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D. Edmundson [l ] has recently constructed a counter-example to the

conjecture by A. D. Wallace that every compact connected topological lat-

tice is distributive. He discovered a subset of Euclidean three-space which,

with the appropriate lattice operations, forms a nonmodular compact con-

nected topological lattice. The main result of this paper states that if a locally

compact connected subset of Euclidean two-space admits a pair of continuous

lattice operations then the lattice is distributive.

1. Preliminaries. We recall that a topological lattice is a Hausdorff space,

L, together with a pair of continuous functions A: LXL-+L and V: LXL-+L

which satisfy the usual conditions stipulated for a lattice. As is usual we de-

note A(*> y) by x Ay and \/(x, y) by x\/y. Unless explicitly stated to the con-

trary, we reserve the symbols 0 and 1 to denote the unique minimal and

maximal elements of a lattice, whenever they exist. A subset, C, of L is a

chain if x/\y=x or y for any pair of elements x and y in C. If a and b are

elements of L with a 5= b then C is said to be a chain from a to b provided C is

a chain contained in a V(^AL) and containing both a and b. It A is a subset

of L, we denote by A*, A° and F(A) =A*\A° the closure, interior and bound-

ary of A respectively.

Throughout this paper, R2 will denote the Cartesian plane with the usual

topology, S1 will denote the unit circle and I will denote the closed real num-

ber interval [0, 1 ]. A subset of R2 is a simple closed curve if it is a homeomorph

of S1. We recall that Jordan's theorem [2] states that any simple closed

curve cuts R2 into exactly two components, one bounded and the other un-

bounded. If C is a simple closed curve, we denote by B(C) the bounded com-

ponent of R2\C.

If A" is a topological space and A is a subset of X, we denote by H"(X, A)

the re-dimensional Alexander-Kolmogoroff cohomology group of X modulo A

with coefficients in some fixed nontrivial additive abelian group. In this

paper we utilize two dimension functions, namely codimension (cd) and in-

ductive dimension (ind). For the definitions and essential theorems relating

to these dimension functions the reader is referred to the work of H. Cohen

[3]. It is a pleasure to acknowledge the advice and suggestions of A. D. Wal-

lace in the preparation of this paper.
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2. Illustrative examples. It will be useful in the sequel to have on hand

some examples of topological lattices which are topologically contained in R2.

Clearly, £2 is a topological lattice in the usual order, i.e. (x, y) = (x', y') if

x^x' and y^y'. Let L= {(x, y)|x>0 or y<0} then L is a sublattice of 7?2

in the usual order. We observe that L contains maximal chains that are not

connected.

Let a and 8 be real numbers greater than zero. Define a relation, -<, in

7X7 by: (x, y) < (x', y') if, and only if, x =x' and x" +y^ = x'a +y/|S. Then < is

a partial ordering and 7X7 with this partial ordering is a topological lattice.

We note that the center of this lattice is empty.

For each n = l, 2, ■ ■ • , let Ln be the set of all pairs of real numbers,

(x, y), such that »(« + l)/2 ^y ^(» + l)(n + 2)/2 and n/(n + l)y+n/2 = x

^n/(n + l)y + (n + 2)/2. Let L = \j{Ln\n = l, 2, ■ ■ ■ } and define /\: LY.L

—>L as follows: if (x, y) and (x', y') are in Ln for some n, let

(x, y) A (x', y') = (z, w)

wherez = min [((n-\-l)/n) (min(y,y') — y) -\-x,((n-\-l)/n) (min (y,y') — y')-\-x'

and w = min (y, y'). If (x, y)GL„ and (x', y')GLm and if n<m, let (x, y)

A(x', y') = (x, y). Define V: LXL—>L analogously, replacing max for min in

the above formulae. Then L together with the operations V and A form a

topological lattice.

Let L be the set of pairs of real numbers, (x, y), such that 0<x = l and

y = sin 1/x or x=0 and y = 0. If (x, y) and (x', y') are elements of L, let

(x, y)^(x', y') whenever x = x'. Then L with this ordering is a connected,

nonlocally compact, nonlocally connected, nonlocally convex topological lat-

tice (see corollary to Theorem 4).

