In particular, (£i, • • • , £d) has an extension to an ordinary zero of 4 which

annihilates nothing which is outside A and PR with respect to A.

By   an   argument   used   in   the   proof   of   Theorem   2,   it   follows that
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(£ii • • • i £d) must have an extension to a ("differential") zero (£1, ••■,£„)

of A which annihilates nothing outside A.

Let IT be the prime d.i. of ffi with generic zero (£1, • • • , £„). Then

AGITGA, so that by the minimality of A over A we must have IT=A. This

means that a generic zero of A (namely: (£1, • • -,£*)) has its first d coordi-

nates differentially algebraically independent over ff, so that dim A^d. But

since ACA and /GA, we must have dim A^d. Combining these two inequal-

ities completes the proof.

3. Intersection theory. Ritt [6, beginning of Chapter VIII] has shown by

example that for differential algebra it is not always true that the com-

ponents of the intersection of two varieties (in 12") of dimensions r and s

must have dimensions at least r+s — n.

In this section we apply the theorems of the present paper to prove some

special results on the dimensions of the components of an intersection. For

convenience, we work with the prime d.i. rather than with the corresponding

irreducible varieties.

Proposition 4. Let IT, T be prime d.i. of 6t of dimensions r, s. Let (£i, ■ • • , £re)

be a generic zero for II. Suppose that T is generated in ffi by d.p. which involve

only derivatives of (say) y,,, • ■ • , y,k, and that £tI, ■ • • , £!jt are differentially

algebraically independent over "5. Embed i-iv • ■ ■ , £,t into a differential trans-

cendence base £,„ • ■ ■ , £,r for ff (£i, ■ • • , £„) over ff. Choose an unmixed ranking

on ffi in which yiv • • • , y,r are parametric indeterminates for II. With respect

to this ranking, let A be a component of {H, T} which is nonsingular over IT.

Then dim A = r+s — n.

Proof. Without loss of generality we may suppose that the parametric

indeterminates are yx, • • • , yr. We have T P\ ff {yi, • • • , yr}CA

(~^${yi> • * " , Vr}; hence by Theorem 2, the former is the intersection

with ff {yi, • • • , yr} of some prime d.i. S of 6t such that LTCECA. Since 2

is a fortiori nonsingular over LT, we have dim S = dim TOff {yi, • • ■ , yr}

= s — (n — r)=r+s — n. But evidently II, T each CS, so that (by minimality

of A over (II, T}) we must have S=A; this completes the proof.

Proposition 5. Let II, T be prime d.i. of fft of dimensions r, s. Let (£i, ••-,£„)

be a generic zero for II. Suppose that T is generated in 61 by d.p. which involve

only derivatives of (say) yiv - ■ ■ , yik, and that £,„ • • • , £,-,. have dimension

^n — s over ff. Embed a differential transcendence base of these £'s for

3(%h< " " ' i iik) over $ into a differential transcendence base £}l, • • • , £yr for

^(lii • • • , £n) over *5. Choose an unmixed ranking on (R in which yjv ■ ■ ■ , yj,

are parametric indeterminates for II, and in which those of y,-„ • • • , y,-4 which

are not parametric indeterminates for II rank lower than all the other nonpara-

metric y's. With respect to this ranking, let A be a component of {ll, T} which is

nonsingular over II. Then dim A^r+s — n.
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Proof. Without loss of generality, let the parametric indeterminates be

yi, • • • , y,. Let 4 be a characteristic set for II in the given ranking for which

7SGA. It can be seen that the substitution of £,-,, • • ■ , £I|b for y,„ • • ■ , y,-4—

and hence a fortiori the substitution of f <„ • • • , f<t for yiv • • • , y,k (where

fi, • ■ • , f» is a generic zero for A)—must annihilate all the terms of A whose

leaders are y^-derivatives (1 ^j^k). Furthermore, since 7GA, the remaining

terms of A are still a coherent autoreduced set even after the latter substitu-

tion. If we work in S(tiv • • • , £ik){yhv • • • , y/.„_t} (where these last are

the y's other than yiv • ■ • , y,t), and denote the substitution of f,-lf • • • , ftJ.

for yiv • • ■ , yit by the superscript *, it can be seen that A* is a component

of (the set of nonzero terms of) A* and that it does not contain I*S* (in fact,

that these terms of 4* are a characteristic set for A*). It follows by Theorem

3 that dim A* = number of parametric indeterminates for 4* 3: (re — k)

— Hn — r)—ik — in — s)))=r+s — n. Finally, since f*1( • • • , £h„_t is a generic

zero for A*, we have dim A^dim A*; this completes the proof.

Propositions 4 and 5 add up to a theorem on the dimensions of certain

"strongly nonsingular" components of the perfect d.i. generated by the sum

of two prime d.i. As a preliminary to this, let us observe that, just as in

algebraic geometry, if V, IFC^" are irreducible varieties of dimensions r, s

over ff, then the Cartesian product FXIFC^2" is a variety every component

of which has dimension r+s over ff. (The proof makes use of the fact that

if ff is algebraically closed, VXW is an irreducible variety, see Kolchin [3,

p. 769]). Now there is a natural one-to-one dimension-preserving corre-

spondence between the components of V(~\Wand those of (FX W)f~\A (where

A is the "diagonal" of S22n regarded as flnX£2"). Since A is the irreducible

variety corresponding to the prime d.i. T=[zi—yi, ■ ■ ■ , z„— y„]C<R2

= ff{yi, • • • , y„, 2i, • • • , z„}, we see that (in a sense) it suffices to prove

that if II is a prime d.i. of (R2 of dimension d, then any (sufficiently nonsingu-

lar) component of {lT, T} C(R2 has dimension at least d — re.

Let us call A3II absolutely nonsingular over II if it is nonsingular over II

and remains so in any unmixed ranking which arises from the given unmixed

ranking by permuting the y's. Let us further call ADII strongly nonsingular

over II if it is absolutely nonsingular over any prime d.i. between IT and A.

Theorem 4. Let H be a prime d.i. of (R2 of dimension d; let A be a component

of {li, V} which is strongly nonsingular over II. Then dim A'Sid — n.

Proof. For 0^i^n — l, define Iii inductively by n0 = II, II,+i=any com-

ponent of {Iii, Z.+1—y.+i} which is contained in A. One sees that each ni+i

is absolutely nonsingular over Iii, and that II„=A. Let (771*, • ■ • , 77^",

fi") • • • . Cn') be a generic zero for Iii. If vl+u d+i are differentially alge-

braically independent over ff, then dim II,+i=dim ITi — 1 by Proposition 4;

but if they are differentially algebraically dependent over ff, then dim ni+i
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j^dim Hi— 1 by Proposition 5. Induction on n thus completes the proof of

the theorem.
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