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1. Introduction. In this paper, we wish to extend to linear differential-

difference equations a number of results familiar in the stability theory of

ordinary linear differential equations. In this theory, one considers a system

of equations of the form

dx
(1.1) —=A(l)x,       x(0) = c,

at

where t is a real variable, x is a column vector with n rows, and A(t) is an

n-by-n matrix, and a perturbed system

d%
(1.2) —=(A(t) + B(t))x.

dt

In general terms, the stability problem is to determine conditions on the

matrix B sufficient to ensure that some property of all solutions of (1.1)—

such as boundedness or order of growth—will also be a property of all solu-

tions of (1.2). This stability problem has been extensively investigated for

ordinary differential equations, cf. Bellman, [l].

In this paper, we shall consider, instead of the functional equations of

(1.1) and (1.2), the system

m m

(1.3) Y A„(l)z'(t + hn) + Y Bn(t)z(l + h„) = 0,
n = 0 »--n

and the perturbed system

m m

(1.4) Y  \ An(i)   +  Cn(t))z'(l +  h„)   +   £{/?„(/)   +   D„(t)\z(t +  hn)   =   0
n=0 n=0

of linear differential-difference equations^). Here, A„(t), Bn(t), Cn(t), and

Dn(t) represent given matrix functions of the real variable /, and y represents

an M-dimensional column vector. The "spans" h0, hi, ■ • • ,hm are assumed to

be real, and can be supposed to satisfy the conditions 0 = h0<hi < ■ ■ • <hm.

The stability property with which we shall be concerned is that of bounded-

Received by the editors April 12, 1958.

1 For :i snrvev of the general iheorv of differential-difference equations, refer to Bellman,
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ness of solutions as t—>+ oo. The principal results are given in Theorems 3, 5,

9, 10, 11, and 12, below.

One of the interesting features of the discussion of stability contained be-

low is that we apparently must use the concept of the adjoint equation, rather

than the more primitive concept of the inverse of a matrix which is customar-

ily used in the stability theory for ordinary differential equations. Of funda-

mental importance in the latter theory is the fact that solutions of the non-

homogeneous equation

dz
(1.5) — = Ait)z + w(l)

dt

can be represented by a simple integral operator involving w. In fact, if

Yit) denotes the matrix solution of

dY
(1.6) —=A(t)Y,        F(0) = 7,

at

where / is the identity matrix, then

(1.7) z=  f  Y(t)Y-1(s)w(s)ds
J o

is the particular solution of (1.5) for />0, satisfying the condition z(0)=0.

The customary derivation of (1.7) utilizes the method of variation of param-

eters^), and depends on an independent proof that F_1(<) exists for t^O.

Such a proof is not difficult, for differential equations(3). The simplicity of

this procedure is, however, misleading since the method fails when applied to

more complicated functional equations such as the nonhomogeneous counter-

part of (1.3). It turns out that a more illuminating approach is furnished by

use of the concept of the adjoint equation. The use of the adjoint to obtain a

representation similar to (1.7) will be described in §2 for ordinary differential

equations, and in §3 for simple differential-difference equations. In §4, we

shall sketch the method for a very general system of differential-difference

equations, those with "retarded argument," and in §5-9 we shall apply the

results to establish stability theorems for such systems. In later sections we

shall extend the method of the adjoint equation to another broad class of

differential-difference equations, those of so-called "neutral type," and we

shall establish stability theorems for these equations.

The use of the adjoint in connection with differential-difference equations

is apparently to be found in only one prior work, the interesting paper of

N. G. deBruijn, [3]. There, however, less general classes of equations were

considered, and no attention was devoted to the stability problems discussed

here.

(J) Cf. [l, p. 11], for this derivation.

0 [1, P- 10].
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2. Ordinary linear differential equations. We shall attempt to find a

representation, similar to (1.7), for the unique solution z of the nonhomogene-

ous system

(2.1) — = A(t)z + wit),        z(0) = 0, / > 0,
dt

without using the inverse matrix explicitly. If we multiply (2.1) by a matrix

F, as yet unspecified, and integrate, we obtain the relation

/»  t r*  t f*  t

Yis)z'is)ds =   I    Yis)Ais)zis)ds+  I    Yis)wis)ds, I ^ 0.
0 J 0 J 0

After an integration by parts, this takes the form

(2.3) Y(l)z(l) =   f  {Y'(s)+ Y(s)A(s)}zis)ds +  f   Y(s)w(s)ds.
Jo Jo

In order to simplify this equation, we now ask that Y(t) satisfy the equation

(2.4) Y'is) + Yis)Ais) = 0, 0 ^ s < t.

The resulting equation for z(t) can now be solved for z(t). In order to avoid

the use of the inverse matrix Y(t)~l, let us impose the further condition

(2.5) Y(t) = I.

Provided that A(t) is continuous, (2.4) possesses a unique solution Y(s)

satisfying (2.5) and defined for t^s^O. With this choice of Y, we obtain

from (2.3),

(2.6) z(l) =   f   Y(s)w(s)ds,
J o

which is the desired relation.

The system in (2.4) and the original system

(2.7) Y'(i) = A(t)Y(t)

are said to be adjoint^) to one another. It is important to note that the func-

tion F defined by (2.4) and (2.5) actually depends on two variables, 5 and t.

In fact, it will be convenient for us to indicate this explicitly by adopting the

notation Y(s, t) for Y. The relations (2.4), (2.5), and (2.6) then take the forms

(2.8) — Y(s,t)= - Y(s,t)A(s), (t>0;s>0),
ds

(2.9) Y(t,t)=I,

(4) The equation adjoint to (2.7) is often defined to be Y'= —A*Y where A* is the con-

jugate transpose of A; see Coddington and Levinson, [4, p. 70].
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and

(2.10) 2(0 =  f   Y(s, t)w(s)ds.
J o

It is easy to verify that if X(t) is the unique solution of (1.6) satisfying

X(0)=I, then the function

(2.11) Y(s, t) = X(t)X-x(s)

is the unique solution of (2.8) and (2.9). Therefore, (2.10) and (1.7) are

equivalent results.

3. The scalar linear differential-difference equation. In order to illustrate

the application of the above procedure to differential-difference equations,

let us first examine the simple class of scalar equations of the form

(3.1) u'(t + h) + b(t)u(t) + c(t)u(t + h) = w(t), t > to,

where b(t), c(t), and w(t) are given real scalar functions and h is a given posi-

tive number.

