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1. Introduction and examples. This paper is intended as an exposition of

the theory and applications of a new class of algebraic structures, composita.

Composita arise naturally both in the context of algebra and in the context of

logic. In algebra, they arise from an attempt to establish on a firm foundation

the theory of an abstract algebra free on a generating set. In logic, they arise

as algebraic counterparts to the calculus of identities (equations) of Birkhoff

[2]. One application of composita is to freely generated algebras; this brings

unity and simplicity to proofs. A byproduct (Corollary 4.10) appears to be

a solution to Problem 68 of Birkhoff [4, p. 146].

A V-compositum T consists of a set T containing at least two elements,

a nonempty subset V of T, and a set 5 of maps on T to T such that:

(1.1) 5 contains the identity map and is closed under composition,

(1.2) every map on V to T has a unique extension in 5.

One example is a vector space T with basis V, and with the set of all

linear transformations on T in the role of .S. Further examples of this sort are

obtained from a free group T (or a free group modulo a proper fully invariant

subgroup, or a free ring, or a free ring modulo a proper 7"-ideal in the sense of

Amitsur [l ], or a free boolean algebra, or a free distributive lattice) with free

generating set V, and with the set of all endomorphisms in the role of 5. For

still another example, let T be a semigroup with unit e, let V consist of e

alone, and let 5 consist of all left multiplications of T. All of these examples

are special cases of the following one.

Let T be an algebra (throughout this paper we assume the definitions con-

cerning algebras of Birkhoff [4, pp. VII-IX], except that we require in the

definition of algebra that it contain at least two elements), let V be a gener-

ating set for T, and let S be the set of all endomorphisms of T. We shall say

that the structure consisting of the algebra T together with the generating

set V is free (or, briefly, T is free on V) it every map on V to T has an exten-

sion in 5. Then J" is a F-compositum. This was suggested as a possible defini-

tion of the concept of freely generated algebra in Birkhoff [3]. Warning: if a

group T is free on V, T is not necessarily a free group; T may be a free group

modulo a fully invariant subgroup.

An illuminating special case which we shall utilize in connection with

identities arises as follows. Let V, F be disjoint nonempty sets. Suppose that
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to each element f oi F there corresponds a positive integer n, called the degree

of / Let T be the smallest class of finite sequences of elements of V\JF

which contains all 1-term sequences whose only member is in Fand which is

such that: whenever/GF is of degree wand tx, ■ ■ • , t„GT, then fix • • • tnGT.

Let 5 consist of all maps s: T-^T such that for any/GF of degree n and any

tx, • ■ ■ , t„GT, s(ftx ■ ■ ■ t„) =f(stx) ■ ■ ■ (stn). There are words from logic to

describe this compositum: F consists of individual variables, T of terms, and

5 of substitutions. Finally, F consists oi function symbols.

Let R consist of at least two elements, let T denote the set of all functions

on RXR to R, and let F consist of the two projections vx, ViGT given by

Vx(rx, ri) =rx, v2(rlt ri) =r2 for rlt r2GR- Let 5 consist of all s: T—>T such that

for tGT, rlt riGR, (st)(rlt r2) =t((svx)(rlt r2), (sv2)(rlt r2)). It is not hard to see

that T is a F-compositum. Our last example generalizes this one.

Let R, V be nonempty sets. Denote by X the set of all functions on V

to R, by Rx the set of all functions on X to R. Let — : V—>FX be defined by

v(x) =x(v) for xGX, vG V. Every map s: RX-^>RX induces a map s*: X—*X

given by (s*x) (v) = (sv) (x) for x G X, v G V. Let 5 consist of all maps s: RX—*RX

such that

(1.3) (st) (x) = t(s*x) for allxGX, tG Rx.

Suppose that 7? contains at least two elements. Then a tedious but easy argu-

ment shows that Rx is a F-compositum. Composita so arising from a pair of

sets F, R we call concrete composita.

