
ON THE REPRESENTATION OF CARDINAL ALGEBRAS
BY DIRECTED SUMS

BY

A. BRUCE CLARKE

1. Introduction. The term cardinal algebra was introduced by A. Tarski in

his treatise [4] to signify an algebraic system closed under an operation of

countable addition satisfying certain axioms abstracted from the common

properties of such diverse systems as the algebra of cardinal numbers, the

algebra of sets, relation algebras, etc. In [4] Tarski studied the arithmetical

properties of such systems, methods of their construction, and their connec-

tion with other algebraic systems. Some of these results are summarized in §2.

It is the purpose of this paper to develop a representation theory for such

algebras in some sense analogous to the classical semisimple ring theory. It

is desired to show how general cardinal algebras can be built up in a unique

fashion from special and more elementary types of algebras. Then by adding

some fairly mild restrictions these special algebras can in turn be described

more or less completely. In doing this it will be necessary to introduce some

new methods of algebraic construction. The methods used appear to be

powerful enough to deserve further investigation, and the present discussion

suggests several problems which still remain to be settled.

The classical method of Birkhoff on representation of algebras as direct

products does not appear to be particularly fruitful here.

Since a cardinal algebra is, in particular, a partially ordered set, it seems

natural to attempt to build representations in terms of the order structure,

as well as along more classical lines. Consequently in §3 an operation of

ordered or directed sums of cardinal algebras is defined (3.3) and necessary

and sufficient conditions (3.5) are given for this operation to yield a cardinal

algebra. The main theorem of this section (3.14) states that every cardinal

algebra has a unique representation as a linear directed sum of algebras not

further decomposable in this fashion. In §4 it is shown that, under one fairly

natural restriction, these indecomposable "summands" must be either idem-

multiple algebras or simple algebras (see §2 for definitions).

The structure of idemmultiple cardinal algebras is fairly well known—

although not as well as one would like. Every such algebra is isomorphic to

an algebra of sets under the operation of set-theoretical union. The isomor-

phism is given by

a —> jx| x =£ a}.

The situation with regard to simple cardinal algebras is not so satisfactory.
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However theorem (4.7) gives a fairly weak condition under which a simple

algebra is a subalgebra of the nonnegative reals.

§5 is devoted to the definition and discussion of an operation on cardinal

algebras which is, in a certain sense, a generalization of both a directed sum

and a direct product. This operation is used in §6 to obtain a representation

theory for a still larger class of cardinal algebras.

2. Notations and known results. Although some acquaintance by the

reader with the treatise of Tarski [4] on cardinal algebras must be assumed,

this opportunity will be taken to summarize briefly those definitions and

basic results from that work to which specific reference will be made later.

The numbering on the right-hand side of the page refers to the numbering

system in [4].

(2.1) By a cardinal algebra is meant an algebraic system

%=(A,+,zZ) (Ll)

satisfying the following postulates.

I A is closed under finite addition +;

II A is closed under countably infinite addition zZ!

III zZ ai = °o + zZ «.+i;

iv        zZ (at + bi) = E<n+ £*<;
»<00 »<00 t<00

V there exists a zero element "0" such that

a+0 = a=0+a    for each    aEA)

VI a + b =   zZ Ci
*<oO

implies the existence of elements a,, biEA for i< oo, such that

a = zZ a,-, b = zZ b'>    and    c» = <*» + bi   for    i < °o ;
i<oo i<oo

VII ai = bi + o,-+i   for each i < <x>

implies the existence of an element cEA such that

an = c + zZ bn+' for each re < oo.
t<00

These postulates imply that2j is a generalization of +, and that the alge-

bra is unrestrictedly commutative and associative.

From now on the term cardinal algebra will be abbreviated by CA.

In any CA. a partial ordering ^ is introduced by

(2.2) a^b if and only if b=a+c for some cEA. (1-5)
One has the following arithmetical theorems:
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(2.3) If ai+a2 = 6i+62, then there exist elements clt c2, c3, c^GA such that

ai = ci+c2, ai = c3-\-C4,, bx=Cx+c3, o2 = c2+c4. (2.3)

(2.4) 7/a+c = o+c, then there exist elements a', V, dGA such that a = a' -\-d,

b = b'+d, c = a'-\-c = b'-\-c. (This is a modified cancellation law.) (2.6)

(2.5) If zZ <*; = »for every n < co, then  zZ «,-= o. (2.21)
*<n «<oo

(2.6) If n is an integer, 0<n< <x>, and na^nb, then a^b. (2.33)

The concept of an idemmultiple element or CA. plays an important role

in the sequel.

An element a is said to be idemmultiple if a+a=a. A CA. is said to be

idemmultiple if each of its elements is idemmultiple. (4.1, 8.1)

One has the theorem

(2.7) An element a is idemmultiple if and only if pa = qa for some distinct

nonnegative integers p and q. (4.3)

A subset B GA is said to be an ideal in 31 if it is closed under + and zZ and

if a = &GF implies that aGF. If XGA, the closure I(X) represents the small-

est ideal containing X. For single element sets 7(a) will be used in place of

7({a}). If B is an ideal the relation =B defined by: a = s b if a+c = 6+c' for

some elements c, c'GB, is an infinitely additive equivalence relation. The

algebra of equivalence classes 91/73 is also a CA. The class of all ideals in a

CA. is itself an idemmultiple CA. under the operation zZ*<°o F, = 7(U,<ooFj).

This algebra is denoted by 3(21). A simple CA. 31 is a CA. having no ideals

other than {o} and A itself.

In the following the usual set-theoretic notations will be used, the empty

set being denoted by 0.

3. Directed sums of cardinal algebras. The notion of a directed sum of

partially ordered sets over a partially ordered set is known from the literature

[l; 3]. Roughly speaking, one replaces each member a of a partially ordered

set A by a partially ordered set Ba and obtains in this manner a new partially

ordered set. More precisely, suppose A is partially ordered by the relation ^,

and for each aGA suppose Ba is partially ordered by a relation ±£0. Let C be

the set of all ordered pairs (a, b) with aG^4 and bGBa. For (a, b), (a', b')

GC define (a, b)^'(a', b') in case either a^a', ay^a' or else a = a', bSab'. The

relation ^' partially orders the set C, and the system (C, ^') is called the

directed sum of the systems (Ba, Su) over the system (A, ^); in symbols

(C g')=  zZ <*.,£.>.
(o,A,£)

Since a CA. is in particular a partially ordered set, it seems natural to

attempt to define an operation on C.A.'s analogous to this operation of

directed addition of partially ordered sets.

Consider C.A.'s 31 = (A, +, zZ) and 93„ = (Ba, +0, £„) for each aG^. The

operation + induces a partial ordering g of the set A while, for each aG^4,
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the operation +a induces a partial ordering ^0 of the set Ba. Let (C, g') be

the directed sum of the systems (Ba, ^„) over the system (A, J*). It is desired

to define operations

+  and zZ

over the set C such that the algebra

e = (c, + ,£>

is a CA. and ^' is the partial ordering of C induced by the operation +.

This condition alone would not determine the operations

+ and zZ

uniquely, since the operations of a CA. are not uniquely determined by the

partial ordering which they induce. However, there appears to be one natural

definition, namely

zZ (ai, bi) = (a, b)    where    a = zZ a»   &na   b = £« bi.
»<oo «'<oo a,^=a

As will be seen later this construction does not yield a CA. unless some

restrictive conditions are placed either on 21 or else on some of the "sum-

mands" 330.