3. Cut points in topological lattices. If X is a topological space and pGX,

we say that p is a cut point of X if X\p is not connected, i.e. if X\p = U^J V

where cV^D^Fand U*C\ V= □ = U(~\ V*.

Theorem 1. If L is a connected topological lattice and if pGL then p is a

cut point of L if, and only if, p^O, p¥-l and L = (p\JL)\J(p/\L).

Necessity. This proof is due to A. D. Wallace and was communicated to

the author by him. Suppose that L is connected and that p£L cuts L. Let

L\p =U\JVwhere U* □ ^ Vand U*C\V= □ = UC\V*. Let x be an element

of U and let y be an element of V. We will show that either x^y or y=x.

Suppose this is not the case, i.e., assume that (xAL)r\(y\/L) = D = (*V£)

(~\(yAL). Now xAy is in both xA£ and yAT. and so (xA-^)^(yA^) ^D-

Similarly (x\/L)r\(y\/L) 9^ □■ Since xAT. and yA^ are connected sets,

(xAL)\J(yAL) is also connected. Moreover, (xAL)\J(yAL) meets both

U and V and therefore pG(xAL)^J(yAL). Similarly, we have that p

G(xVL)VJ(yVL). Thus
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pE[(x/\L)VJ(y/\ L)] A [(* V L) \J (y V L)\

= [(x AL)r\(xV L)] U [(* A L) n (y V £)]

U [(y ADHf.V L)] VJ [(y A L) n (y V L)] = {x} U {y}

and so £=x or £=y. This, however, is a contradiction for x and y are both

contained in L\p. We therefore have that xiSy or y^x. Let us assume that

x^y. Now yAL is a connected set containing both x and y and so pEyAL.

Also, x\/L is a connected set containing both x and y and therefore pEx\/L.

Thus x<£<y which implies that pj±0 and £^1 and L = (pf\L)\J(p\JL).

Sufficiency. Since p^O, (pAL)\p is nonvoid and since p9±l, (p\JL)\p

is also nonvoid. Now L = (pAL)V)(p\/L) and so it follows that (pAL)\p

= L\(p\JL) and therefore, since p\/L is closed, (p AL)\p is open. Likewise,

(p\/L)\p is open. Thus L\p is the union of the disjoint open nonvoid sets

(pAL)\p and (p\JL)\p which implies that p cuts L.

A theorem in Wilder [4] states that a connected topological space X is

irreducibly connected about two of its elements a and b if, and only if, each

point of X distinct from a and b cuts X into exactly two components, one

containing a and the other containing o. If L is a connected topological lat-

tice then (xAL)\x and (xV/L)\x are connected sets for all x in L. Thus we

have the

Corollary. If L is a connected topological lattice with 0 and 1 then L is a

chain if, and only if, L is irreducibly connected about 0 and 1.

3. Local convexity in topological lattices. If A is a subset of a lattice L,

let C(A) = (A AL)C\(A\/L). We say that the subset A is convex if A = C(A).

It is clear that this condition is equivalent to: if x and z are elements of A

and if y is an element of L such that x^y^z then y is an element of A.

The proof of the following result is routine and will be omitted.

Lemma 1. If L is a topological lattice and if A is a subset of L then

(i)  C(A) is open whenever A is open,

(ii)  C(A) is connected whenever A is connected,

A topological lattice L is locally convex provided that whenever x is an

element of L and U is an open set containing x there is an open convex set

Fsuch that xEVEU.

Lemma 2. If L is a locally convex connected topological lattice and if aEU,

an open subset of L, then there exists an open convex connected subset V of L

such that aE VE U.

Proof. Since L is locally convex, there is an open convex set W such that

aEWEU. Let M be the maximal connected subset of W which contains a

We will show that M is an open set. Let y be an element of M. Now y Ay =y

= y\Jy and A and V are continuous functions hence there exists an open
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set TV such that TVA^CIFand N\JNGW. If x is an element of TV then xAy

and xVy are elements of IF. Now IF is convex so that (xAy)V [(xVy) AL]

GW. However, (xAy)V [(xVy) AL] is a connected set containing both x

and y and therefore xGM which implies that NGM. Thus Mis an open con-

nected subset of IF. By Lemma 1, C(M) is open and connected and moreover,

C(M)GC(W) = IF. Thus if we let V = C(M) we have that V is an open con-

vex connected subset of U which contains a.