2. Representations of composita. Suppose that T is a F-compositum with

set 5 of maps and that V is a F'-compositum with set 5' of maps. Any

77: T—>T' which maps F 1-1 onto V induces a map 77: 5—»5' defined by the

requirement that (Bs)(Hv)=H(sv) for sGS, vGV. 77 is well-defined due to

(1.2).
A map 77: T—*T' is a compositum homomorphism if

(2.1) 77 extends a 1-1 map from V onto V,

(2.2) for sGS, tGT, H(st) =(Bs)(Hi).
Moreover, 77 is an epimorphism, monomorphism, or isomorphism as 77 is onto,

1-1, or 1-1 onto. If F= V, T= T', 5 = 5', then 77 is an endomorphism.

(2.3) If 77 is a homomorphism and sx, s2GS, then (Bsi)(Bs2) = B(sxS2).

(2.4) Suppose that 77: T—*T' is a homomorphism. Let t be an element of

T and IF a nonempty subset of F such that if Sx, s2GS agree on IF, then

sxt = sit. It follows that if si, si GS' agree on H(W), then si (Hi) =si(Ht).

To prove (2.4), select an sGS such that s coincides with the identity map

m: T—*T on IF and such that s(V) = W. Since 5 and u coincide on W, st = t;

so by (2.2), (Bs)(Ht)=Ht. Then (1.2) implies that it suffices to prove the

equality of si(Bs)(Hv), si(Bs)(Hv) for vGV. But si, si agree on H(W)

= H(s(V)), so siH(sv) =siH(sv).

A subset V of a F-compositum T is a subcompositum oi T provided that:
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V is a subset of V; stET' whenever sES, tET', s(V)ET'. A subset G of a

F-compositum T is a generating set if the only subcompositum of T containing

G is T itself.

By generalizing the construction of the composita of terms described in

§1, one obtains what deserve to be called free composita.

Theorem 2.1. Let V, G be nonempty sets. Then there exists a V-compositum

T, unique up to isomorphisms preserving G, such that: G generates T; if T' is a

V-compositum with generating set G' and e: G—*G' is onto, then there exists a

unique epimorphism E: T^>T' extending e.

Let T be a F-compositum. Then a congruence relation on T is an equiva-

lence relation Con Tsuch that: Cdoes not identify distinct elements of V; if

Si, SiES, h, t2ET, (siv, s2v)EC for vEV, (h, t2)EC, then (sih, s2t2)EC. More-

over, C is proper if C is distinct from TXT. The kernel Cof a map H: T^T'

is the equivalence relation Con Tsuch that (h, t2)EC if and only if Hti=Hh.

Then the following two theorems can be obtained using (2.3).

Theorem 2.2. Suppose E2: T—>T2 is an epimorphism. Let H3: T-*T3 be a

homomorphism such that the kernel of H3 contains the kernel of E2. Then there

exists a unique homomorphism Hx: Ti—>T3 such that HiEi = Hs.

Theorem 2.3. The kernel of a compositum homomorphism is a compositum

congruence relation. Conversely, suppose that C is a proper congruence relation

on T. Then there exists a V-compositum T' and an epimorphism E: T-+T' with

kernel C. Moreover, T' is determined up to isomorphism by T and C. We denote

T' as T/C.

A subset T' of a F-compositum T is full if T' contains at least two ele-

ments and whenever sES, s(V)ET', then s(T)ET'. To obtain examples, let

IF be a subset of V, and let TV consist of all t in T such that for any *i, s2 in

5 which agree on W, Sit = s2t. If 7V contains at least two elements, then

Tw is full. In case W is null, elements of 7V are called constants.

If k: V—">T, denote by k*: 7"—>T the extension of k in 5.

Lemma 2.4. Let R be a full subset of a V-compositum T, and let j: R-^T be

the inclusion map. Let X = Rr, and define H: T—>RX by

(2.5) (Ht)(x) - (jx)*t, lET,xEX.

Then H is a homomorphism on the V-compositum T to the concrete V-composi-

tum Rx.

Proof. To verify (2.1), note that for xEX, vEV, (Hv)x = x(v). As for

(2.2), note first that

(2 • 6) (j(Hs)*x)* = (jx)*s, seS,xEX,

since consecutive applications of the definitions of #, v, H, and H yield
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((Bs)*x)v = ((Bs)v)(x) = ((Bs)(Hv))(x)

= (H(sv))(x) = (jx)*(sv) = ((jx)*s)(v).