In such directed sums, the element (0, Oo) will act as zero element for E,

where 0 is the zero element of 21 and Oo is the zero element of ScV Consequently

it seems natural to consider directed sums in which some of the summands

are not C.A.'s but systems obtained from C.A.'s by removing the zero ele-

ment. In some of the summands the presence of a zero element is clearly

indicated. If a is an element of A such that there exist elements aiEA for

which

a = zZ ai    anQl    at < a for each i < <x>,
»<«

and if biEBai for i< oo ; then it would follow that

zZ (<*••» bi) = (a, 0„),
i<oo

where 0a is the zero element of 93a. This suggests the following

Definition 3.1. Let

be a CA. An element aEA is said to be accessible in 21 if and only if, there

exist atEA, i<<x>, for which

a = zZ °« and a< < a for every i < oo.
«00
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Thus to say that an element is inaccessible means that it is indecomposa-

ble in terms of strictly smaller elements.

Definition 3.2. Let

%=(A,+,IZ)

be a CA. with zero element 0. By the positive part of 21 is meant the algebra

(A-{0\,+,zZ)-
When speaking of the positive part of a C.A., it shall be understood that

the CA. has at least two members, so that the positive part is not empty.

Notice that every CA. can be considered as the positive part of another CA.

Definition 3.3. Let

*={A,+,zZ)
be a CA. with zero element 0. For each aEA let

S.   =   {Ba,  +a,zZa)-

If a = 0 or if a is accessible in 21 assume that 33a is a CA. with zero element 0a,

otherwise assume that S3a is the positive part of a CA. By the directed sum

of the algebras 93a over 21—in symbols

—is meant the algebra

e = (c,+,Z)

where C is the set of all ordered pairs (a, b) with aEA and bEBa, and where

TfMi, bi)
•<tO

is defined to be the element (a, b)EC with

a = zZ °« and b = zZa bi.
i<oo ai=a

Finite addition + is defined analogously.

We now inquire under what conditions this directed sum is a CA. Before

stating the answer to this question it is convenient to introduce the following

Definition 3.4. Let

K = (A,+,zZ)

be a CA. An element aEA is said to be separating in 2f if and only if, for

each bEA, either a^b or b^a.

Obviously a CA. is linearly ordered if and only if each of its elements is

separating.

Theorem 3.5.  Under the assumptions of (3.3), the directed sum & of the
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algebras 93a over 31 is itself a CA. if and only if, for each aGA, a is separating

and idemmultiple in 31, or Ba consists of just one element.

Proof. First assume that S is a CA. Consider an element aGA which is

not idemmultiple, and suppose a, a'GBa. Then 2a = a+a is accessible in 31,

whence 02o exists in F2a and

2(a, a) = (2a, 02a) = 2(a, a').

By (2.6) this implies that (a, a) = (a, a/} and consequently a—a'. Thus Ba

consists of just one element.

Now suppose aGA is idemmultiple but not separating in 31. There then

exists an element bGA such that neither a^b nor b^a. Then a<a-\-b and

b<a-\-b so that a+o is accessible in 31. Consequently 0a+& exists in Ba\h-

Choose a fixed element BGBb- For any elements a, a'GBa one then has

(a, a) + (b, 8)= {a + b, 0a+b) = (a, a +„«') + (b, 8).

By (2.4) this implies the existence of elements (c, y), (ai, ax), (a2, a2)GC such

that

(a, a) = (c, y) + (ax, ai),

(a, a +a a') = (c, y) + (a2, ai),

(b, 8) + <ai, oi> = (6, 8) = (b, 8) + (ai, ai).

These equations imply that a = c+ai, a = c-{-ai, and o+ai = & = o+a2. Conse-

quently ai^a, a2^a, ax^b, and a2 = &. But axT^a^ai by the definition of b,

whence ai <a and a2<a. It follows that either c = a and a=y—a-\-aa', or else

c<a and a = 0o = a+o a'. In either case one has a' ^aa. Similarly a ^ a', whence

a = a'. Thus Ba consists of just one element. This concludes the proof of the

forward implication.

In order to prove the reverse implication it is necessary to check that

Axioms I-VII for a CA. are satisfied. A number of special cases must be con-

sidered and the checking, while straightforward, is tedious. Consequently

this part of the proof is omitted.

The problem of representing an arbitrary CA. as a directed sum will be

considered next. Since (3.5) gives assurance that in any such representation

the only nontrivial summand algebras will be those corresponding to idem-

multiple separating elements of the index algebra, it seems natural to con-

sider directed sums in which every element of the index algebra is idem-

multiple and separating. Hence, as essentially the most important case, one

should study directed sums over a linearly ordered idemmultiple CA.

Definition 3.6. If 31 is a C.A., 33 is the positive part of a C.A., then

31 © 33 =   zZ <£<,
(c.6)
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where © is the CA. of order 2 containing only the elements 0 and »,& o = 2l,

&. = 23.
Thus every element of 21 is less than every element of 93 in this sum.

Definition 3.7. Let 21 be a CA. Then 21 is said to be linearly indecom-

posable if and only if, whenever, 21=93 ffi@, then 93 must be a trivial one-element

algebra.

Definition 3.8. Let

n = (A,+,zZ)
be a C.A., B an ideal in 21. Then B is said to be a separating ideal of 21 if

and only if, bEB and aEA —B implies that b <a.

Theorem 3.9. Let Vibe a C.A., B an ideal in 21. If B is a separating ideal of

21, then B is a separating element in the CA. 3(21).

Proof. Trivial.

It is possible to show by a counter-example that the converse to (3.9) does

not hold.

Theorem 3.10. Let

% = (A,+,zZ)

be a C.A., B a separating ideal in 21. Then:

(i) For every x, yEA, x = sy if, and only if, either x, yEB or x=y.

(ii)  The algebra

W = ((A-B)\J{0},+,IZ)

is a cardinal subalgebra of 21, and

21' =• 21/5.

(iii) 21=18 82,
where ® = (B, +,zZ), <& = (A -B, +,£>.

Proof, (i) If x, yEB or x=y, then obviously x = sy. If xEA—B, bEB,

then x> <*>bEB, since B is a separating ideal and hence x+b=x. It follows

that if xEA —B, x = sy, then x=y.

(ii) Follows immediately from (i).

(iii) From (i) and (ii) one sees that the mapping (u, a)—>a gives an iso-

morphism of 93 ©S onto 21.

The concept of a separating ideal gives an intrinsic characterization of a

linearly indecomposable CA. as follows:

Theorem 3.11. Let

21= <^,+,E>

be a CA. Then 21 is linearly indecomposable if, and only if, 21 contains no

separating ideals other than A and {0}.
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Proof. If 21 is linearly indecomposable, then it can contain no nontrivial

separating ideal by (3.10).

Assume

23® e^3i

under an isomorphism/, where 93 = (B, +', zZ')l& a C.A. and & = (C, +", zZ")

is the positive part of a C.A. Let B' be the image of {(0, b)\ bGB} under/.

Obviously B' is an ideal in 21. If xG-4 —73', yGB', then there exist elements

bGB, cGC such that x=f((0, b)), y=/((°°, c)), whence x<y, since (0, b)

<(oo, c). Hence B' is a separating ideal of 21. If 21 contains no nontrivial

separating ideals, B' = (0}, and consequently 21 is linearly indecomposable.

Theorem 3.12. Let

21 = (A,+,WZ)

be a C.A., and let K be the class of all separating ideals of 21. If 0 t^LGK, then

fl XGK   and   7( U   X) G K.
xeL \xeL     /

Proof. Obviously fixer, X is an  ideal.   Assume that xGA—OxeL X,

yGOxeLX. Then xGA—X and yGX for some XGL. Hence y<x and

OxeLXGK.
Assume xGA — I(Ux<=l -X"). yG7(Uxez, X). In this case xG-<4 —X for each

XGL, and

y = IZyi
t<flO

where, for each i< oo, yiGXiGL. Since K is a linearly ordered subset of

3(21), one has, for each n < ■»,

zZ y< £ Xj for some j < n,
«n

whence x> 22,-<»yi for each n< oo. By (2.5), x^y. Since x^y, it follows that

x>y, and hence I(UxeL X)GK.