In particular, Lemma 2 implies that a locally convex connected topologi-

cal lattice is locally connected. It has already been shown [5] that a locally

compact connected topological lattice is locally convex so that we have the

Theorem 2. A locally compact connected topological lattice is locally con-

nected.

A nondegenerate locally compact locally connected separable connected

metrizable topological space is a Peano space in the terminology of Wilder

[4]. It is known [4] that such a space is arc-wise connected in the strong

sense (two distinct points can be connected by a homeomorph of 7) and that

such a space is also locally arc-wise connected. We have thus proved the

Theorem 3. A nondegenerate locally compact connected separable metrizable

topological lattice is a Peano space and hence is arc-wise connected and locally

arc-wise connected.

We will now specialize some of the foregoing results to the case of a topo-

logical chain.

Lemma 3. If L is a connected topological chain and if A is a subset of L then

A is convex if, and only if, A is connected.

Proof. If A is convex and if x and y are elements of A then, since L is a

chain, we have that x^y or y =x. Suppose x^y then xV(yA£)CCL4) =A.

Now xV(yAL) is connected and so A is connected. Let us now assume that

A^C(A). Since AGC(A), we have that C(A)\A is nonvoid. Let x be an

element of C(A)\A then, clearly, xj^O and x^l. By Theorem 1 we have that

x cuts L into exactly two components (xAL)\x and (xVL)\x. Since A meets

both of these sets, A is not connected.

We recall that a base for the intrinsic topology of a chain (see [6]) is the

collection of sets of the form jx|x<a] or {x|a<x} or {x|a<x<&} where a

and b are elements of the chain.

Theorem 4. If L is a connected topological chain then the following are

equivalent

(i) L is locally convex,

(ii) L is locally connected,

(iii) the topology in L is equivalent to the intrinsic topology in L.

(iv) L is locally compact.
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Proof. The fact that (i) implies (ii) is an immediate consequence of

Lemma 3. Clearly, the collection of sets of the form |x|x<a} or {x|a<x}

or {x|a<x<fr} coincides with the collection of open connected sets and so

we have that (ii) implies (iii). To prove that (iii) implies (iv) we rely on a

result proved by Ward [7, p. 149] which implies: If L is a connected topo-

logical chain endowed with its intrinsic topology and if L has 0 and 1 then L

is compact. Now suppose that L satisfies (iii) and that a is an element of L

and that U is an open set containing a. If a is distinct from 0 and 1 then, by

hypothesis, there are elements b and c in L such that aE \x\ b<x<c] EU.

By Ward's result, {x\b < x < c}* = {x\b ^ x ^ c\ is compact and so

{x|&<x<c} is an open subset of U containing a whose closure is compact. If

a=0 then there is an element b in L such that {x|0^x<&} is an open set

containing 0 which is contained in U. Again {x|0^x<6}*={x|0gx^&}

is compact. If a = l then, by a similar argument, there is an element b in L

such that the open set {x|&<x^l} is contained in U and has a compact

closure. Thus L is locally compact. It is known [5] that a locally compact

connected topological lattice is locally convex and so (iv) implies (i) which

completes the proof.

It is shown in Wilder [4] that a locally compact connected separable

topological space which is irreducibly connected about two of its points is

homeomorphic with I. Thus we have the

Corollary. If L is a locally convex connected separable topological chain

with 0 and 1 then L is homeomorphic with I.

4. Simple connectivity and lattices. In this section we show that a locally

compact connected subset of R2 which admits a pair of continuous lattice

operations is simply connected, i.e., the one-dimensional homotopy group of

the space is trivial [9].

Lemma 4. If L is a locally compact connected topological lattice and if L is

topologically contained in R2 then each compact subset of L has an upper bound

and a lower bound in L.

Proof. We will establish the existence of upper bounds for compact sub-

sets of L, relying on the principle of duality for the proof of the existence of

lower bounds.