We begin by making some observations concerning the existence and

uniqueness of solutions of (3.1). An initial condition appropriate to the func-

tional equation in (3.1) has the form

(3.2) u(t) = <p(t), to g / g to + h

where (p(t) is a prescribed real function. Let us suppose that b(t), c(t), and w(t)

are continuous for / = /o and that <b(t) is continuous for to = tSto + h. Then

from (3.1) we see that u'(t + h)+c(t)u(t + h) is determined over to<t<to+h,

by the given values of <b(t), as a continuous function.

It follows that there is just one way to define u(t) over t0=:t^to+2h so

that u(t) is continuous at to + h, equal to <t>(t) for to^t^to+h, and so that the

equation in (3.1) is satisfied for to<t<t0 + h. Moreover, it is clear that by

repeating this argument, we can continue the function u(t) from one interval

of length h to another, and that this continuation is made unique by the

requirement that u(t) be continuous. In short, there is a unique continuous

solution of the equations in (3.1) and (3.2). Note that u'(t) is necessarily also

continuous for t>to+h.

We shall now find a representation, analogous to (2.10), for the particular

solution of the equation in (3.1) for which </>(/) is identically zero. Imitating

the procedure of §2, we multiply the equation in (3.1) by a function v(s, t)(5),

as yet unspecified, and integrate with respect to 5 from to to /. Provided that

v(s, t) is differentiable with respect to 5 for to <s <t, we can then integrate by

parts as above, deriving in this way the relation

(6) We shall indicate the dependence of v on / as well as on s from the start this time.
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,   x ,       ,     C ' (Ms, t))
v(t, l)u(l + h) - I    1-V u(s + h)ds

+ I   v(s, t)b(s)u(s)ds

(3-3)

+  I    vis, l)cis)uis + h)ds
J h

=  I   ?.>(.?, t)wis)ds.

Since m(^) =0 for to^s^to+h, we have

»(i, A J(5)«(i)<fc =1       »(j + A, /)*(* + h)uis + h)ds, I > to.

Therefore

vit, t)uil + h)

+ J       | -— vis, t) + vis + h, l)bis + h) + vis, t)cis)\ uis + h)ds

(3.5) r' (   d )
+ I      <-vis, t) + vis, l)c(s) *> uis + h)ds

=   I   vis, t)w(s)ds, t > /„.
J «o

We now ask that v satisfy the adjoint equation

dv
(3.6)-is, t) + vis + k, l)bis +h) + vis, l)ds) =0,    t > t0, to < s < t - h,

ds

as well as the relations

(3.7)- is, l) + v(s, l)c(s) = 0, t-h<s<t,
ds

(3.8) vis, t) = 1 at s = /.

With this choice of v, we at once obtain

(3.9) u(t + h) =  j   vis, t)wis)ds, t > to.

The Equations (3.7) and (3.8) can be combined into the single equation

(3.10) vis, t) = exp    - J    cisi)dsi   , t - h £ s £ t.
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If b(s) and c(s) are continuous for s = <0, we can show by the continuation

method that there is a unique function v(s, t), defined and continuous for

t>ta, to = s^t, which satisfies (3.6) and (3.10). Moreover, since dv(s, t)/ds is

continuous for s<t — h and t — h<s<t, and v(s, t) is continuous for s<t, the

manipulations used above are justified, and the conclusion (3.9) is valid.

Equation (3.1) is said to be an equation with retarded argument, because

the arguments of u do not exceed any argument of u'. This is not true of the

equation

u'(t + h) + a(t)u'(t) + b(t)u(t) + c(t)u(t + h) = w(t),

which is said to be of neutral type. Equations of neutral type are somewhat

more troublesome, because discontinuities in the derivative of the initial

function are propagated—that is, they appear repeatedly in the derivative

of the solution. For this reason, we shall defer their consideration until

§§11-15 below. In the next section, we shall show how to extend the method

given above to the most general system of linear differential-difference equa-

tions with retarded argument. The results will be embodied there in a formal

theorem.

4. The matrix equation with retarded argument. The most general linear,

nonhomogeneous system of differential-difference equations can be put in the

form(6)

m m

(4'. 1) Y An(t)z'(t + hn) + Y Bn(t)e(t + K) = w(t),
n=0 n=0

where A„(t) and Bn(t) are given N by N matrices (n = 0, 1, • • • , m) and w(t)

is a given column vector of N dimensions. We shall suppose that

(4.2) 0 = ho < hi < • • • < hm.

If Am(i) is nonsingular for t>to, whereas Ao(t), ■ ■ • , ^4m_i(/) are identically

zero, the system (4.1) takes the simpler form

m

(4.3) z'(t + hm) + Y Bn(l)z(t + hn) = w(t), t > t0,
n—0

and is said to be an equation with retarded argument. We shall now show

that the method of §3 can be applied without essential change to (4.3).

We first observe that if Bn(t) (n = 0, 1, • • • , m), and w(t) are continuous

for t>t0 and if <p(t) is continuous for to^t^to+hm, then there is a unique con-

tinuous solution of (4.3) and

(4.4) u(t) = <p(t), to^t^h + hm.

(8) This system includes, as a special case, the scalar equation YlLa X!jlo o,ki{t)uV){t+hk)

= w{t) which has been studied by Wright, [7; 8], and by many other authors. To see this, make

the substitution «<"(() = zj,.i(0 and let z denote the vector whose components are zi, z2, ■ • • , z,v.
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The proof of this statement is obtained, as before, by continuing the solution

from interval to interval. In fact, from the relation

m—l

(4.5) z'il + hm) + Bmit)zit + hn) = wit) - £ Bn(t)z(t + hn)
71 = 0

we see that there is just one way to define uif) over to^tt%to + 2hm — hm-i so

that (4.3) and (4.4) are satisfied and uit) is continuous at t = to+hm. Knowing

uit) over to^t^to + 2hm — hm-i, we can again use (4.5) to see that uit) is

uniquely determined over t0^t^to + 3hm — 2hm-i, and so on. Note also that

z'(t) is continuous for t>t0+hm.