Consequently, applying (1.3), (2.5), (2.6), and finally (2.5) again,

((775) (770) (x) = (Ht)((Bs)*x) = (j(Bs)H)*t

= i(jx)*s)(t) = (jx)*(st) = (77(50) (x).

Theorem 2.5 (The regular representation). Suppose that T is a V-com-

positum. Let X—Tv. Then the map M: T—*TX given by

(2.7) (Mt)(x) = x*t, x G X,tGT,

is a monomorphism on the V-compositum T to the concrete V-compositum Tx.

Proof. Lemma 2.4 applied to the full subset T oi T shows that M is a

homomorphism. To see that M is 1-1, suppose Mtx = Mt2. If u: V—>T is the

inclusion map, m*: T—>T is the identity, and

lx = u*tx = (Mti)(u) = (Mh)(u) = u*h = h.

Theorem 2.6. A V-compositum T is isomorphic to a concrete compositum

if and only if T contains at least two constants and (i) below holds, (i) Let I be

the set of constants of T, let j: I—*T be the inclusion map, and let X = IV. Then

the map 77: T—+Ix given by

(770 (x) = 0'*)*/, xGX,tGT,

is an isomorphism.

Proof. If 77 is an isomorphism, then T is isomorphic to the concrete com-

positum Ix. In proving the converse, it suffices to consider concrete com-

posita; for if the 77 associated by (i) with a given compositum T is an iso-

morphism, so is the 77 associated with any compositum isomorphic to T.

Suppose that Fis a concrete F-compositum, T = RY, Y = RV. Define q: R^>RY

by (qr)(y) —r for all y in F; then I = q(R). In the obvious way the 1-1 maps

—: V—>RY, q: R-*RY induce a 1-1 onto map on Y = RV to X = P, and hence

induce a 1-1 onto map 77': RY—*IX. It is easy to see that 77=77', so 77 is 1-1

onto. Lemma 2.4 applied to the full set of constants implies that 77 is a

homomorphism.

Let T be a F-compositum, let n be the ordinal number of a well-ordering

of V. Let Tn denote the set of well-ordered transfinite sequences (tx, h, • • ■ )

of elements of T of length n. Using the well-ordering of V, we may identify

functions on Tn to T with elements of Tx, where X = Tv. The definition of an

algebra T which we have adopted from Birkhoff [4, p. VII] allows only func-

tions on T" to T with n finite. For the next theorem only, we allow n to be

infinite so as to be able to consider a structure consisting of the set T together

with certain functions in Tx as defining an algebra T.
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Theorem 2.7. Let T be a V-compositum. Suppose that M: T—*TX is the

regular representation, where X = Tv. Construe the structure consisting of the

set T together with the set of functions M(T) as an algebra. Then T is free on V,

and S is the set of all endomorphisms of T.

Proof. Suppose that T' is a subset of T containing V and closed under

all members of M(T). Let u: V-^T be the inclusion map, so that u*: T^rT

is the identity. Then if tET, t = u*t = (Mt)(u)ET', hence T=T. Thus V

generates T.

Suppose that e: T-+T is an endomorphism. Applying successively (2.7),

the fact that e is an endomorphism, and (2.7) again, we see that for tET,

et = e(u*t) = e((Mt)(u)) = (Mt)(eu) = (eu)*t,

so e = (eu)*. Consequently every endomorphism is in 5. Conversely, suppose

sES; then for xEX, sx* = (sx)*. Thus for tET,

s((Ml)(x)) = s(x*t) = (sx*)l = (sx)*l = (Ml)(sx),

or s is an endomorphism.

Corollary 2.8. Let C be a proper congruence relation on a V-compositum T.

Then there exists a homomorphism on T to a concrete compositum with kernel C.

Proof. Let E: T—>T/C be the epimorphism given by Theorem 2.3. Let

M: T/C—>RX be the regular representation of theorem 2.5. Then ME: J1—>i?x

is satisfactory.

This corollary is a generalization to composita of the semantic complete-

ness of the calculus of identities of Birkhoff [2, §10]. We now turn to this

subject.