Property (F). An element a in L is said to have the property (F) if

aEF(xAL) for all xEaVL.
Now suppose A is a compact subset of L. If no element of A has the prop-

erty (F) then for each xEA there is an element, say y(x), in xVL such that

xG(y(x)AL)°. Thus the family } (y(x) AL)°\ xEA } is an open covering of A

and therefore, since A is compact, there is a finite subfamily, say

{(y(xt)AL)°\i= 1, 2, ■ ■ • ,n\,
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which cover A. Clearly y(xi) Vy(x2) V • • • Vy(x») is an upper bound for A.

Now let us assume that some aGA has the property (F). We will show that

a\/£ is a chain. Let x and y be elements of a\JL. Then xVy is also in a\/L

and so a££((xVy) AL). It is known [5] that if zGL and if wGF(zAL)

then [w\/(zAL)]GF(zAL). Thus letting

B = a V [(* V y) A L\

we have that BGF((x\/y)AL). We will now show that the codimension

of F((xVy)AL)gl. Let us assume that cd(F((x\fy)AL) =2. Now H.

Cohen [3] has shown that if X is a locally compact Hausdorff space then

cd(X) =ind(X). Moreover, it is known [8] that if X is a subset of R2 and if

ind(X) =2 then X contains a nonvoid subset which is open in 7?2. It follows

then that there exists a nonvoid set, IF, which is open in £2 with IF

CF((xVy)AL). Now W=Wr\F((x\/y)AL) = Wr\L and so W is open in L.

However, (xVy)AL is a closed subset of L hence £((x\/y)AL) is nowhere

dense in L which implies that IF is empty; but this is a contradiction. We

therefore have cd(73) ̂ cd(F((xVy) AL) ^ 1. Now 73 is a closed subset of L

and therefore is locally compact. Moreover, 73 is a connected sublattice of

L and so 73 is a chain (see [5]). Now x and y are elements of 73 and so xAy =x

or y which implies that a\/L is a chain. Now a\f A is a compact subset of

a\JL and so a\/A has an upper bound in a\/L. Clearly, any upper bound

for a\/A is also a upper bound for A.

One would suspect that this result can be proved without assuming that

L is topologically embedded in 7?2, however the author does not know how to

eliminate this hypothesis.

Theorem 5. 7/L is a locally compact connected topological lattice and if L is

topologically contained in R2 then irx(L) is trivial.

Proof. Let /: 7—+L be a continuous function such that/(0) =/(l) =x0.

Since /(7) is a compact subset of L, by Lemma 4, there are upper and lower

bounds say a and b, for/(7) in L. Now a\/(bAL) is a locally compact con-

nected sublattice of L and so a\/(bAL) is arc-wise connected. Let g: 7—>

oV(oAL) and h: I—>a\/(b AL) be continuous functions such that h(0) =g(0)

= a, g(l) =Xo and h(l) =b. Define F: I—*L as follows:

■g(3t) if      0 = / 5£ 1/3,

F(t) = - f(3t - 1) if 1/3 ^ t = 2/3,

,g(3 - 3t) if 2/3 g t g 1.

If we define 77: 7X7->L by H(t, t') = F(t) Ah(t') then clearly 77 is continu-

ous, 77(0, t) =77(1, t) =a, H(t, 0) =a and H(t, l)=F(t). Thus F is homotopic

to a constant mapping and so/is also homotopic to a constant [9]. For fur-

ther results, see [13J.
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5. The distributivity of plane lattices. In this section we show that a

locally compact connected topological lattice which is topologically contained

in R2 is distributive. The proof of this result is in two parts. The first part

demonstrates that such a lattice is modular and the second that it is dis-

tributive.

Lemma 6. Let L be a locally compact connected topological lattice which is

topologically contained in R2. If L contains four distinct elements, a, b, m, and re

such that a\f b = mand a Ab=n then: (i) The set M= [a\/(mAL)\\J[aA(n\/L)]

is a compact connected chain from re to m containing a and the set N

= [b\Z(mAL)]*U[bA(n\/L)] is a compact connected chain from re to m con-

taining b. Moreover, M and N are the only connected chains from re to m which

contain a and b respectively. Let J = bAM and let K = b\/M. (ii) The set

M\JN is a simple closed curve, (iii) MAK= [B(MKJN)]* = M\JJ.

Remark. It is known [5] that a locally compact connected topological

lattice is a chain if, and only if, it is at most one-dimensional. Thus L con-

tains two unrelated elements, a and b, if, and only if, L is a two-dimensional

subset of R2.