Definition 3.13. Let

21 = (A,+,zZ)

be a C.A., aGA. Let K be the class of all separating ideals X of 31 such that

aGX. Let L be the class of all separating ideals X of % such that aGX. The

quantities Mn(a) and m^(a) are then defined by

M*(a) =   D  X,
XeK

m%(a) =   U   X.
xeL
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By (3.12), Afa(a) and I(mn(a)) are separating ideals of 21. Obviously

aEMn(a).
Where no confusion would result the subscript 21 will be dropped and the

quantities denoted by M(a) and m(a).

The main theorem on representation of an arbitrary CA. by a directed

sum may now be stated. This theorem asserts that every CA. has a unique

representation as a linear idemmultiple directed sum of linearly indecom-

posable C.A.'s and their positive parts.

Theorem 3.14. Let

§1= (A,+,IZ)

be a CA. Then

21=-  D »»,
(6,8)

where (i) 93 is a linearly ordered idemmultiple C.A.,

(ii) each 93& is the positive part of a linearly indecomposable CA., and

(iii) if b — 0 or if b is accessible in 93, then 93& is a trivial one-element CA.

Furthermore, the algebras 93, 93b are uniquely determined, up to isomorphism,

by this representation and conditions (i), (ii) and (iii).

Proof. Let B be the class of all separating ideals X of 21 such that X = M(a)

for some aG-<4. For each XEB, let

Bx = {a | a E A and M(a) = X).

First it will be shown that the algebras

8 =<£,+,£>

(considered as a subalgebra of the ideal algebra 3(21)), and

93* = (Bx,+,zZ)

for XEB, satisfy the conditions of the theorem.

To verify (i) it is sufficient to show that B is closed under addition. Sup-

pose XiEB for i< oo, and let

x = zZXi = i(\JxX
*'<00 \ 1<00 /

By (3.12), X is a separating ideal in 21. For each i< oo, choose elements a,-

such that Xi = M(ai), and let

a = zZ a'-
t<00

Obviously aEX. It Y is a separating ideal of 21 such that aE Y, then atE Y



170 A. B. CLARKE [April

for each i< oo, X,GY for each i< <», and hence XGY. Consequently

X = M(a)GB.
It is most convenient to check (iii) next. If X= {o}, then Bx= {o} and

the conclusion follows. Assume that X is accessible in 93. Hence

X = zZ xi   where    X > X{ G B for each i < oo.
»<QO

Choose elements x, yGBx arbitrarily. Then

x = zZ xi,    with    Xi G Xi ior i < oo.
i<oo

Since 73 is linearly ordered, zZi<* X, = Xj<X for some j<n, and for each

w < oo. Hence yG zZi<* x< f°r eacn n<cc, and

^ x,- < y for each w < °°.

By (2.5), x^y. Symmetrically y^x, and consequently x=y. We observe that

this single element of Bx is idemmultiple, whence (iii) follows.

In order to check (ii) one may now assume that X = M(a) GB is not equal

to (0} and is inaccessible in 93, and proceed to show that the algebra

93~=<73xU{0},+,E>

is a linearly indecomposable C.A.

Let K be the family of all separating ideals FGF with Y<X, and let

z= u c.
CeK

If y,GZ for i<oo, then for some F.G7C we have ytGYi<X, whence

zZl>i£ zZYi^X. Equality is impossible since X is inaccessible, and it follows

that zZYiGK, zZYiGZ. This proves that Z is closed under addition and
consequently is itself a separating ideal, Z^X. If Z = X = M(a), then we

would have a= zZy<, y<& YiGK, Yt <X. This would imply that X= zZYi,
again contradicting the inaccessibility of X. Thus Z is a separating ideal,

Z<X, and furthermore Bx = X — Z. Since Z is also a separating ideal in X,

(3.10) assures one that 93x is a C.A.

To show that 23* is linearly indecomposable, assume that F is a separating

ideal in 93x- Then YKJZ is a separating ideal in 31 with YUZ = X. If Y\JZ = X,
then Y=Bx^J{o}. If YKJZ<X, choose yGY arbitrarily and we have

M(y) = FWZ<Z, whence yGFx,y = 0. Thus F=FxVJ{o} or F={o},and
(3.11) requires that 93x be linearly indecomposable. This completes the veri-

fication of (ii).

Let

8 = <C, +,£)=   Z 93x.
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(3.5) implies that 2 is a C.A., and it is now a simple matter to construct the

isomorphism between 21 and S. For aG^4, let

f(a) = (Mia), a) E C.

Clearly/ is a one-to-one function mapping A onto C For elements ajG^4,

i < oo, and

a = zZ °<>
»<0O

it is necessary to show that/(a) = zZf(ai), i-e.,

M(a) = zZ M(a,)    and   a =        zZ       a<-
»<» M(ai)=M(a)

Obviously M(a)^ zZM(ai) since the inequality holds for each index. But

a=zZaiEzZM(ai), which implies that M(a)^zZM(ai), whence M(a)

— zZM(ai). If M(a%) <M(a) for each i< oo, then M(a) is accessible in 93, and

(iii) implies that a must be the zero element of 93ji/(„), being its only element.

If M(at) =M(a) for some indices i< oo, whenever M(a/) <M(a) =M(at) one

has ooay<aj and consequently Oi+aj = ai. Hence

a = zZ a< =        zZ     a< +       zZ       ai ~        iZ       ai-
»<oo M(a,)=Af(a) M (aj )<M (a) M(ai)=M(a)

In every case it follows that

a =       E      a>>
Af(Oi)=Af(o)

and thus

f(zZa) = zZ /(«•)•
\ »*<0O / t<00

This proves that / gives the required isomorphism.

The uniqueness of this representation follows by straightforward checking

that in any isomorphism of 21 onto a directed sum satisfying (i), (ii) and (iii),

the counter images of the various "summands" are the algebras Bx.

This completes the proof of the theorem.

Definition 3.15. Let

%=(A,+,zZ)
be a CA. The subalgebras Bx of 21, defined in the proof of (3.14), will be termed
the linearly indecomposable summands of 21.

Theorem 3.16. Let

%=(A,+,zZ)
be a C.A., aEA. If Bx is the linearly indecomposable summand of 2( containing

a, then
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Bx = M(a) — m(a).

Proof. By definition BxGM(a). For bGA, bGBx if, and only if, M(b)

= M(a). M(b) = M(a) implies that ifm(o), and hence BxGM(a) —m(a). If

bGM(a)-m(a), then M(b)^M(a) but M(b)<M(a), whence M(a)-m(a)

GBx, and Bx = M(a)—m(a).

The study of the structure of arbitrary C.A.'s has now been reduced to

the study of linearly indecomposable C.A.'s. In the next section this theory

will be applied to characterize certain classes of C.A.'s whose linearly inde-

composable summands may be described more or less completely in terms of

simple and idemmultiple C.A.'s.

4. Primary cardinal algebras. One of the most fundamental arithmetical

theorems for C.A.'s is (2.6) which states that, for integers n with 0<«< oo,

na g nb implies a ^ 6.

This cancellation law for multiples can be split into two parts, namely:

na — nb implies a = b,

and

na < nb    implies    a < b.

In the simplest examples of C.A.'s, one finds that the condition "n < oo "

is necessary in the first of these two parts. However, in a great many ele-

mentary C.A.'s—idemmultiple, simple, linearly ordered, etc.,—one finds that

the second part holds for n = oo as well as n < oo. Hence, in seeking to de-

scribe the structure of more complicated C.A.'s in terms of these elementary

ones, it seems natural to study the behavior of elements and algebras for

which the second part holds with «= oo(!).

Definition 4.1. Let

n=(A,+,zZ)

be a C.A., aGA.
(i) a is said to be primary in 31 if,

oo J < co a implies that b < a, for bGA.

(ii) 31 is said to be a primary C.A. if each of its elements is primary.

Note that, trivially, every idemmultiple element of a C.A. is primary.

In this section it is shown (4.5) that for a primary C.A. the linearly inde-

composable summands are either idemmultiple or simple algebras. Conse-

quently, for such algebras, Theorem 3.14 provides a fairly complete repre-

sentation. Three lemmas are required.