3. The calculus of identities. From now on, let V be the fixed countably

infinite set consisting of Vi, v2, ■ ■ ■ . Furthermore, let F be a fixed set of func-

tion symbols, and denote by T the set of terms built out of Fand F (see §1).

In logical language, an ordered pair (h, t2) from TX T is called an identity and

written (h =t2). A set of identities is called deductively closed if the set is a con-

gruence relation for the compositum T. With every set A of identities is cor-

related its deductive closure C, the congruence relation generated by A. Fur-

thermore, A is nontrivial if C is proper.

It is not hard to see that a set C of identities is deductively closed if and

only if C satisfies (i), (ii), (iii) below.

(i) (t = t)ECtortET; (h = h)EC implies (/2 = /i)GC; (h=t2), (h = t3)EC
implies (h = t3)EC.

(ii) If (ti=h)EC and 5: T—>T is a substitution, then (sti=st2)EC.

(iii) If fEF is of degree re and (tx=tx), ■ ■ ■ , (tn = tn') E C, then

(fh   ■   ■   -tn=ft{    ■   ■   -U)E C

An F-algebra consists of a set R containing at least two elements together
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with a function d with domain F assigning to each fG F of degree n a function

df: R"-^R.

Theorem 3.1. Every F-olgebra R induces a compositum homomorphism

D: T-*RX (X = RV) such that: Dv = v for vGV; if fGF is of degree n and

h, ■ ■ ■ , tnGT, then for xGX,

(Dfh  ■   ■   ■  tn)(x)   -   df((Dti)(X),   -■■   ,  (Dtn)(x)).

Conversely, every compositum homomorphism D: F—>FX such that Dv = v for

vGV is so induced by precisely one F-algebra.

Proof. We prove the first assertion by verifying (2.2) for fixed s by a

recursion on the definition of T. Note that for vG V, (Ds)(v) =D(sv), so the

conclusion holds for v in F; also note that whenever fGF is of degree n and

the conclusion holds for h, ■ ■ • , tn (that is, (Ds)(Dti) =D(sti), i = l, ■ ■ • , n)

we may conclude that for all xGX,

((Ds)(Dftx ■ ■ ■ tn))(x) = (Df(sti) ■ ■ ■ (stn))(x).

In fact, to obtain the right term from the left, apply (1.3), the definition of D,

(1.3) again, the assumption D(sti) = (Ds)(Dti), and finally the definition of D

again. Consequently, D is a homomorphism.

As for the second assertion, for / G F of degree n we must define

df(ri, " • • i rn) for rx, • ' ' , TnGR- Choose any s: Rx—>FX in S such that

sit: X—>R has constant value r,-, i = 1, • • • , n. Then put df(rlt • • ■ , r„) equal

to (sDfai ■ ■ ■ vn)(x) for any xGX. By (2.4) this is independent of the choice

of 5, and is trivially independent of x. It is easy to verify that df(ri, ■ ■ ■ , r„)

= (Dfvi ■ ■ ■ vn)(x) for any xGX such that x(vi) =rit i — 1, ■ • • , n. This im-

plies that the homomorphism induced by the F-algebra coincides with D on

V and on terms of the form fai • • ■ vn. Since such terms generate the com-

positum F, the F-algebra induces D. We omit the proof of uniqueness.

Combining Theorem 2.2 with Theorem 3.1 one obtains

Corollary 3.2. Suppose that R2 and F3 are F-algebras inducing homomor-

phisms Di, D3. Then D2(T), D3(T) are V-composita. Further,

(i) an epimorphism E: R2—>R3 induces an epimorphism on D2(T) to D3(T)

given by D2t^>D3t for tGT,

(ii) a monomorphism M: R2—>R3 induces an epimorphism on D3(T) to

D2(T) given by D3t-+D2t for tGT.

We call an identity (tx = t2) true in an F-algebra R if Dtx-Dti for the com-

positum homomorphism D induced by R. To see that this definition has the

proper effect, suppose that F contains a function symbol/of degree 2. Con-

sider the commutative law (fviVi =fv2vi). According to the definition just given,

this identity is true in an F-algebra R if and only if

df(x(vi), x(vi)) = df(x(v2), x(vi))
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for all x: V—>R; that is, if and only if for all n, r2ER, df(ru r2) =df(r2, rx).