Proof of (i). We will first prove that mA(a\/L) is a chain. Since a^b, it

follows that m=a\/b is in F(a\/L) (see [5]). As in the proof of Lemma 2 we

have that cd(F(aVL))^l and so cd(mA(oVI)) ^1. Now mA(a\/L) is a

locally compact connected sublattice of L and thus is a chain (see [5]). The

corollary to Theorem 4 states that a locally compact connected chain with

maximal and minimal elements is compact and so the set wA(aVL) is a

compact connected chain from a to m. Dually, one shows that re\/(aAL) is

a compact connected chain from re to a and therefore M = [re\/(aAL)]

U[jwA(aVL)] is a compact connected chain from re to m containing a. If

C is any connected chain from n to m containing a then clearly CEM. Since

M is irreducibly connected about m and re and C is a connected set containing

both m and re, we have that C = M. In a dual fashion, one can demonstrate

the existence and uniqueness of the set N.

Proof of (ii). Since M and N are each homeomorphic with the closed real

number interval / and Mf~\N= \m, re}, the result follows immediately (see

[12]).
Proof of (iii). In an effort to simplify our notation, we let U=B(MUN)

and let V = R2\[lTU MVJ N]. The first step in the proof of this result is to

establish that U*EMAK. Now (MAK) A(MAK) = MAK and so M/\K
is a compact connected topological semigroup [10] under the operation A-

Since re is a A-zero and m is a A-unit for MAK, we have, by a result of

A. D. Wallace [ll], that Hl(MAK)=0. Now M\JNEMAK and so

R2\(M AK) C R2\(M KJ N) = UKJ V, thus R2\(M A K) = [ U\(M A K) ]
KJ[V\(MAK)]. Since V is not compact and M/\K is compact, V\(MAK)
is nonvoid. Therefore if U\(MAK) is nonvoid then the compact connected
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set MAK cuts 7?2 which implies that HX(MAK) 9*0. This, however, is a

contradiction and so UGMAK- Since MAK is closed we have that

U*GMAK. We observe that since U*, the closure of U in L, is compact

and so 77* is also closed in £2 thus the closure of U in L = the closure of U in

7?2= UyJM'UN. We resort to the principle of duality for the proof of the

fact that U*GM\/J.
Consider the function /: M—>£ defined by f(x) =x\/b. Clearly, / is con-

tinuous, order preserving and onto. Now if x is an element of K, f~l(x) is a

closed nonvoid subset of M, hence sup(/_1(x)) exists and is contained in

f~l(x). For each xGK\m, let k(x) =sup (/_1(x)). Thus if xGK\m then k(x)\/b

= xand&(x)<a. Dually, we let j(x) =inf {yGM\yAb=x} for each xGJ\n.

The following sublemmas will be useful in proving that MAK and M\/J

are contained in U*.

SublemmaA. IfxGK\{b,m} then [(k(x)\/M) Ax]n[MU7V] = {k(x),x}.

Proof. Suppose w = zAx for some zG(k(x)\/M). Since k(x)^z and k(x)

±£x, we have k(x) <zAx = w. Now w>Vx = (zAx) Vx = x and so x = x\/w

= (k(x)\/b)\/w = b\/(k(x)\/w)=b\/w. Thus if wGM then w^k(x) and

therefore w = k(x). Now if wGN then w\Jb = b or w\Jb = w and so x = b or

x = w. However xGK\[b, m} and so x = w.

Dualizing this result we have

Sublemma A'. IfxGJ\{b, n} then [(j(x) Am)\fx}r\[M\JN] = {j(x), x}.

Sublemma B. If xGK\{b, m} then the set [(k(x)\/M)Ax]\{k(x), x}

is either contained in U or in V.

Proof. Since (k(x)\/ M) Ax is a connected chain from k(x) to x, it is ir-

reducibly connected about k(x) and x, therefore k(x) and x are noncut points

of  (fc(x)VM) Ax.   Now  by Sublemma A,

[(*(*) V M) A x]\{k(x), x} C R2\(M U N) = UVJV,

hence the result follows.

Dualizing this argument we have

Sublemma B'. If xGJ\{b, »} then the set [(j(x)AM)\/x]\[j(x), x} is
either contained in U or in V.