The adjoint equation and kernel Y(s, t) are in this case defined as follows:

Definition. Let  Y(s, t) denote the unique matrix function, defined for

t>t0, toSs^t + hm, which is continuous for to^s^t, which satisfies the initial

condition

,     s        (0,    t < s S t + hm\

(4.6, ffcO-k   ,_, }

and the adjoint equation

(4.7) -Y(s, t) + jt Yi* + hm - hn, i)Bnis + hm - hn) = 0,
ds „_o

it > to; t0 < s < t — hm and t — hm < s < t).

By a continuation argument similar to that used above, we can show that the

stated conditions actually define a unique Y(s, t). It should be noted that we

have defined Y(s, t) not only for to^s^t, but also for t<stst + hm, in contrast

to our procedure for the scalar equation (3.1). This is actually not necessary,

but serves to simplify the mechanics of the argument. For example, it makes

it unnecessary to state explicitly the initial values of Y(s, t) for t — hm^s^t,

which are more complicated than the relations (3.8) or (3.11) for the scalar

equation. We also observe that d Y(s, t)/ds is continuous for t0<s<t — hm and

piecewise continuous for t — hm<s<t.

The basic theorem on the representation of solutions of (4.3) is as follows.

Theorem 1. Suppose that w(t) is a continuous vector function and B„(t) a

continuous matrix function (n = 0, 1, • • • , m) for t>to. Let Y(s, t) denote the

kernel matrix defined above. Then the unique continuous solution of (4.3) for

t>to which satisfies the initial condition

z(0 = 0, /.gl^o+i

is given by the formula

(4.8) z(t + hm) =  j    Y(s, t)w(s)ds, (t > to).
J  <0
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Proof. We multiply (4.3) by Y(s, t) and integrate. Since d Y/ds is piece-

wise continuous and Y is continuous, integration by parts is allowable and

the result is

-(s, t)z(s + hm)ds + Y I    Y(s, t)Bn(s)z(s + hn)ds
<0     &s n=0 J t0

=  J    Y(s, t)w(s)ds.

Since z(s)=0 for to^s^to+hm, the following relation holds:

|    Y(s, t)Bn(s)z(s + kn)ds =  I Y(s, t)Bn(s)z(s + hn)ds
J h J ta+hm-h„

/* t—hm+hn

Y(s + hm — hn, t)Bn(s + hm — hn)z(s + hm)ds, (n = 0, 1, • • • , tn).

h

From the definition in (4.6), it follows that

f  Y(s, t)Bn(s)z(s + hn)ds
J to

=  j    Y(s + hm- hn, t)Bn(s +hm- hn)z(s + hm)ds,      (n = 0,1, 2, • • • , m).
J to

Therefore,

r'(   dY(s,l)
z(t + hm)+ \    {-

J to \ ds

+ Y Y(s + hm — hn, i)Bn(s + hm — hn)>z(s + hm)ds
71-0 /

=  I    Y(s, t)w(s)ds.
^ to

Referring to (4.7), we obtain the required relation (4.8).

5. A stability theorem for differential equations. In order to see how the

foregoing representation theorem can be applied to stability theory, we shall

first consider ordinary differential equations, and shall establish the following

theorem; cf. [l, p. 43].

Theorem 2. Let A(f) and B(t) be continuous^) for t>ta. Then a sufficient

condition for all solutions of

(7) This condition can be considerably relaxed (integrability is sufficient), but it is our

purpose to describe the method employed rather than to obtain the most general results pos-

sible.
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(5.1) -^= (A(t) + B(t))z
di

to be bounded as t—> + oo is that

(i) all solutions of

dy
(5.2) ~=A(t)y

at

be bounded as /—>+ oo ;

(ii) f"\\B(t)\\dt   <  oo;

(iii) || Y(S, 0||   ^ Cl

where ci is a constant, for t^.0, O^s^t. Here Y denotes the kernel function de-

fined by Equations (2.8) and (2.9), and the norms ||2J|| and || F|| denote the sum

of the absolute values of the elements of the matrices B and Y respectively.

Proof. From the discussion of §2, we know that every solution of the

nonhomogeneous system (2.1), with continuous w, has the form

z(0 = y(t) + I    Y(s, l)w(s)ds
J 0

where y(t) is a solution of the corresponding homogeneous system (5.2).

Equation (5.1) has the same form as (2.1) if we take w = Bz. It follows that

any continuous solution of (5.1) must also satisfy the integral equation

z = y + \    Y(s, t)B(s)z(s)ds
J o

for some solution y of (5.2). By hypotheses (i) and (iii),

||>|| = c + d f \\B(s)\\ \\z(s)\\ds.
J 0

It follows from a lemma(8) of frequent use in stability theory that

||z|| ^ cexp   d f ||.B($)||<fc   .

Thus, every solution of (5.1) is bounded as t—>+ oo.

Of particular importance is the case in which A(t)=A, a constant matrix.

The solutions of (5.2) then have(9) the form eA'y0, where y0 is a constant

(*) Cf. [l, P. 35].
(•) Cf. [1, P. 12].
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vector and eAt is the exponential matrix. In this case, Y(s, t) = eAte~A* = eAi'~'K

By hypothesis (i), there is a constant Ci such that \\eAt\\ ̂ Ci for i^O; hence,

|| Y(s, <)||=Ci for O^s^t. That is, if A is constant, the hypothesis (iii) is

superfluous. This is a well-known result(10).

6. A stability theorem for equations with retarded argument. We shall

now prove similar results for systems of linear differential-difference equations

with retarded argument.

Theorem 3. Let Bn(t) and Dn(t) be continuous for t>t0 (n = 0, 1, • • • , m).

Then a sufficient condition for all continuous solutions of

m

(6.1) *'(/ +hn) + Y   (Bn(t) + Dn(l))z(t + hn) = 0, t> to,
n=0

to be bounded as t—>+ <x> is that

(i) all continuous solutions of the unperturbed equation

m

(6.2) y'(t + hm) + Y Bn(t)y(t + hn) = 0

be bounded as t—* + °° ;

/oo

\\Dn(t)\\dt < », n= 0, 1, 2, • • • ,m,

(iii) || Y(s, t)\\ < a

where d is a constant, for t^to, to^s^t. Here Y(s, t) denotes the kernel function

defined in §4.

Proof. From Theorem 1, we know that every continuous solution of the

nonhomogeneous system (4.3), with continuous w, has the form

z(l + hm) = y(t +hm)+ f   Y(s, l)w(s)ds

where y(t) is a solution of the corresponding homogeneous system (6.2).