Combining Theorem 3.1 with Corollary 2.8 we obtain

Corollary 3.3. Let A be a nontrivial deductively closed set of identities.

Then (h = ti)EA if and only if (h=t2) is true in all F-algebras in which each

member of A is true.

4. Identities and freely generated algebras.

Theorem 4.1. Suppose that R is an F-algebra with generating set G. Then

each of the following conditions is necessary and sufficient that R be free on G.

(4.1) 1/ are identity (h=ti) is satisfied by some assignment of distinct ele-

ments of G io distinct variables occurring in (h = h), then (h = ti) is true in R.

(4.2) Suppose that R' is an F-algebra with the following property: if k is the

number of elements in G, and (ti = h) is an identity true in R containing no more

than k distinct variables, then (ti = t2) is true in R'. Then any map h: G—>R' can

be extended to a homomorphism H: R—*R'.

(4.3) Suppose that R' is an F-algebra such that every identity true in R is

true in R'. Suppose that e: G—>R' maps G onto a generating set. Then e can be

extended to an epimorphism E: R^>R'.

Proof. The origin of condition (4.1) was a perusal of Tarski [8]. The es-

sential steps are contained in Lemmas 4.3 and 4.4. Lemma 4.2 can be proven

by recursion on the definition of T. Further, we note that (4.1) has the follow-

ing technical expression.

(4.4) Let X = Rr and let D: T^>RX be the compositum homomorphism

induced by the F-algebra R. Suppose there exists an xEX which maps the

set of variables occurring in an identity (ti=ti) 1-1 into G, and in addition

satisfies (Dtx)(x) = (Dt2)(x); then Dtx=Dt2.

Lemma 4.2. Let Ri, R2 be F-algebras, let Xi — Rxv, X2 = Rj, and let

Di'. T->RXi\        D2: T-^icf

be the induced compositum  homomorphisms.   Then for any homomorphism

H: Ri->R2 and any xEXu H((Dit)(x)) = (Dit)(Hx).

Lemma 4.3. R is free on G implies that (4.4) holds.

Proof. Let W be the subset of V consisting of all variables which occur in

(h = t2). It suffices to show that (Dh)(y) = (Dt2)(y) tor yEX. There exists a

homomorphism H: R—>R such that H(x(v))=y(v) for vEW. Thus (Dt/)(y)

= (Dti)(Hx), so Lemma 4.2 yields (Dt/)(y)=H((Dtt)(x)), i = l, 2. Since

(Dtx)(x) = (Dt2)(x), (Dtx)(y) = (Dti)(y).

Lemma 4.4. (4.4) implies (4.2).

Proof. It will be convenient to introduce the set Q of terms built out of G

as set of individual variables and F as set of function symbols Let X=R°,
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X' = (R')a, and let D: Q^>RX, D': Q^(R')X' be the homomorphisms induced

by the F-algebras R and R' in accordance with Theorem 3.1, where we let G

play the role of V. A recursion on the definition of Q shows that

(4.5) if j: G—>R is the inclusion map, and rGR, then there exists a qGQ

with (Dq)(j)=r.

The definition of truth for identities shows that (4.4) and (4.2) are respec-

tively equivalent to (4.6) and (4.7) below.

(4.6) If gi, qiGQ, and (Dqi)(j)=(Dqi)(j), then Dqx=Dq2.
(4.7) Suppose that R' is an F-algebra with the following property: if

<7i, qiGQ, Dqi=Dq2, then D'qi=D'qi. Then any map h:G-*R' can be ex-

tended to a homomorphism 77: R—>R'.

We derive (4.7) from (4.6). Apply (4.5) to define the 77": F->7?' required

for (4.7) by the requirement that for rGR, Hr = (D'q) (h). This is independent

of the choice of q. For if r = (Dqi)(j) = (Dq2)(j), then by (4.6), Dqx=Dq2; con-

sequently (4.7) implies D'qx=D'qi, so (D'qi)(h) = (D'q2)(h). Moreover, H ex-

tends h since Hg = (D'g)(h) =hg.