(') See Tarski [5] where algebras satisfying a similar but stronger property are discussed

with special reference to the algebra of cardinal numbers.
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Lemma 4.2. Let

K=(A,+,zZ)

be a C.A., aEA. Then a is primary in 21 if and only if,  oo£>< ooa implies

<x>b<a,for bEA.

Proof. The reverse implication is obvious. Assume then that a is primary

andean element of A such that oo b < oo a. Then <n(<x>b)= <x>b<<*>a, whence

oo&<a.

Lemma 4.3. Let

« = (A,+,IZ)

be a C.A., and let a, x, and y be nonzero elements of A, satisfying a = x+y.

If a is primary and nonidemmultiple, then x and y must have a nonzero com-

mon lower bound.

Proof. If a is not idemmultiple, the same must be true of either x or y.

Say 2x>x. Obviously co;cgooa=oox+ooy. Assume first that <*>x<<x>a,

whence by Lemma 4.2, 2x^ ocx<a=x+y. Thus, for some zEA, one would

have x+x+z=x+y. By postulate VI for a CA. one may write x = Xi+yi

=X2+y2, z = x3+y3, where xi+x2+x3 = x, yi+y2+y3=y. If yi=y2=0, then

xi=x = X2, and x = xi+X2+X3^2x contradicting the assumption that x is

not idemmultiple. Consequently yi and y2 cannot both be zero, and one will

be a nonzero lower bound for both x and y. On the other hand, if oox= ooa

= oox+ ooy+y, then, by postulate VI, one could write y = zZy> where each

y.-^x. Some yi would again have to be nonzero, and thus in each case the

existence of a nonzero lower bound for x and y has been demonstrated.

Lemma 4.4. Let

K = (A,+,zZ)

be a primary CA. If an element aEA is nonidemmultiple, then »a« separating

in 21.

Proof. Assume ooa is not separating in 21. This means that there exists an

element &G^4 such that neither 6^ ooa nor <x>a^b, whence

ooa < oo<j + b,    and    b < <» a + b.

In this case   <x>a<<*>(a+b), which implies that   <x>a<a+b, a+b= <*>a+u

=a+ ooa+« = a + (a+6), for some element uEA. Thus,

2a + b = a + b.

By (2.3) there exist elements c\, c2, c3, c±EA such that
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2<j = Cx + c2,        a = cx + Cz,

> b = c3 + Cn,       b = Ci + C4.

Obviously 00 c2<S coa, but equality would imply that 00 a ^ 00 p, which in turn

would imply that ooa<6 or 6=ooa, contradicting the choice of b. Hence

°°c2< 00 a, whence <»c2<a, and consequently

a = 00 c2 + » = c2 + 00 c2 + v = c2 + a,

for some element nG^4. Similarly a = c3-\-a. Hence

2a = Cx + C3 + a = Cx + a = Cx + c2 + a = 2a + a = 3a.

By (2.7), this implies that a is idemmultiple, contradicting the hypothesis.

It follows that no such element 0 can exist, and the lemma is proved.

In view of Theorem 3.14, in order to determine the structure of primary

C.A.'s it is necessary only to study linearly indecomposable primary C.A.'s.

The next theorem describes such C.A.'s.

Theorem 4.5. Every linearly indecomposable primary C.A. is either simple

or idemmultiple.

Proof. Let

21 = M, + ,Z>

be a linearly indecomposable primary C.A., and assume that 21 is not idem-

multiple. Let a be an arbitrary nonidemmultiple element of 31. By (4.4) the

ideal generated by a, 1(a), is a nonzero separating ideal in 31, and by (3.11),

1(a) = A.

Let

B = \x\ x G A and  00x < =°a}.

Obviously y^xGB implies that yGB, and to prove that B is an ideal one

need only show that it is closed under addition. Assume that biGB for i < 00.

Since, for i< 00, oo&j<a, one has

n zZ °° bi =   zZ xbi ^ na,        for each n < 00,
i<n i<n

By (2.6), this implies that

zZ °° bi ^ a,        for each n < <*>,
\<n

and by (2.5),

00   zZ bi = zZ °° bi ̂  a.
t<oo i<oo

Equality is impossible, since <» E<<00 bi is idemmultiple while a is not. Hence

zZi<°° biGB. This proves that B is an ideal in 31. If xGF then »x= <»a,
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whence b <x for each bEB. Thus B is a separating ideal in 21, and, by (3.11),

B= {o}. Consequently oox= ooa for each nonzero element xEA. Thus 21 can

have no proper ideals and must be simple.

Combining (3.14) and (4.5), one obtains the following general representa-

tion theorem for primary C.A.'s.

Theorem 4.6. Let 21 = (^4, +, zZ) be a primary CA. Then

81 =■  zZ $6,
(.b.m

where (i) 93 = (B, +,zZ)^sa linearly ordered idemmultiple C.A.;

(ii) for each bEB, 93& is the positive part of a simple CA. or of a linearly

indecomposable idemmultiple C.A.;

(iii) for each bEB, if 0 = 0 or if b is accessible in 93, then 93;, contains exactly

one element.

The algebras 93 and 93ft, for bEB, are uniquely determined (up to isomor-

phism) by 21 and conditions (i)-(iii).

Theorem 4.6 reduces the study of primary C.A.'s to that of idemmultiple

and simple algebras. As mentioned in §1, every idemmultiple CA. can be

realized as an algebra of sets. However the structure theory of simple C.A.'s

is not as satisfactory. The only known examples of simple C.A.'s are the alge-

bra dt of non-negative real numbers (with oo added) and its three subalgebras:

the non-negative integers (with oo added), the two-element algebra {0, oo },

and the trivial algebra {o}. The problem of determining whether these are

the only such algebras is still unsolved. In view of the preceding structure

theorem, a definite answer to this question would be of importance. The

following theorem fits rather naturally into the present development. It

gives a fairly simple necessary and sufficient condition for a simple CA. to

be one of the above four, namely that its ordering be "Archimedian."

Theorem 4.7. Let

% = (A,+,zZ)
be a simple CA. having the property that, for each pair of elements a, bEA, if

a is finite and by^O, then a^nbfor some integer re< oo. Then 21 is isomorphic

to one of the four subalgebras of the algebra dt of non-negative real numbers (with

co added).

Proof. See reference [2 ].

In order to fit this theorem into the theory of this section one makes the

following definition:

Definition 4.8. Let

% = (A, +,IZ)

be a CA. An element aEA is said to be strongly primary if, for each bEA,

b < oo a implies that b^na for some integer re < °o.
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Theorem 4.9. Let

be a C.A. Then every strongly primary element of A is also primary.

Proof. Let a be strongly primary, and let 6 be an element of A such that

ooJ»< oo a. Then by the definition of strongly primary, <x>b^na for some inte-

ger n< oo. co6 = w(oop), and consequently (2.6) implies that coo^a, whence

b^a. Thus a is primary.

In view of theorems (4.7) and (4.9) one sees that if, in the statements of

all theorems and definitions of this section one replaces the word "primary" by

"strongly primary", and the phrase "simple C.A." by "cardinal subalgebra of

9i", all theorems will remain valid.

5. Star-products of cardinal algebras. One readily observes that the direct

product of two nontrivial C.A.'s is always linearly indecomposable. Conse-

quently the theory of the preceding two sections cannot be applied to such

products. In analogy with the construction of semi-simple rings from simple

rings one might ask whether there exist intrinsic characterizations for alge-

bras which are built up as direct products of C.A.'s for which the directed

sum decomposition gives an adequate description (e.g. of primary algebras).

In a direct product of primary C.A.'s, for instance, the only nonidemmultiple

primary elements are those of the factors, and such elements may be char-

acterized as those nonidemmultiple elements of the product which cannot be

written as sums of "disjoint" elements, (i.e., elements which have no nonzero

common lower bound, see Definition 6.1). One can then ask whether the

condition that all such elements be primary characterizes the class of all

C.A.'s which are direct products of primary C.A.'s.