Sublemma C. If xGK\{b, m} and if [(k(x)\/M) Ax]\{k(x), x} GU then
(k(x)VM)Ax = k(x)\/J.

Proof. Choose an element w in (k(x)\/M)Ax. We will show that

wGk(x) VJ. Now k(x) = (k(x)\/n)Gk(x)\/J and x = (k(x)\/6)Gk(x) VJ and
so if w = x or &(x) then wGk(x)\/J. If Wr^x and w?±k(x) then, by hypothesis,

wGUGM\/J. Hence there exists yGM and zGJ such that w = y\/z. Now

k(x)^w^x, thus ^(x)^yVz=x and since z^b^x, we have x = xV(yVz)
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= (xVz) Vy = xVy• Now yEM, therefore y ^k(x) or k(x) ^y. If &(x) ̂ y then

x = yVx=yV(&(x)V&) = (y\/k(x))\/b=y\/b which implies that yf^k(x) and

therefore y = k(x) so that w = (&(x)\/z)Ek(x)\/J. It y^k(x) then w = w\/k(x)

= (y\/z)\/k(x)=z\J(y\Jk(x))=z\Sk(x)Ek(x)\/J. We have thus established

that (k(x)\/m)AxEk(x)\/J. Now k(x)\/J is a connected chain from &(x)

to x, therefore, by the corollary to Theorem 1, k(x)\/J is irreducibly con-

nected about k(x) and x. However, (&(x)VAf)Ax is a connected subset of

k(x)\/J which contains both k(x) and x, therefore (k(x)\/M)Ax = k(x)\/J.

The dual of Sublemma C states

Sublemma C. If xEJ\{b, re} awo1 if [(j(x) Am)\/x]\{j(x), x} EU then

(j(x)AM)Vx=j(x)AK.

We are now in a position to prove that MAKEU*. We choose and fix

some cEJ such that cV'M meets U. Such an element exists since UEJ\f M.

Moreover, by Sublemmas B' and C, we have that c\/(j(c) AM) =j(c) AK.

Now suppose that x is an element of K. We will show that xAMEU*.

Clearly, xAM=[xA(k(x)\/M)]\J[xA(k(x)AM)] and xA(k(x)AM)
= k(x) A M E M C U\J M^J N = U*. Thus it remains to show that

xA(k(x)VM)EU*. It xA(k(x)\/M)EM\JN then xA(k(x)\/M)EU*. If
xA(^(x)VAf)Cl:ifW/V then, by Sublemma B, [xA(k(x)\/M) ]\{k(x), x} is
contained in t/orin F. Now k(x) <a<j(c) and c<& <x hence j(c)EK(x)\/M

and so (xAj(c))£xA(&(x)VAf). We also have that (xAj(c))Ej(c) AK

= c\/(j(c)AM), therefore if xAj(c)EM then, by Sublemmas A and A',

xAj(c) =j(c) and xAj(c)=k(x) which is impossible. If xAj(c)EN then, by

Sublemmas A and A', xAj(c)=x and xAj(c)=c which is also impossible.

Thus (xAj(c))E[(j(c)AK)\{j(c), c} ] = [cVO'W AM)]\{j(c), c\EU. Con-
sequently, xA(k(x)\/M) meets U and so xA(k(x) VM) E U*. A dual argu-

ment demonstrates that /VMEU*.

A lattice is modular if for any three elements x, y and z, x\/(yAz)

= (x\/y)Az whenever x^z. It is well known (e.g. see [6]), that a lattice is

nonmodular if, and only if, it contains five distinct elements a, b, c, m and re,

such that

(a) aAc = bAc = n,

(8)  a\/c = b\/c = m,

(y) a A b = a.

Lemma 7. Let Lbe a topological lattice and let a, b, c, m and re be five distinct

elements of L satisfying (a), (8) and (y). If M is a compact connected separable

chain from re to m containing both a and b then (c AM)\/ M is not contained in

(c\/M)AM and (c\/M)AM is not contained in (cAM)\JM.