Equation (6.1) has the form of (4.3) where

m

w(t) = - Y Dn(t)z(t + hn).
n-0

For a continuous solution z of (6.1), this w is continuous, and therefore

(6.3) z(t +hm) = y(t +hm) - Y \    Y(s, t)Dn(s)z(s + h„)ds, t > t0.
n-0 J to

('») Cf. [1, p. 34].
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From this integral equation, we can deduce the boundedness of z. Using

hypotheses (i) and (iii), we have

||z(/ + hm)\\ f£ c + a £ f \\Dn(s)\\ \\z(s + hn)\\ds

m       /» t+hn— hm

^ c + cx Z I II A.(s + hm - h„)\\ ■ \\z(s + hm)\\ds.
71 = 0 J   to

It follows, using the lemma to which we referred above, that

||*(< + A»)|| =eexp   «,E \\Dn(s+ hm - hn)\\ds\
L       71=0 J l0 J

and hence, by (ii), that z is bounded as t—*+ oo.

7. Equations with constant coefficients. Again it is important to examine

the special case of constant coefficients in (6.2). Suppose that Bn(t)=Bn,

(n = 0, 1, • • • , m), where B„ is constant. We see from the adjoint equation

(4.7) that Y(s, t) can be continued indefinitely in the negative s direction,

and hence can be regarded as defined and continuous for — oo <s^t. By

making the substitutions

,_    , t = t — s + to + hm,

(7.1)
X(r, 0 =  Y(s, t),

we can bring the adjoint equation into a simpler form. In fact, we see that

X(t, t) is defined for t>to, /o^t< + co, and that X(t, t) is continuous for

to + hm^T < + oo. Furthermore, X satisfies the initial conditions

,„    , X(t, 0 = 0,        I.^t<(, + hm,
(7.2)

= /, T =  to + hm,

and the differential-difference equation

— ir, 0 + T, X(t - hm + hn, t)B„ = 0,
,_    , oV „=o
(7.3)

t > to, to + hm < t < to + 2hm and /0 + 2hm < r < oo.

From (7.2) and (7.3), moreover, it is clear that X(t, t) is actually independent

of t; we shall henceforth write X(t) rather than X(r, t). It is now clear that

condition (iii) of Theorem 3 can be replaced by the requirement that ||-X"(t)||

^Ci for to+hm^r St + hm or simply for t^/o- Hence we have proved

Theorem 4. Let Dn(t) be continuous for t>to (n = 0, 1, • • • , m). Then a

sufficient condition in order that all continuous solutions of

(7.4) z'(t + km) + £ iBn + Dn(t))z(t + h») = 0
71=0
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be bounded as t—> + « is that

(i) all continuous solutions of

m

(7.5) /(/ + hm) + Y Bny(t + K) = 0
n-0

be bounded as t—> + °° ;

(ii) j   \\Dn(t)\\dt< », n = 0, 1, • • ■ ,m;

(iii) the unique solution of

CO,    to ^ / < to + hm)
(7.6) X(t) = \ }

\l,     t = io + hm       )

and

m

(7.7) X'(t +hm) + Y X(t + hn)B„ = 0,    la < t < to + hm and la + hm < I
n—0

which is continuous for t^to + hm, be bounded as t-*+ oo.

In (7.6) and (7.7), we have written t in place of t.

8. A lemma. If each pair of matrices Bk and Bt, k, 1 = 0, 1, • • • , m, com-

mutes, Theorem 4 can be replaced by a simpler theorem in which hypothesis

(iii) is suppressed, as was true for systems of ordinary differential equations.

We shall show this with the aid of the following lemma.

Lemma. Let X(t) be the unique solution of (7.6) and (7.7) which is continuous

for t^to+hm. Suppose that

BkBi = BiBk, k, I = 0, 1, • • • , tn.

Then X(t) as defined by (7.7) satisfies the equation

m

(8.1)    X'(t + hm) + Y BnX(l + K) =0,    (h < t < l0 + hm and I > to + hm).
n-0

Proof. Let Xi and X2 he defined as follows:

m

Xl(t +  hm)   =   Y  X(t +  hn)Bn,
n-0

m

X2(t+ hm)   =   YBnX(t+ hn), (t=lo).
n-0

Then
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m

XI (t +*-) = £ X'(t + hn)Bn
n-=0

m      /    m \

= ~ Z ( Z *(< + hn + hk - hm)Bk) Bn

m

= ~ 2_ *l(< + /*„)£„
n = 0

for />io, except at certain isolated points in the interval to <t^to + hm. Also,

in similar fashion,

in

X2' (t +  km)   =   ~   E  *l(< +  ^)^n-
71=0

Thus Xi and X2 are both solutions of (7.7) for t>to, continuous for t^.t0+hm.

If it can be shown that they are identical for to<t<to+hm, it will follow from

the uniqueness of continuous solutions of (7.7) that they are identical for

t>to, and (8.1) will then be an immediate consequence of (7.7).

That Xi and X2 are equal for /o<i<^o+^7n can be shown by showing that

X(t + hn) commutes with Bn for » = 0, 1, ■ ■ • , m; t0<t<t0+hm. We shall

sketch a proof of this by direct calculation. From (7.7) and (7.6)

X'(t + hm) + X(t + hm)Bm = 0, to < t < to + hm - hm-i.

Hence

X(t + hm) = eB-', to < i < to + hm - hm-i.

Since B„ commutes with Bm, and hence also eBmt, it follows that X(t + hm)

commutes with any Bn for tc^t^to + hm — hm-i. Next,

X'(t + hm) + X(t + hm)Bm + X(t + hm-i)Bm-i = 0,

(^0 +  km  —   hm-1   <   I   <   lo +  hm  —   hm-2) ,

and

X'(t + hm) + X(t + hm)Bm = - eB^'+h-^-"^Bm-1,

(to +   hm  —   hm-1   <  I   <   to +   2km  —   2hm-l).

The solution of this differential equation is readily found to be of the form

X(t + hm) = e~B-'C -  f eB^'+^-^Bm-ie-^-'Us,
J to

where C is chosen to yield continuity of X(t+hm) at t = to+hm — hn-i. Since

Bn commutes with Bm and Bm-U and hence also eBmt, it follows that X(t + hm)

commutes with any B„ for to + hm — hm-i^t^to + 2hm — 2hm-i. Continuing in

this way, we find that X(t+hm) is determined over to$t^to + hm as a com-
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bination of B,n, • ■ ■ , Ba and exponentials eBml, etc., and consequently that

X(t) commutes with every Bn for t0^t^to + 2hm. This implies that Xi(t+hm)

= Xi(t+hm) for /o</<^o + ^»» and completes the proof of the lemma.