Consideration of such questions as these leads naturally to the study of a

certain operation on C.A.'s which is at once a generalization of both a direct

product and a directed sum. This operation turns out to be an extremely use-

ful and suggestive tool, and is deserving of more detailed consideration.

Theorem 5.1 and Definition 5.2 are the only parts of this section essential to

the development of the theory of §6.

Theorem 5.1. Let

%=(A,+,zZ)    ^d   93=(F, +',£'>

be C.A.'s, and let <p be a homomorphism of 93 into the ideal algebra 3(21). Defi.ne

the relation R on AXB as follows: for (a, b), (a', b')GAXB, define

(a, b)R(a', b')

if, and only if, 0 = 0' and a =^^a', (see definition following (2.7)). Then R is

an infinitely additive equivalence relation over 31X93, and (3lX93)/F is a C.A.
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Proof. R is obviously an equivalence relation. In order to show that R is

infinitely additive, choose elements (a,-, &,•), (a/, b{)EAXB with (aj, bi) R

(at, bi ), tor i < oo. Hence, for i < oo, bi = bi and there exist elements

Xi, yiE<t>(bi) such that

at + Xi = ai + y{.

Hence

zZ'bi=zZ'b!,
t<00 t<00

zZ °»+ zZ xi = zZ°i +zZ y^
»*<» »<oo t<oo i<oo

and 53     xt-f X)     ^i^S     0(W=0(S'     **)• Consequently
t<oo i<oo t<oo i<oo

»<oo i<oo

This shows that i? is infinitely additive.

The algebra (21 X93)/i? obviously satisfies Postulates I-V for a C.A., (2.1).

Choose elements (a, b), (a', b')EA XB and (ai', bi')EAXB for i< oo, such

that

((a,b)+(a',b'))RzZ(ai',bi').
«'<00

This means that

b+'b' = IZ'bi',
*<QO

and that there exist elements x, yE<t>(b+' b') such that

a + a' + x = zZ at' + y-
*<oo

Since

4>(b +' b') = <f>(b) + 4>(b') = £*(*"),
»<co

one can find elements zE<p(b), z'E<p(b'), and yiE<p(bi') for i< oo, such that

x = z + z',     y = zZ yt-
t<00

Hence

(a + z) + (a' + z') = zZ W + y,).

By Postulate VI one can choose elements a,-, a/ EA for t < oo, such that

a + z = \Z ai,        a' + z' = zZ a'i,
i<<*> »'<oo



178 A. B. CLARKE [April

and

«/' + yt — ai + ai  for i < oo.

One can also choose elements o,-, 0/ GB for i< co, such that

b=zZ'bi,       b'=zZ'bi,
*<oo i<oo

and

bi' = 0i+'o,'  for i < 00.

Hence

(a, b)RzZ ^i, bi), (a', b')R zZ Wi, bi),
»<00 »<»

and

(ai', bi')R((ai + bi) + (ai, bi)) for i < <*>.

This shows that (2IX93)/F satisfies Postulate VI for a C.A.

For n < 00, assume that (a„, o„), (a„', b»)GA XB such that

(an, b„)R({an+x, bn+x) + (o», W))»

this means that

On = 6n+l+' o„',

and that there exist elements x„, ynG<p(bn) such that

(*) a„ + xn = an+x + «n  + y„.

Note that

*(Jo) D <t>(bx) D <p(bi) D ■ • ■ .

For n< 00, elements z„G<M0n+i), z„' G4>(bn) may be chosen such that

yn = Zn + Zn ,

since d>(b„)=d>(bn+x)+4>(bn). Furthermore, since ZoG«7J(oi) = <p(bi)+d>(bi), ele-

ments UoGd>(bi), VoG<p(bi) may be chosen such that

zo = «o + *>o.

Zi+«oG<?J(o2) =0(03) +<p(bi), and consequently there exist elements MiGcKoa),

ViG4>(bi) such that

zi + Wo = «i + »i.

Proceeding by induction, for each n< 00, elements unG4>(bn+i), VnG<p(bn+l)

may be chosen such that
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Zn + re„_i =  Un + Vn,

where one defines m_i =k_i =0. For re < oo, let

Xn    =   ZZ Xn+i + Un-l +  Vn-1 E 4>(bn),
t<oo

yn'   = »n-l + Zn   E 4>(bn).

Adding  zZi<<» *n+t+i+«n-i+»n-i to each side of (*), and recalling that y„

— Zn+Zn, one obtains, for w< oo,

On  +  X„    =   ( On+l +  ZZ Xn+l+i + «»-l)  +   (<*n    +  Vn-l)   +  yn
\ i<oo /

=   ( an+l +  ZZ Xn+l+i +  Un-l +  Zn)  +   (a/,    +  Vn-1 +  Zn' )
\ t<oo /

=  ( an+l +  ZZ Xn+l+i + Un + V„ 1 +  (an   + P»-l + 2„' )

= (a„+i + x„+i) + (a'n + y'n).

Hence, by Postulate VII, there exists an element aG^4 such that

an + xn = a + zZ (a'n+i + y'n+i),        for each re < oo.
i<oo

Also there exists an element bEB such that

bn = b +  zZ bn+i,       for each re < oo.

Since xn' Ed>(bn) and zZ«« y'n+t€=.4>(bn)E<p(bn), for re < oo, one has

(a, b) + zZ (a'n+i, b'n+i) = (a + zZ a'n+i, bnJ R(a, b).

This shows that (2tX93)/ic satisfies Postulate VII for a C.A., and completes

the proof that it is itself a CA.

Definition 5.2. Let 21, 93, cp, and R be as in Theorem (5.1). The CA.

(21 X93)/i? is termed the star-product of 21 and 93 modulo cp and is denoted by

21**93.

The relation R is said to be generated by cp.

Remarks, (i) Let 0 be the special homomorphism with 0(0) = {o}, cp(b)

= A for b^O. Then

21** 93 ̂21 ©93',

where 93' is the positive part of 93.
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(ii) If <b(b) = {0} for all bGB, then

31**93^310 93.

Hence the operation ** can be considered to be a generalization of both a

directed sum and a direct product.

(iii) If <p is a homomorphism of 93 into 3(31), let c5 be the natural homo-

morphism of 93 into 3(21/0(0)) induced by 0. Then it is easy to see that

31**93 ^(21/0(0))** 93.

Hence one can always reduce the operation ** to the case where 0(0) = {0}.

(iv) Since 3(21) is an idemmultiple C.A., tp(b) =0(ooo). Thus 0 is deter-

mined by its values on the subalgebra of all idemmultiple elements of 93.

Hence <p can be considered as a homomorphism between idemmultiple C.A.'s.

The operation ** has been defined as an "outer" product. It is natural to

ask whether there exists a corresponding "inner" product. That is, if a CA.

21 is represented in the form 93**E, are there natural projections of 93 and S

into 21, and can the class of all subalgebras of 21 which are obtained by such

projections be characterized intrinsically? The answer is contained in the

following two theorems.

The symbol A (x) is used in the sense of Tarski, i.e.

A(x) = {y|x + y = x}.

Theorem 5.3. Let% = (A, +,zZ), 23 = <B, +',£'), and S = (C, +",zZ")
be C.A.'s, let 0 be a homomorphism of £ into 3(23) such that 0(0) = {o}, and

assume

93 ** 6 ^ 21,

under the isomorphism f. Define

B'= {f((b,0)/R)\bGB},

C'= {f((0,c)/R)\cGC},

R being the relation on BXC generated by 0. For c'GC, define

<p'(C) = if((b,0)/R)\bG<p(c)},

where cGC such that c'=f((0, c)/R). Then

(i) B' is an ideal in 31.
(ii) Every coset of 31 mod 73' contains precisely one element c' of C, with

c' ^a for each element a of the coset.