Proof. Let J = cAM and K = c\/M. As in Lemma 6, we let &(x)

= sup{y£Af|y\/c = x}    for   xEK\m   and   j(x)=ini\yEM\yAc = x\    for
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xGJ\n. Now suppose that KAMGJ\/M. Since K and M are each homeo-

morphic with the closed real number interval 7, there is a strictly monotone

increasing sequence, say {x,}, in K\[m, c] with lim(x<)=m and a strictly

monotone decreasing sequence, say {yi}, in (&VM)\{m, b] with lim(yt)=p.

Now A is a continuous function therefore we have that lim(y,Ax<) =oA^

= b. We will now show that for each i = l, 2, 3, ■ ■ ■ there exists an element

of J, say Zi, such that y,-Ax,- = z,-V^(x,-) and Zi^y,Ac. Now yiAxiGKAM

GJ\/M and so yiAxi = u\/w for some uGJ and some wGM. Clearly

w = tt\/w=y,Axi^x, and so if k(xf) ^w then Xi = w\/Xi = w\/(k(xi)\/c)

= (w\fk(xi))\/c = w\Jc. Therefore w^k(x) which implies that w = k(xi).

Now fe(x<):gy,-Ax,- hence if w^k(xi) then yiAxi = k(xi)V(y.Axi) =k(xi)

\/(w\/u) =(k(xi)\Jw)\Ju = k(xi)V«. Also, m = c and tt=wVw^y,-Ax,<y<

and so w^y.Ac. Thus, if we let z, = u then y»Ax,- = ^(x,-) Vz. where z,£7 and

Zi^ytAc Clearly, {&(xi)} is a strictly monotone increasing sequence in M

which is bounded above by a, hence lim(£(x,)) exists, say lim(£(x,)) =a0, and

a0^a. Now w=Zi^y,Ac and lim(yiAc) =bAc = n, therefore lim(zi)=ra.

Thus it follows from the continuity of V that lim (k(xi)\/zi) =ao\/n=ao- We

now have that t> = lim (y;Ax,) =lim (k(xi)\/zi) =a0 which is a contradiction.

If we assume that JVMGKAM, we can dualize the foregoing argument,

replacing k(x) by j(x), and arrive at an appropriate contradiction.

We observe that the separability of M is not needed in Lemma 7. We

need only to replace the notion of sequences by that of nets in this proof to

eliminate this hypothesis.

Theorem 6. If L is a locally compact connected topological lattice which is

topologically contained in R2 then L is modular.

Proof. Suppose L is not modular, i.e. assume that L contains five distinct

elements, say a, b, c, m and n, which satisfy (a), (B) and (7). Now a and c are

unrelated elements of L hence, by Lemma 6, the set M=[mA(a\/L)]

yj[n\/(aAL)] is a compact connected separable chain from n to m contain-

ing a. Since a^b^m, M also contains 0. By Lemma 6, we also have that

MA(cVM)=M\/(cAM). However, Lemma 7 states that MA(cVM)

(£MV(cAM) which is a contradiction.

A lattice is distributive if xA(yVz) = (xAy)V(xAz) for any three ele-

ments x, y and z. It is well known (e.g. see [7]) that a modular lattice is not

distributive if, and only if, it contains five distinct elements, say a, b, c, m,

and n, satisfying

(5)  a\/b = a\/c = b\/c = m,

e)   aAb=aAc = bAc = n.

Theorem 7. If L is a locally compact connected topological lattice which is

topologically contained in R2 then L is distributive.

Proof. By the previous theorem, L is modular hence if L is not distribu-
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tive then L contains five distinct elements, a, b, c, m and re which satisfy

(5) and (e). Now a, b, and c are pairwise unrelated and so, by Lemma 6,

there are unique compact connected chains from re to m, say A, B and C

which contain a, b and c respectively. Clearly, A\JB\JC is a 0-curve in the

terminology of Whyburn [12] hence the bounded component of the comple-

ment of the union of two of these sets, say A and C, contains the third set,

say B, excepting its end points m and re. That is to say B\{m, re} EB(A\JC).

Now by Lemma 3, B (A U C) EA A C, thus bEA AC and so b—xAy for some

xEA and some yEC. If y£c then n = bAc = (bAy) Ac = bA(yAc) =bAy = b

which is a contradiction. If c^y then m = b\/c^b\/y=y^m and so y=m.

Thus b=xAm=xEA which is also a contradiction, hence L is distributive.
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