Finally, we show that 77 is a homomorphism. Ii fGF, denote by df the

function/denotes in the F-algebra R, and by d'f the function /denotes in the

F-algebra R'. If n is the degree of/, and ffi, • • • , qnGQ, it suffices by (4.5)

to show that

H(df((Dqi)(j), ■■■, (Dqn)(j))) = d'f(H((Dqi)(j)), ■ • • , H((Dqn)(j))).

To obtain the right term from the left, apply the definitions of D, 77, D', 77

in that order.

Corollary 4.5. Let R be an F-algebra free on G. Let G' be a nonempty sub-

set of G, and let R' be the subalgebra generated by G'. Then R' is free on G'.

Moreover, if R'=R, then G' = G.

We say that an F-algebra R free on G is characterized by a set A of identi-

ties provided that every member of A is true in R and

(4.8) whenever the number of distinct variables occurring in an identity

(tx =t2) true in R does not exceed the cardinality of G, then (tx=t2) is in the

deductive closure of A.

For an example, suppose that F consists of a function symbol / of degree

2 and a function symbol g of degree 1. Let A be a set of identities true in an

F-algebra if and only if / is the product and g the inverse operation for a

group. Given a nonempty set G, there exist many nonisomorphic groups R

free on G; in particular, the free group, the free abelian group, or free groups

modulo fully invariant subgroups. However, only the free group generated

by G is characterized by A.

Theorem 4.6. Let A be a nontrivial set of identities, and let Gbea nonempty

set. Then there exists an F-algebra Ra free on G characterized by A. Moreover,

Ra is unique up to isomorphisms preserving G.
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Proof. To demonstrate uniqueness, suppose that R and R' are free on G

and characterized by A. By (4.2) the identity map on G can be extended to

epimorphisms E: R—>R', E': R'-^R. E and E' are inverses and isomorphisms.

As for existence, apply Corollary 2.8 to find a homomorphism D: T^>RX

(X =RV) with kernel the deductive closure of A. According to Theorem 3.1,

D induces an F-algebra R such that the deductive closure of A coincides with

the set of true identities of R. Theorem 4.7 below implies the existence of an

F-algebra Rg free on G characterized by A. Identifying G with G under

g—>£, Ra tree on G is as desired.

For clarity in the next theorem, if/GF, let a#/denote the function which

f refers to in an F-algebra R.

Theorem 4.7. Let R be an F-algebra, let G be a nonempty set, and denote

by P the set of all functions on R° to R. Construe P as an F-algebra by requiring

that for fEF of degree re and pi, ■ • ■ , pnEP,

(dpf(pi, ■ ■ ■ , pn))(z) - dRf(Pi(z), ■ ■ ■ , pn(z)), z E R°.

(4.9) R and P have the same true identities.

(4.10) Let — :G-*P be givenby g(z) =z(g) for gEG. Then the subalgebra R0 of

P generated by G is free on G and characterized by the set of all identities true in R.

Lemma 4.8. Suppose that R contains at least two elements, and that V, G are

nonempty. Denote by P the set of all functions on RG to R. Then each yEPv

induces a map y': R°—*RV such that whenever zER°, (y'z) (v) = (y(v))(z) for all

vE V. LetX = Rv, Y = PV, and define M: Rx-^Py by requiring that for tERx,

(4.11) ((Mt)(y))(z) = t(y'z), yEY,zER°.

Then M is a monomorphism on the concrete compositum Rx to the concrete com-

positum PY.

Proof. First, M is 1-1; that is, if h, hERx and Mh = Mt2, then h(x) = t2(x)

for all xEX. For if we define yE Y by requiring that y(v) EP is that function

on R° to R with constant value x(v), then y'z = x for all zERa: hence

((Mti)(y))(z)=ti(x) iovi = l,2.

For M, (2.1) is obvious. As for (2.2), note that for s: Rx-+Rx in 5, yG Y,

(4.12) ((Ms)*y)'(z) = sKy'z)        for all z G RG.

This follows from the fact that successive applications of the definitions of

', #, M, M, and # again yield

(((Ms)*y)'z)(v) = ((M(sv))(y))(z) = (sv)(y'z) = (sKy'z))(v).