(iii) For c'GC,

<p'(c') = a(c') r\B' = i(c') r\ B'.

Proof, (i) is obvious from the definition of B'.

Choose aG^4 arbitrarily. Hence a=f((b, c)/R) for some bGB, cGC Let
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V = f((b, 0)/R) E B',

c' =f((0,c)/R)EC

Then a = b' +c', and consequently a = B> c'.

Now given elements aG^4, c'EC such that a = B- c', there exist elements

b, u, vEB, and c, c0GCsuch that a=f((b, c)/R), c' =/((0, c0)/R) and

f((b, c)/R) +f((u, 0)/R) =/((0, co)/R) +f((v, 0)/R).

Hence, / being an isomorphism and R being additive,

(b+'u,c)R(v,c0).

Consequently c = Co, c'^a. This shows that (ii) is satisfied.

It remains only to check (iii).

Note that, since (0, c) R (0, c0) if, and only if, c = c0, cp' is well defined.

Choose an element c'EC arbitrarily. Thus c' =/((0, c)/R) for some cEC By

definition

4>'(c') C B'.

Choose b'E<p'(c'). Consequently V =/((0, b)/R) for some bE4>(c)- Since

b = ^0) 0, one has (b, c) R (0, c) and b'+c' =f((b, c)/R) =f((0, c)/R)=c'. Hence

b'EA(c')EI(c'), and cp'(c') EA(c')r\B'EI(c')C\B'. Choose b'EI(c')r\B'.
Consequently b' =f((b, 0)/R) for some bEB, and

f((b, oo C)/R) =f((b, 0)/R) +/((0, oo c)/R)

= V + oo c'

= oo c', since b' E I(c'),

= /((0,  ooC>/U).

Thus (6, ooc) i? (0, ooc), 6 = «(MC)O,6G0(ooc:) = oo</>(c) =0(c),and consequently

b'E4>'(c'). Therefore I(c')r\B' E<!>'(c'), whence

<f>'(c') = ^(c') P> B' = 7(c') n 5',

completing the proof of the theorem.

The next theorem states that conditions (i)-(iii) of the preceding theorem

are the characterization which one is seeking.

Theorem 5.4. Let

%=(A,+,zZ)

be a CA. Let B', C, cp' satisfy conditions (i)-(iii) of (5.3). Let

» = <*',+,£>,     e = (c',+,Z>.
Then

(i) & is a cardinal subalgebra of 21.



182 A. B. CLARKE [April

(ii) 0' is a homomorphism of £ into 3(23) such that 0'(O) = JO}.
(iii) For cGC and b, b'GB',

b =*'(„) b'

if and only if, b-\-c = b'+c.
(iv) 93V6SSI,

under the mapping f where, for bGB', cGC,

f((b, c)/R) = b + c,

R being the relation on B'XC generated by 0'.

Proof. Since every coset of 21 mod B' contains precisely one element of £>

to prove (i) it is sufficient to show that C is closed under zZ-11 this is the case,

the mapping c—>c/B' gives an isomorphism of £ onto the C.A. 2I/F'. Choose

elements ctGC for i< «>, and let c= ^,<oo ct. Choose an element aG-<4 with

a = B> c. Hence there exist elements u, vGB' such that a-\~u = c-\-v= zZi<«>ci

-\-v. There exist elements a', u', ai, UiGA for i< oo such that

v = a' + u', d = ai + Ui       for i < oo,

a = zZ ai + a',        u = y^ Uj + u'.
»<0O »<0O

Since w,GF' for i< a>, a, = Ci = ,s< at, and since each c< is minimal in c,/73', one

has ai — Ci for i< co. Hence

a = 22 Ci + w' = c + «',
«■<«)

whence e^a. This shows that c is minimal in c/B', and cGC'.

(ii) is obvious from condition (iii) of (5.3), assumed to hold.

Turn now to (iii). Choose elements b, b'GB', cGC, and assume that

0 = 0,(c)o'. Hence there exist elements u, vGA(c)(~\B' such that b-\-u = b'+v.

Since c-\-u = c = c-\-v, this implies that b-\-c = b-x-u-\-c = V-\-v-\-c = b'-\-c. Con-

versely, assume that 0+e = o'+c. By (2.4) there exist elements d, e, e'GA

such that b = d+e, b'=d-\-e', c-\-e = c = c-\-e'. Hence e, e'G0'(c) and o+e'

= a,+e+e' = o'+e. This shows that 0=*'(C)o'and completes the proof of (iii).

(iii) implies that the mapping/defined in (iv) is a function on (B' X C')/R.

Choose elements b, b'GB', c, c'GC such that

b + c = b' + c'.

Hence c = b' c' and consequently c = c', since each coset contains only one

element of C. By (iii) one has b =*'(«) o', whence (b, c) R (b', c'). The function

/ is thus one-to-one. If an element aG^4 is chosen arbitrarily, then there

exists an element cGC such that

a =b> c,        c g a,
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i.e. there exists bEB' such that

a = b + c.

Hence/ is a one-to-one function from 93**-S onto 21. / is obviously additive,

and thus is an isomorphism. This completes the proof of the theorem.

Given two C.A.'s 93 and (5 one may ask, in analogy with the theory of

group extensions: What is the class of CA. extensions 21 of 93 such that B is

an ideal in 21 and

WB <= C?

Theorems (5.3) and (5.4) answer this question in part. Let E be the class of

all extensions 21 of 93 such that

(i) B is an ideal in 21;

(ii) 21/5=^;
(iii) every coset of 21 mod B contains an element c such that c^a for

each element a of the coset;

(iv) if c is such a minimal element, then

A(c)f\B = 1(c) nB.

Then E is in one-to-one correspondence with the class of all homomorphisms

0 of S into 3(93) such that 0(0) = JO}.
Notice that property (iv) above is in a certain sense a generalization of

the property of being primary. If c is primary in 21 and ct^O, bEI(c)C\B, then

oo6<ooc, whence «>b<c, b+c = c, bEA(c)f~\B. Hence in this case property

(iv) follows.

6. Semi-primary cardinal algebras. In a direct product of primary C.A.'s

the only nonidemmultiple primary elements are those of the factors, and these

may be characterized as those nonidemmultiple elements which are dis-

junctively indecomposable (see Definition 6.1 below) in the product algebra.

One might suspect then that this property would characterize such algebras

in some sense. On further investigation however one discovers that this

property is more intimately connected with the general star-product of C.A.'s

discussed in §5 rather than with the ordinary direct product.

Definition 6.1. Let 21 = (A, +,zZ), be a CA.
(i) Two elements x, yEA are said to be disjoint in 21, in symbols, xf\y = 0,

if z^x and z ̂ y implies that z=0.

(ii) An element aEA is said to be disjunctively indecomposable in 21 if

a = x+y with x/\y=0 implies that x = 0 or y = 0.

Definition 6.2. A CA. 21 = (A, + ,zZ) « said to be semi-primary if every

disjunctively indecomposable element of 21 is primary.

The fundamental lemma required for the study of such semi-primary

C.A.'s is the following:
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Theorem 6.3. Let 31 = (A, +, \Z) be a semi-primary C.A., and let a and b

be disjunctively indecomposable elements of 31. Then one of the following cases

must hold: either (i) a/\b=0,
or (ii) oo a = «>0,

or (iii) oo0^ oo a,

or (iv) a and b are idemmultiple.

Proof. Assume that neither (i), (ii), nor (iii) holds. The theorem will be

proved if one can show that (iv) must then hold. If a+b=x+y where xAy

= 0, x^O^y, then by (2.3) there exist elements Cx, c2, c3, Ct,GA such that

a = Cx + Ci,        o = c3 + Ci,        x = Cx + c3,        y = Ci+ c4.

From xAy = 0 one sees that CxAci = 0=c3/\ci. Since a and o are disjunctively

indecomposable, ci=0 or c2 = 0, and c3 = 0 or c4 = 0. Since x^Op^y, one has

a = x, o=y, or a=y, o = x, whence aAb = 0, contradicting our assumption that

(i) does not hold. Hence a+b is disjunctively indecomposable, and conse-

quently primary.