9. A stability theorem for equations with constant coefficients. Let us now

prove the following theorem.

Theorem 5. Let Dn(t) be continuous for t>t0, (n = 0, 1, • • • , m). Suppose

that BkBi = BiBk (k = 0, 1, • • • , m; 1 — 0, 1, • • • , m). Then a sufficient condi-
tion in order that all continuous solutions of

m

(9.1) Z'(t +   hm)   +  Y (Bn +  Dn(l))z(t + hn)   =0, l>  to
n-0

be bounded as t—* + °o is that

(i) all solutions of

m

(9.2) y'(t + hm) + YBny(t + hn) = 0
n-0

continuous for t^to+hm, be bounded as t—*+ oo ;

(ii) M\Dn(t)\\dt<*.

Proof. We shall show that the commutativity BiBk = BkBi enables us to

deduce condition (iii) of Theorem 4 from condition (i). If X(t) is any solution

of (7.7), continuous for t^t0 + hm, and if c is a constant vector, then X(t)c is

a vector solution of (9.2), continuous for t^to + h,„. By hypothesis (i), there-

fore, X(t) must be bounded as t—>+oc. In particular, the unique solution

X(t) of (7.6) and (7.7) must be bounded as t—>+ cc.

10. Boundedness of solutions of the unperturbed system. It is well-known

that a necessary and sufficient condition for the boundedness of all solutions

of the unperturbed system of differential equations

dy
(10.1) — = Ay

at

is that the roots of the associated algebraic equation

(10.2) det(A - si) = 0

either have negative real parts, or have zero real parts and be "of simple

type"(u)- Theorem 2 can therefore be given an alternative form in which

hypothesis (i) is replaced by the above assertion concerning the roots of (10.2).

In the same way, hypothesis (i) of Theorem 5 can be replaced by an

assertion concerning the roots of the transcendental equation

(") Cf. Bellman, [l, pp. 19-25]. Multiple roots on the imaginary axis may or may not

give rise to unbounded solutions.
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(10.3) det( se'h"I + Z.Bne'A») = 0.

Here, however, the problem is considerably more complicated, since the

equation in (10.3) has infinitely many roots. One of the most expeditious

methods of treating this problem is the method of the Laplace transform.

Since any solution of the equation in (9.2) is, with its first derivative, of

exponential order(12) as t—*+<», it follows from (9.2) that

/> oo m /% oo

y'(t + hm)e-"dt + Z Bn I    y(t + hn)e-"dt = 0.
t0 71=0 J t0

By integrating by parts and making simple transformations, we find(12) that

(10.4) T(s) f  y(l)e-"dt = y*(s),
J h

where

(10.5) T(s) = se'h-I + Z £»«**".
71-0

/H+hm y(l)e-"dt

(10.6)
m /. to+hn

+ Z Bne,h* I       y(t)e~"dt.
71=0 J   to

Provided the roots of (10.3) all have nonpositive real parts, the matrix T(s)

is nonsingular for Re s>0, and we have

(10.7) f   y(t)e-"dt = T^K-Oy"^), Re s > 0.

Furthermore, we can suppose(13) that y(t) and y'(t) are continuous for t>t0,

and hence that y(t) is of bounded variation in any finite interval in which

t>to. A standard inversion theorem for the Laplace transform can therefore

be applied. We have

1 t* u+iv

(10.8) y(0=—   Hm e»T-\s)(y*)(s)ds, it > h),
2/K%  '■-*+ «     J u—ID

where u is any sufficiently large positive number.

(») Cf. Wright, [6].
(u) In the existence-uniqueness theorem of §5, we supposed only that y(t) is continuous in

the initial interval loS^ii+i., but as shown there it follows that y'(t) is continuous for

t>to+hm. There is no loss of generality in supposing that y'{t) is continuous for/Xo, since if not

we would use to+hm as lower limit in the above integrations.
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From Equation (10.8), we can determine the asymptotic behavior of y(t),

and in particular can deduce conditions for the boundedness of y(t) as t—>+ °o.

We have assumed that all roots of (10.3) have nonpositive real parts. It fol-

lows from results of Langer, [5], and Wright, [7], that there are at most a

finite number of roots with zero real parts, and that all other roots are

bounded away from the imaginary axis. We can therefore shift the integra-

tion contour in (10.8) to the left of the imaginary axis, obtaining

y(l) = Y Residue of \euT-1(s)y*(s)) at sr

(io.9) i ru+iv
H-;   lim     j        e"T-1(s)y*(s) (l > /„; u < 0)

2m r->+«>  J u—iv

where the sum is over all roots sr of (10.3) which lie on the imaginary axis.

The residue at a root sr of multiplicity /r + l has the form el,rpi(t), where pi(t)

is a polynomial vector of degree at most lr. These terms are bounded as

2—>+ oo if lr = 0 (sr is a simple root), and also in any case in which pi(t) is

constant. A sufficient condition for this is that the residue of et'T~1(s) at sr

be a constant multiple of eUr. When this is the case, we shall call sr a root of

simple type of (10.3).

The integral in (10.9) has the form

gtu     n 4-oo

(10.10) — I      eitvT-x(u + iv)y*(u + iv)dv (u < 0).
2irJ-K

Now from (10.5) we see that any cofactor in det T(s) has the form Yai(s)el,k',

where kj is a combination of the values hn and each q,(s) is a scalar polynomial

of degree N— 1 or less. Moreover, by integrating the first integral in (10.6) by

parts, we find that

/> tQ+hm m s* to+hn

y'(t)e-s'dl + Y Bnesh" I y(t)e-"dt.
to n-0 J to

Therefore, a typical term in an element in the matrix (10.10) is of the form

/4-oo /» to+hn

ent+cu{r\et x(u + iv)}-1^ + iv)' I        yi(h)e-<u+iv)tidtidv
-oo J to

where c is a constant, j ^ N— 1, and yi is an element of the vector y. Since

det T(u + iv) = e<«+i..)*.»{ (M + iv)N + 0( \ u + iv I""1)}

as |w-f-w|—^°o, the above integral has convergence properties analogous to

those of

/oo /» to+hn

em+c)v^u + ty-k I yi(li)e-^+M'idlidv

-oo J  to

where & = 1 and c is a constant. If k>l, the infinite integral is absolutely
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convergent and bounded in /, and since u<0 the expression (10.11) tends to

zero as /—»+<». If k = l, the infinite integral is boundedly convergent, and

(10.11) tends to zero. Thus the integral in (10.9) is o(l) as t—» + oo, and the

boundedness of y(0 depends on the boundedness of the residue discussed in

the preceding paragraph.