Hence for tERx, (((Ms)(Mt))(y))(z) = ((Mst)(y))(z), since the right-hand

term can be obtained from the left by successive applications of (1.3), (4.11),

(4.12), and finally (1.3), (4.11) again. For, note that
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((MsMt)(y))(z) = ((Mt)((Ms)*(y)))(z) = t(((£s)*y)'(z))

= t(s*(y'z)) = (st)(y'z) = ((Mst)(y))(z).

Lemma 4.9. Lemma 4.8 implies Theorem 4.7.

Proof. Assume the notation of Lemma 4.8, and let D: T—*RX be the homo-

morphism induced by the F-algebra R in accordance with Theorem 3.1. Then

MD: T^>PY is a homomorphism inducing the F-algebra P defined in Theorem

4.7. Since M is 1-1, (4.9) follows. We employ (4.4) to prove (4.10). Let

k: V—>Rg map the set IF of variables which occur in an identity (tx=ti) 1-1

into G. Suppose further that

(4.13) (D'li)(k) = (D't2)(k),

where D' is the homomorphism induced by the F-algebra Ra- It is sufficient

to prove that

(4.14) (Dti)(x) = (Dti)(x), xGX.

For then (h=t2) is true in R, hence by (4.9) also in P, hence in the subalgebra

Ra of P; so by (4.4), it follows that Ro is free on G. Further, since then the

identity (ti = t2) is true in R, Ra is characterized by the set of all identities

true in R.

To prove (4.14), let zGR° be such that (kv)(z)—x(v) for vGW. Let

j: Ro^P be the inclusion map. Since MD induces the F-algebra P and the

inclusion map on Ra to P is a monomorphism, (ii) of Corollary 3.2 implies

that ((D'ti)(k))(z) = ((MDt,)(jk))(z) for i = l, 2. Then (4.11) implies that for

i = l, 2, ((D'ti)(k))(z) = (Dti)(x). This and (4.13) imply (4.14).

Corollary 4.10. Let G be a nonempty set. Let P(G) be the collection of all

subsets ofG. Let P(P(G)) be the collection of all subsets of P(G). If gGG, denote

by Wg the collection of all subsets of G containing g. Denote by W the set of all

Wgfor gGG. Then the distributive sublattice of P(P(G)) generated by W is free

on W.

Proof. We remark that a similar result holds for boolean algebras, Post

algebras, and many other algebraic systems. Let the set Fof function symbols

consist of W, C\ each of degree 2. As a consequence of either the representa-

tion theorem for distributive lattices, or a direct combinatory argument,

(4.15) An F-algebra is a distributive lattice if and only if its set of true

identities coincides with the set of true identities of the two element distribu-

tive lattice R consisting of 0 and 1.

If Ro is given by Theorem 4.7, then (4.15) implies that Ra must be the

free distributive lattice with generating set G, due to the uniqueness assertion

of Theorem 4.6. The vital remaining assertion is that there exists a natural

isomorphism between the distributive lattice P given by Theorem 4.7 and

the distributive lattice P(P(G)) under which each g corresponds to W„, G to
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W, and Ra to the sublattice of P(P(G)) generated by W. This isomorphism is

given by characteristic functions in the obvious way.

For the last two theorems we assume as known the notions of congruence

relation and direct product (union) for algebras from Birkhoff [4, pp. VII-

VIII]; we also employ the analogues of Theorems 2.2, 2.3 for algebras.

Let R be an F-algebra free on G. Then a proper congruence relation for

the algebra R is called fully invariant if also a congruence relation for the G-

compositum R. An algebra homomorphism H: R—>R' is fully invariant if H

is 1-1 on G, R' is free on H(G), and His a compositum homomorphism on the

G-compositum R to the H(G)-compositum R'. R free on G is irreducible if

whenever {Ec: R—>Rc}cek is an indexed collection of fully invariant epi-

morphisms and the map M: R-*Y1cek Rc given for rER by (Mr)c = Ecr is

a monomorphism, then for some CEK, Ec is an isomorphism.