Next one shows that a+b is idemmultiple: Obviously

00 a = oo (a + b),        oo J ^ co (a + o),

but equality in either case would imply (ii) or (iii), contradicting the initial

assumption of the proof. Hence

coa<a+o, ooo<a + 0,

whence

«> (a+b) g 2(a + o).

This shows that a+b is idemmultiple.

Since a+0f£2a+o^2(a+0) =a+b, one has that

2a + o = a + b.

Now choose elements dx, di, d3, d\GA such that 2a=dx+di, b=d3+dt,

a = dx+d3,   b — di+dt.   Hence   coa'2=ooa,   but  equality would   imply that

ooa= coo, contradicting the assumption. Consequently <x>di<a, whence a+d2

= a. Similarly a+d3 = a. Thus

2a = dx + d3 + a — dx + a = dx + di + a = 3a.

By (2.7), a is idemmultiple. Similarly o is idemmultiple.

Theorem 6.4. Let 21 = (A, +, zZ) be a semi-primary C.A. Then either 31 is

linearly indecomposable, or

31^23 © £,

where (i) 93 is a linearly indecomposable semi-primary C.A.
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(ii)  £ is the positive part of a primary CA.

The algebras 93 and £ are uniquely determined up to isomorphism by 21 area"

conditions (i), (ii).

Proof. If 21 is primary, the theorem is obvious. Assume 21 is not primary.

Choose an element aEA such that a is nonprimary, and let

B = M(a),. C = A - B,

% = &,+,£),   e = <c,+,£>.

By (3.12), B is a separating ideal of 21, and by (3.10),

21 =-93 © 6.

Next we show that if x is a nonprimary element of 21, then m(x) = {0}. As-

sume x is nonprimary. Thus x=y+z for some elements y, zEA with yAz = 0

and yy^O^z. If X is a separating ideal of 21 with xGA", then yEX, zEX

would imply that y<z, a contradiction; similarly yEX, zEX would give a

contradiction. Thus y>u, z>u tor each uEX, and hence X={o}, since

yAz = 0. Consequently m(x) = {o}.

In particular, m(a) = JO }, which shows that 93 is a linearly indecomposable

semi-primary CA. Furthermore, cEC implies that

m(c) DB^ {0\.

Hence c must be primary and (S is the positive part of a primary CA.

The uniqueness of the algebras 93 and (S follows from (3.15), 93 being line-

arly indecomposable.

Definition 6.5. Let % = (A, +,zZ)bea CA.
By the width of 21—in symbols, w(2I)—is meant the l.u.b. of the cardinal

numbers of all sets XEA — {0}, such that xAy = 0 for all x, yEX with x?±y.

Theorem 6.6. Let 21 = (A, +, zZ) be a C.A., w(2l) < oo, aG^4. Then there
exists a unique set UEA — [o\ such that

(i)  The number of elements in U is ^w(W).

(ii) a= zZxeu x.
(iii) If x and y are elements of U with X9^y, then x/\y=0.

(iv) Every element of U is disjunctively indecomposable.

Proof. Since w(2l) < oo, choose U to be a set of maximum cardinality

satisfying (ii) and (iii). U must then satisfy (i). If, for some element xEU,

x=y+z with yAz=0, yp^O^z, then the set (U— {x})W{y, z] would contra-

dict the maximality of U, hence U satisfies (iv) also. Assume V also satisfies

(i)-(iv). Then

a = zZ x = zZ V-
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By (2.3) one can choose elements x„G^4, for xG U, yG U', such that

y = 2^ xy for y G U',       x =   zZ xv lor x G U.
xeu ye!/'

For x, x'GU, y, y'GU', x^x', y^y', one has xAx'=0=yAy', and conse-

quently xy/\Xy =0=xv/\Xy'. By (iv) one sees that, for each xGU, x=y for

some yG U', and conversely. Thus U= U'.

Definition 6.7. Under the hypotheses of (6.6), the set U shall be denoted by

X(a), and the elements of X(a) shall be called the disjunctively indecom-

posable summands of a.

Theorem 6.8. Let

% = (a,+',zZ'),    ® = (b,+",zZ")

be C.A.'s, 0 a homomorphism of 93 into 3(21) with 0(0) = JO}. Then

w(% **93) = w(2I) + ^(kernel 0).

Proof. Let

6 = 21**93 = <C,+,£>•

By Theorem (5.3) one may assume that A and B are subalgebras of (5, A an

ideal, o minimal in b/A for each bGB, and 0(F) =7(o)r\<4 for each bGB.

A C\ kernel 0 = {o}.

Consequently,

w((&) £; w(2l) + w(kernel 0).

Let X be any set of mutually disjoint elements of C. For each element

xGX, by (5.3), x = y+z, yGA, zGB. One may assume that y = 0 or z = 0,

since if z^O, x may be replaced by z. If y =0 and tp(z) t^O, then x may be re-

placed by any nonzero element of <p(z) — I(z)(~\B. Hence one may assume

that,

X G A\J kernel 0.

Consequently

w(£) = w(2I) + w(kernel 0).

Corollary 6.9. Let

k = {a,+',zZ'),    » = <*, +",£">

oe C.A's, .4 ;* {0}, 93' /Ac positive part of 93. FAew
(i) w(2lX23)=w(3l)+w(93),
(ii) w(3I893')=w(3I).

Definition 6.10. Let 3I = (^4, +,zZ) oe a CA. The set of all ideals X of 21
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which are factors of 21, i.e. such that A=XX Y for some ideal Y of 21, will be

denoted by g(2Q.
Definition 6.11. Let

%=(A,+,zZ)
be a CA. 21 is said to be strictly nonidemmultiple if, for each A"G$(2l), X

= I(N), where N is the set of all nonidemmultiple elements of X.

Theorem 6.12. Let % = (A, +,E) be a semi-primary CA. withw(U) < oo.

Then 2I=93**E, where (i) 93 is a strictly nonidemmultiple semi-primary C.A.,

(ii)  6 is an idemmultiple C.A.,

(iii) 0 is a homomorphism of (5 into r5(93) such that 0(0) = {o}.

This representation is unique up to isomorphism.

Proof. Let P be the class of all disjunctively indecomposable, nonidem-

multiple elements of 21. Let

B = I(P),

C = {a | a E A and X(a) H B = 0),

® = {B,+,zZ),      <s=<c, +,£>•

For each element cEC, let 0(c) =I(c)(~\B.

Assume that A'Gr5(93), and choose an element xEX arbitrarily. Since

B = I(P),

x ^ zZ °° xh
t'<n

where XiEP for i<n^ oo. Without loss in generality one can assume that

xAx.^O for each i<n, and consequently x.GA" for i<n, since each x< is dis-

junctively indecomposable. Hence

X = /(AO,

where N is the set of all nonidemmultiple elements of X. Thus 93 is a strictly

nonidemmultiple, semi-primary CA.

If a is an element of C, then every disjunctively indecomposable summand

of a is idemmultiple. Thus S satisfies (ii).

Next one wishes to show that every coset of 21 mod B contains precisely

one element of (5, which is minimal in it. Choose an element a EA arbitrarily,

and let

U = \(a)r\B,        V =\(a) - B,

b = zZ x, c = zZ y-
xeu yev

Hence bEB, cEC, and a = b+c, i.e.

c 2S a =b c.
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Assume that c, c'GC with c = Bc'. There then exist elements b, b'GB such that

c + b = c' + b'.

Since yG~^(b), yAx/^O for some xGMc), implies that ooy<x, x+y=x, by

(6.3) and the definitions of B and C, and consequently one has that

c + b=zZx+zZy=zZx+     zZ     y-
z£X(c) l/£X(6) x€X(e>) yeXWlyAc—O

Hence

X(c + b) = \(c) W IF,

where IF=X(o)n{y|yAc = o}. Similarly

\(c' + b') = \(c') W IF',

where IF'=X(o')n {y|yAc'=0J. Since

\(b + c) = X(o' + c'),

X(c), X(c') C C,        W,W'GB,       FHC={0},

one has

X(c) = X(c'),        c = c'.