The above remarks prove the sufficiency of the following condition.

Theorem 6. A necessary and sufficient condition in order that all solutions of

771

(10.12) /(/ + hm) + Z B«y(l + hn) = 0,
71=0

continuous for t>to, be bounded as t—>+ oo, is that all roots of the transcendental

equation

(10.13) det T(s) m det (se'h->I + Z Bne'hA = 0
\ 71 = 0 /

have nonpositive real parts, and that all with zero real parts be of simple type. A

root sr is of simple type if the residue of etaT~1is) at sr is a constant multiple of

et,r, and in particular if sr is a root of multiplicity one.

The necessity of this condition can be proved by the following argument"

Let sr be any root with zero real parts, and let y(0 be defined by the equation

(10.14) y(0 =   f e'lT-^ds, t > l0,

where the integration is around a fixed circle which has its center at sr and

which contains no other root of (10.3). Then it is easy to verify that the

function in (10.13) is a solution of (10.12). From (10.13), we see that this

solution is 2iri times the residue at sr of e"T~1is). Thus if sr is not of simple

type, (10.12) will possess an unbounded solution.

11. The scalar equation of neutral type: integral representation of solu-

tions. We shall now turn to the more difficult problem of analyzing equations

of neutral type such as the scalar equation

(11.1) u\l + h) + o(0«'(0 + *(0«(0 + cit)uit + h) = wit).

We shall first indicate how the continuation procedure can be used in proving

the existence of solutions. An appropriate initial condition for (11.1) is again

of the form

(11.2) «(0 = 4>(0, lo-^l^lo+h,

where 4>(t) is a given real function. Let us suppose that ait), bit), and c(<) are

continuous for t^to, that<?3'(0 is continuous for t0<t<t0 + h, and that wit) is

continuous for t^h except for possible jump discontinuities at the points
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to+nh (w = 0,1, 2, 3, • • •). Then from (11.1), it follows that there is just one

way to define u(t) over to+h<t<to+2h so that u(t) is continuous at to+h,

equal to <b(t) for to^t^t0+h, and so that (11.1) is satisfied for to<t<t0+h.

The derivative u'(t) will be defined and continuous for to+h<t<t0+2h, but

will, in general, have a finite jump discontinuity at to+h. By repeating this

argument, we can continue u(t) from one interval of length h to another, the

continuation being made unique by requiring continuity of u. In contrast

to the situation for equations with retarded argument, the discontinuity in

the derivative of u at to + h can be propagated; that is, u'(t) may have jumps

at the points t0+nh (n=l, 2, 3, • • • )(14). If u'(t) happens to be continuous

at to + h, then it will be continuous for all t>to-

Definition. Any continuous function u(t), determined in the above way by

an initial function <p(t) with a continuous derivative, will be called a continuous

solution of (11.1).
Note that (11.1) actually need be satisfied only for t>tQ, t^to+nh

(n = l,2,3, ■ ■ • ). With this definition, we see that there is a unique continuous

solution of (11.1) and (11.2).
The adjoint equation and kernel v(s, t) are defined as follows, assuming

continuous differentiability of a(s).

Definition. Let v(s, t) denote the unique function which satisfies the adjoint

equation

dv(s, t)       d  . .
—±Z-L--.[v(s + h,t)a(s + h)]

(11.3) ds ds

+ v(s + h, t)b(s + h) + v(s, l)c(s) = 0

for to<s<t, sj^i — nh (w = 0, 1, 2, • - - ), which satisfies the initial condition

(0,    I < s g t + h)
(11.4) v(s,t) = ]' [•

Ui    s = t )

and which further satisfies the condition that

(11.5) v(s, I) + v(s + h, t)a(s + h)

be a continuous function(Xi) of s for t0 = s^t.

If we regard (11.3) as an equation for s <t, we see that it is of neutral type.

The continuation process can be applied to extend the function v(s, t) from

the interval t<s^t+h back to the interval t — h<s^t, and so forth, until

finally it is defined over to — s^t. The continuation is made unique by the

continuity condition (11.5). At the points t, t — h, t — 2h,---, v(s, t) can have

finite jumps determined by the conditions (11.4) and (11.5), and of course

dv(s, t)/ds will also have jumps at these points. Elsewhere v anddv/ds will be

(") This is true even if w{t) is everywhere continuous.

(") This should be understood to mean continuous on the right at to and on the left at /.
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continuous. Once again, it is not essential to define v(s, t) for t<s^t + h, but

it is more convenient to do so.

From Equation (11.1) we now obtain

f v(s, t)[u'(s + h) + a(s)u'(s)]ds + f v(s, t)b(s)u(s)ds

(11.6) J" t J"
+ I   vis, t)cis)uis + h)ds =  I   vis, t)wis)ds,

J t, J la

since each integrand is piecewise continuous. Now, since uis) and v(s, t)

+a(s+h)v(s+h, t) have derivatives with only finite jump discontinuities,

they are of bounded variation for to^s^t. Since both functions are continu-

ous, this permits the integration by parts below. We use the assumption that

u(t)=0 for to^t^to+hand the fact that v(s, t)=0 for t<s^t+h.

/    — [v(s, t) + a(s + h)v(s + h, l)]u(s + h)ds
to   ds

= u(l+ h) - j    [v(s, t) + a(s + h)v(s + h, t)]u'(s + h)ds
J to

= u(l + h) -  f v(s, t)[u'(s + h) + a(s)u'(s)]ds.
J to

Since, moreover,

/v(s, f)b(s)u(s)ds =1    v(s + h, t)b(s + h)u(s + h)ds,

Equation (11.6) can be put in the form

u(t + h)+   f   {-[v(s, i) + a(s + h)v(s + h, 0]
J to  i    9s

+ v(s + h, t)b(s + h) + v(s, l)c(s) I u(s + h)ds

=   I   v(s, t)w(s)ds, t > to.