For an example, let R be a free boolean algebra free on generating set G.

Note that if C is a fully invariant congruence relation on R, then the equiva-

lence class containing 0 is a boolean ideal closed under all endomorphisms of

R; the only such ideals are the unit ideal and the zero ideal.

For another example, let Ri be a free abelian group free on generating set

Gi. Let p be a prime, let a ^ 1 be an integer, and let p"Ri be the subgroup of

^"-powers in Rx. If G is the image of Gi in R=Ri/paRi, then R is free on G

and irreducible.

For a last example, let A be a maximal nontrivial set of identities (any

such set is complete in the sense of Kalicki and Scott [6]), and let R free on

G be characterized by A.

By imitating the argument of Birkhoff [4, p. 92], letting fully invariant

congruence relations play the role that congruence relations fill in the argu-

ment of Birkhoff, we obtain

Theorem 4.11. Let R be free on G but not irreducible. Then there exists a

collection {Ec: R-^Rc} csk of fully invariant epimorphisms, none of which is a

monomorphism,   such  that:   Rc  is  irreducible for  all   CEK;  the  map

M: R-+JlRc
CeK

given by (Mr)c — Ecr is a monomorphism.

Resuming the notation of the second of the group of examples preceding,

we obtain a monomorphism M: A\—*YLp" Ri/paRi of the given type by setting

(Mri)pa = ri+paRi for riERi- (The product extends over all primes p and all

a^l.)

The next and last theorem is closely related to [2, Theorem 10], but differs

from the latter in that it refers to the internal structure of a single arbi-

trary freely generated algebra.

Theorem 4.12. Let R be an F-algebra free on G. Let K be a nonempty col-
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lection of proper congruence relations on R. Then the following conditions are

equivalent.

(i) There exists a nontrivial set A of identities such that if C is the kernel of

an epimorphism E: R—+R', then CGK if and only if every member of A is true

in R'.

(ii) (a) If K' is a nonempty subset of K, and C is a proper congruence rela-

tion containing the intersection of all members of K', then CGK.

(b) Suppose that C is the kernel of an epimorphism E: R—>F' and that Ch is

proper and the kernel of a homomorphism 77: R—>R'. Then if CGK, it follows

that ChGK.

Proof. It is routine to verify that (i) implies (ii). We verify the converse.

Let E2: R—*R2 be an epimorphism with kernel the intersection C2 of all mem-

bers of K. Let A be the set of all identities true in Ri. We show that A will do.

One part is easy. If E3: R—>R3 is an epimorphism with kernel C3GK, then

A is true of R3; for then C3 contains C2, hence by the analogue of Theorem 2.2

for algebras, there is an epimorphism Ei: R2—*R3.

We conclude by showing that if E3: R—>R3 has kernel C3 and every mem-

ber of A is true in R3, then C3GK. This we derive from (4.16) below. Since

every identity true in R2 is true in R3, (4.16) and (4.3) imply that there exists

an epimorphism Ex: R2^>R3 with EiE2g=E3g for gGG. Since E1E1, E3 agree

on a generating set, EiE2=E3. Hence C3 contains Ci. Then (ii)(a) yields that

C3GK.

(4.16) The map gGG-*E2gGE2G maps G 1-1 onto E2G. Moreover, R2 is

free on E2G.

Suppose that gi, giGG, gxf^gi- Since every identity true in R is also true

in Ri, and since F2 contains at least two elements, (4.2) implies that there

exists a homomorphism 77: F—>F2 with Hgi^Hg2. Then (ii)(b) implies that

K contains the kernel Ch of 77, and hence also Ch contains C2. Consequently,

(gi, gi) is not in C2, or gi, g2 have distinct images under E2.

Finally, we must extend any h: E2G-^R2 to an endomorphism 77: R2—>F2.

Since R is free on G, there exists an endomorphism e: R—+R with E2eg = hE2g

for gGG. Hence by (ii)(b), the kernel Cof E2e: R-^R2 is in K ii proper. Thus

C contains C2, so the analogue of Theorem 2.2 for algebras implies that there

exists a homomorphism 77: F2—>F2 such that Eie = HE2. Moreover, 77 ex-

tends h.
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