Consequently every coset of 31 mod B contains precisely one element of 6 and

this element is minimal in the coset. £ being idemmultiple, for each cGC,

0(c) = 7(c) C\ B = A(c)C\ B.

Hence, by Theorem (5.3)

31 £2 93 ** 6,

and this representation is unique.

Choose an element cGC, and let

F = [y\ yG B and \(y) f\ 0(c) = 0}.

Fis thus an ideal in 93, and <p(c)r\Y= {o}. For each bGB,

b=   zZ x=       IZ      x+       zZ      x=b' + b",
ie\(6) ieX(6)D*(c) ie\(b)-*(c)

where b'G4>(c), b"G Y. Thus 73 = 0(c) X F, and consequently

0W G 5(23).

This completes the proof of the theorem.

Theorem 6.13. Let

21 = (A,+,zZ)
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be a CA. with w(W) < oo. Then there exist unique ideals A o, Ai, • • ■ , Am-i such

that

A = 11 Ai,
t<m

where (i) m^w(%),

(ii) For i<m, Ai is a directly indecomposable ideal in 21.

Proof. By Tarski (10.16).

Theorems (6.4), (6.8), (6.12) and (6.13) can now be combined to give a

general decomposition theorem for semi-primary C.A.'s of finite width.

Theorem 6.14. Let 21 = (^4, +, zZ) be a semi-primary CA. with 1 <w(2I)
< oo. Then

21 =■ 2l0 © 5),

2lo=-93*«£,

and

93 = n$.>
i<m

where (i) 2Io is a linearly indecomposable, semi-primary CA.

(ii) 3) is the positive part of a primary CA. which is trivial in case 21 is

linearly indecomposable.

(iii)  S is an idemmultiple CA.

(iv) m^w(%).

(v) For i<m, 93,- is a strictly nonidemmultiple, directly indecomposable,

semi-primary CA.

(vi) cp is a homomorphism of S into $(93) with 0(0) = {0}.

(vii)  For i<m,

w(93.) < w(8).

Furthermore,  conditions (i)-(vi) uniquely determine the algebras 2lo,  3),   S,

93o, • • • , 93m_i (up to isomorphism), the homomorphism cp, and the integer m.

Proof. All parts except (vii) follow from theorems (6.4), (6.8), (6.12) and

(6.13).
If kernel cp^ {o}, or if m>l, (vii) follows, since by (6.8) and (6.9)

w(2l) = zZ w(93.) + ^(kernel 0).
i<m

Assume kernel 0= {o}, m = l. Then, by (v) and (vi),

2i0=-93©<r,

where (£' is the positive part of £. By (i), & is trivial and 21o=93.
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Let P be the set of all disjunctively indecomposable, nonidemmultiple

elements of 23. Choose an element bGB such that w(I(b))is maximal. Let

F'= {x| xG F and x A6 ^ 0},       F" = F - P',

X = 7(F'),        F = 7(F").

Obviously,

X + Y = 7(F) = B.

One now wishes to show that XC\Y= \o}. It is sufficient to show, for each

xGP', yGP", that xAy=0. Choose elements xGP, yGP". Thus xAb^O,

yAo=0. Assume that xAy^O. By (6.3)

oox^ooy    or     ooy g  oox.

But oox| coy would imply that xAb=0, contradicting the hypothesis. Hence

ooy^ cox. By (6.3) again,

00 X   ^    CO 0        Or CO 0   ^    00 X.

However, ccx=ooo and yAb = 0 would imply that xAy=0, again contra-

dicting hypothesis; while ooo^gcox^ccy and yAb = 0 would give w(I(x))

>w(I(b)), contradicting the choice of b. Since in every case one arrives at a

contradiction, one concludes that

XC\ Y = {0},       B = X X Y.

By (v), this gives B=X, P=P'.
Choose an element aGB arbitrarily. If xGMa), then xAb^O, and hence,

by (6.3)

00*   < 00   b,       Or        00 0   g    00 x.

<»x< coo for each xGX(a) would imply that coa< oo&, while coo^g cox for

some xGX(a) would imply that 00 og 000. Consequently

Z = {a I a G B and  » o< »{)

is a separating ideal in 23. Since w(93)>l, Z^ [o}, and 23 is linearly decom-

posable. However this contradicts (i), since 93=3lo. Therefore, for i<m,

w(93.) < w(%),

which completes the existence part of the theorem.

The uniqueness of 2lo and 3) follows from (6.4), that of 93, £ and 0 follows

from (6.12), while (6.13), together with the fact that any direct factor of a

strictly nonidemmultiple semi-primary C.A. is of the same type, assures the

uniqueness of 23o, • • • , 93m_i and m. Thus the theorem is proved.

This theorem gives a decomposition of a semi-primary C.A. of finite

width in terms of such algebras of smaller width. By repeating the process
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one would finally arrive at a decomposition of a semi-primary CA. of finite

width in terms of semi-primary C.A.'s of width 1. To complete the discussion

therefore, we need only the following

Theorem 6.15. Every semi-primary CA. of width 1 is primary.

Proof. Since no two nonzero elements of such a CA. are disjoint, every

element must be disjunctively indecomposable and hence primary.

The results of Theorems 6.14 and 6.15 may be stated in a less complete

but possibly more suggestive form as follows:

Theorem 6.16. Let K be the class of all semi-primary C.A.'s of finite width.

Then K is the smallest class of C.A.'s with the following properties:

(i) If 21 is a primary CA. of finite width, then %EK.
(ii) Ifn9±$8EK,then%.EK.
(iii) 7/21, 93GAT, then KX%EK.
(iv) If %EK, 93 is a primary CA., and cp is a homomorphism of 93 into

5(21) such that w(kernel 0) < oo, then

2I**93G #.

Proof. Theorems 6.14 and 6.15 give assurance that every semi-primary

CA. of finite width may be obtained from primary C.A.'s using the opera-

tions (ii)-(iv). One needs only to check now that the property of being semi-

primary of finite width is preserved under these operations.

(ii) and (iii) are obvious.

Assume that

n = (A,+',zZ')
is a semi-primary C.A., w»(2l) < oo,

93 =(5, +",zZ")

is a primary C.A., and 0 is a homomorphism of 93 into 5(21) such that

w(kernel 0) < oo. Since 0(O)G5(2l), 21/0(0) is isomorphic to an element of

5(21) and hence is semi-primary. Consequently, without loss in generality,

one may assume that 0(0) = JO}. Let

6= (C,+,zZ) = 21**93.

By (5.3), one may assume that A is an ideal in (S, bEB if, and only if, bEC,
b minimal in b/A, and

0(6) = 1(b) C\ A = A(b)C\A.

Furthermore, since 0(&)G5(2l) for bEB, each element cEC may be repre-

sented as

c = a + b,
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where aG^4, bGB, and a is an element of the ideal complement of 0(o), i.e.

a Ab = 0. Hence every disjunctively indecomposable element of £ is an element

of A or B.

If a is a disjunctively indecomposable element of A, then a is primary in

A, whence a is primary in £, A being an ideal in £. Choose elements bGB,

cGC arbitrarily such that

00 c <  00 J,

Choose elements a'G^4, b'GB such that c — a'+b'. Then

oo b' := oo a' + oo b' < <x> b.

Since 93 is primary, one has V <b, while ooa' < coo implies that

a' G 1(b) f\A= 0(o) = A(b) C\ A.

Consequently,

c = a' + V < b.

Thus every disjunctively indecomposable element of £ is primary, i.e. £ is

semi-primary.

w(£) = w(2l) + ^(kernel 0) < oo.

This completes the proof of the theorem.
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