Using (11.3), we finally obtain the representation

(11.7) u(l + h) =  I   v(s, t)w(s)ds, (I > to).

12. The scalar equation of neutral type: representation of the derivative

of a solution. As we shall see in §14, we also need a representation for u'(t+h).
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In accordance with our assumptions, w(s) is continuous for to^s^t, s^to

+ nh («=1, 2, 3, • • • ), and v(s, t) is continuous for to = s^t, s^t — nh

(» = 0, 1, 2, • • • ). Provided t — ta is not a multiple of h, the sets [to+nh] and

\t — nh\ interlace, and

/i t—Nh p to+h
v(s, t)w(s)ds +  I        v(s, t)w(s)ds

to J t-Nh

/, l-I.N-l)h
v(s, t)w(s)ds + • • •

to+h

/» io+Nh /» t
v(s, t)w(s)ds +  I v(s, l)w(s)ds,

l-h J to+Nh

where N is a suitably chosen integer. Each integrand is now continuous, and

differentiation yields

C * (dv \
u'(t + h) = w(t) +  I    <— (s, I) \ w(s)ds

(12.1) ,    JtAdt j

— Y w0 ~ nh)[v(t — nh +, t) — v(t — nh —, /)],

t > to, t 7± to + kh, k = \, 2, ■ ■ ■ .

Existence and continuity of dv(s, t)/dt, needed in the preceding demon-

stration, can be established by the following device. For any r^to, let u(t, r)

denote the unique function which satisfies the equation

du du
m Au(t, r) =—(t + h,r)+ a(l) — (t, r) + b(t)u(t, r) + c(t)u(t + h, r) = 0,
(l) 67 dt

I > r, t j* r + nh, n = 0. 1, 2, • ■ • ,

and the conditions

(0,    r ■= t < r + h)

(U) ^Ml,    ,-,+ *       }'
(iii) u(t + h, r) + a(t)u(t, r) is a continuous function of / for / = r.

The continuation process shows that the u(t, r) exists, is unique, and that

u(t, r) and du(t, r)/dt are continuous for t>r except for possible jumps at

t = r+nh (n = 1, 2, 3, • • • ). Moreover, for any z>r, z^r+nh, let v(t, z) have

the meaning previously defined:

dv d   r ,
(i')    A*v(l, z) =-(t,z)-[v(t + h, z)a(t + h)]

dt dt

+ v(l + h, z)b(t + h) + v(t, z)c(l) = 0,

lo < t < z, t ^ z — nh, n = 0, 1, 2, • • ■ ,
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(0,    z < t ^ z + h)
(ii') vii, z)= ^    ( = z | ,

(iii')     v(l, z) + vii + h, z)ait + h) is a continuous function of / for t0 ^ / ^ z.

z>(/, z) and dii(/, z)/dt are continuous for /0</<z, t^z — nh (n = 0, 1, 2, • • • ).

Now consider the expression,

I    [vis, z)Auis, r) — uis + h, r)A*vis, z)]ds,

which is seen to be zero, under the foregoing conditions. By (ii) and (ii'),

I    uis + h, r)vis + h, z)bis + h)ds =   I    uis, r)vis, z)bis)ds,

and similarly

uis + h, r)[vis + h, z)ais + h)]'ds =   I    uis, r)[vis, z)ais)]'ds.

Combining these results, we oftain

/»z   d— {vis, z)[uis + h,r) + ais)uis, r)]}ds = 0.
r    ds

From (iii) and (iii') we see that the integrand is continuous except at s = z,

z — h, ■ ■ ■ , z — Mh, where Mis the largest integer for which r<z— Mh. Hence

we get

viz, z)[uiz + h,r) + aiz)uiz, r)] — v(r, z)[u(r + h, r) + air)uir, r)]

M

+ Z [»(z — jh~, z) — viz - jh+, z)][uiz — jh + h, r)
7=1

+ aiz — jh)uiz — jh, r)] = 0.

Using (ii) and (ii'), this takes the form(16)

iir

v(r, z) = u(z + h, r) + aiz)uiz, r) - Z biz-jh+,z) - viz -jh-,z)\
(12.2) y=i

• [u(z - jh + h,r) + a(z - jh)u(z - jh, r)].

From (ii') and (iii') we readily find that

(ls) A slight variation of this argument yields the reciprocal relation u(z+h, r)=v(r, z)

+ v(r + h, z)a(r + h) + Z*-i[»(r+7'*> z) + v(r + jh + h, z)a(jh + h)][u(r + jh + h+,r)

-u(r+jh+h-,r)].
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v(z — h+, z) — v(z — h—, z) = a(z),

v(z - jh+, z) - v(z - jh-, z)

= — a(z — jh + h)[v(z — jh + h +, z) — v(z — jh + h— , z)],

j - 2, 3, • • • , M.

Thus

v(z — jh+, z) — v(z — jh — , z) = (— l)'-1a(z)a(z — h) • ■ ■ a(z — jh + h),

j = 1, 2, ■ ■ ■ , M.

Since a(t) has a continuous derivative for t>t0, it follows that viz— jh+, z)

— viz—jh — , z) has a continuous derivative, with respect to z, for z>r,

z^r+nh, n = 0, 1, 2, • • • , j = 1, 2, • • • , M. Moreover, dw(z, r)/dz exists and

is continuous for z>r, z^r+nh (w = 0, 1, 2, • • • )• It is therefore clear from

(12.2) that dv{r, z)/dz exists and is continuous for z > r ^ to, z ?* r + nh

(m = 0, 1, 2, • • ■ ). This is just the result needed in establishing (12.1).

The results of §§11 and 12 are summarized in the following theorem.

Theorem 7. Suppose that bit) and c(0 are continuous and that ait) has a

continuous derivative for t^to, and suppose that wit) is continuous for t}zto

except for possible jump discontinuities at the points U+nh («= 1, 2, 3, • • • ).

Let vis, t) denote the solution of the adjoint equation defined above. Then the

unique continuous solution uit) of

u'il + h) + a(l)u'(t) + b(t)u(t) + c(t)u(l + h) = w(l),

t > to, I 9^ to + nh, n = 1, 2, ■ • • ,

subject to the initial condition u(t) =0 for to^t^to+h, is given by the formula

(12.3) u(l + h)=   I    v(s, t)w(s)ds.

Moreover, dv(s, t)/dt exists and is continuous for t > s ^ to, t ^ s + nh

(w = 0, 1, 2, • • • ), and

r'ldv )
u'(l + h) = w(l) +  I    <— (s, l)>w(s)ds

N

— Z WQ ~ nh)[v(t — nh+, t) — v(t — nh — , l)],
n-l

t > t0, t ^ to + kh, k = 1, 2, ■ • • ,

where N is the greatest integer such that t — Nh>to.

In the next section, we shall state and prove the corresponding result for

the general matrix system of equations of neutral type.
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13. Systems of equations of neutral type. As we have already remarked,

the most general linear, nonhomogeneous system of differential-difference

equations has the form (4.1). If Am(t) is nonsingular, for t>t0, the equation

is said to be of neutral type. In this case, we can multiply by A~.x(t), and there-

fore we may as well consider the system

m—1 m

(13.1) Z'(t  +   hm)   +   Y A„(t)Z'(l +K)   +   Y Bn(t)z(t + hn)   =  W(t), t >   l0.
n=0 n—0

The initial condition is again of the form

(13.2) z(t) = d>(l), lo ■£= t = h + hm,

where (p(t) is a given vector. In order to facilitate the discussion of the con-

tinuation method, let us define the set 5 to be the set of points of the form

(13.3) /o + jhm — iihi — i2h2 — ... — im-ihm-i

where j, i\, • • • , im-i are integers, j=\, 2, 3, • • • , and 0^ii+i2 + ■ • •

+im-i^j. Let S' denote the subset of 5 consisting of points (13.3) for which

0^ii+i2+ ■ ■ ■ +im-i£j— 1. The sets 5 and S' have no finite limit points,

since

jhm — i\hi — ... — im-lhm-l ^ jhm — (ii + it + ■ • • + im-i)hm-i

> j(hm  ~   hm-l)

and the latter expression tends to infinity with j. It follows that the points

of S divide the interval (to, + <*>) into a countable set of open intervals. Let

the points of S be linearly ordered and labelled h, t2, ■ ■ ■ , where to<h

<h< ••-.
Now let us suppose that each An(t) and each Bn(t) is continuous for

ts^to, that <p'(t) is continuous for to<t<to+hm, and that w(t) is continuous

for / = 2o except for possible jump discontinuities on the set S. Then from

(13.1) we see that z'(t+hm)+Bm(f)z(t+hm) is determined over 20<^<*o

+ hm — hm-i, by the given <p(t), as a continuous vector function. Thus there

exists a unique continuation of <p(t) to a continuous function z(t) defined for

tf,^t^to + 2hm — h,n-i = ti + hm. The derivative z'(t) is continuous in this inter-

val except at t0 + hm, and Equation (13.1) is satisfied for to<t<to + hm — hm-i

= h. Repeating this argument, we see that z'(t + hm)+Bm(t)z(t+hm) is deter-

mined by (13.1) for to+hm — hm-i = li<t<min (to + 2hm — 2hm-i, to + hm — hm-2).

Thus z(t) is uniquely continuable as a continuous function to to^t^t2 + hm-

Its derivative z'(t) is continuous in this interval except at points of S', and

(13.1) is satisfied except at points of 5. By repeating this procedure, we find

that there is a unique continuous vector z(t) which satisfies (13.1) for t>to, tES

and which satisfies (13.2). z'(t) is continuous for t>t0, tES'.

The adjoint system for (13.1) is
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dY *_}   d   r
-is, t) - Z — [Yis + hm - hn, t)An(s + hm- hn)\

ds ,i_o ds
(13 A) m

+ Z Y(s + hm - hn, t)Bn(s + hn - hn) = 0,
71=0

assuming that each An has a continuous derivative. This equation is itself

of neutral type, and associated with it are sets, similar to 5 and S', which we

shall call T and T'. T is defined as the set of points of the form

(13.5) I + hm — jhm + iihi + • • • + im-ihm-x

where j=l, 2, 3, • • • , 0^ii+i2+ • ■ ■ +im-i^j. T' is the subset of T for

which 0^7.\+t;2+ • • • +im-i^j— 1. It is not difficult to show, from an argu-

ment similar to that given above, that there is a unique continuous matrix

Y(s, t) which satisfies (13.4) for /0<■*</, sET, and which has prescribed

continuously differentiable initial values for t^s^t+hm. Indeed, a slight

modification of the previous argument can be used to prove the existence and

uniqueness of the kernel function defined as follows.

Definition. Let Y(s, t) denote the unique matrix function which satisfies

the adjoint system (13.4) for to<s<t, sEF, which satisfies the initial condition

CO,    I < s < t + hm)
(.3.6) «•■*-{,;._,       }■

and which satisfies the requirement that

771-1

(13.7) Y(s, 0 + Z Yis +hm- hn, t)An(s + hm - hn)
71-0

be a continuous function^) of s for to^s^t.

Moreover, the argument shows that dY(s, t)/ds is continuous for to<s<t

+hm, sET'. Y(s, t) itself is continuous for t0^s^t + hm, sET'.

We can now obtain the desired representation formula for the solution of

the inhomogeneous equation just as before. From Equation (13.1) we get

/i  t tn—1     y»   (
Y(s, t)z'(s + hn)ds + Z I    Y(s, t)An(s)z'(s + hn)ds

h „=oJ to

771 y»  I

(13.8) + Z I    Y(s, t)Bn(s)z(s + hn)ds
71 = 0 J   to

=   I    Y(s, t)w(s)ds.

Since z(s+hm) and the function in (13.7) are continuous for t0^s^t, and

(n) Continuous on the right at to and on the left at t.
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have derivatives with only finite jump discontinuities, we can integrate

/' '   d   t "'~1 )— { Y(s, t) + Y Y(s + hm - hn, t)An(s + hm- hn) > z(s + hm)ds
to  9s { „=o ;

by parts. Assuming that z(t)=0 for to^t^t0+hm, and recalling (13.6), we

obtain in this way

/. (   / m—l \

\ Y(s, 0 + Y Y(s + hm ~ K, t)Ari(s + hm - hn)\z'(s + h,„)ds.
t0    \ n-0 /

Using a translation of the variable in the terms of the summation in this ex-

pression, and also in the second summation in (13.8), we can write Equation

(13.8) in the form

z(t + km)+  f   [-\y(s, t) + Y Y(s + hm- hn, t) An(s + hm - hn)\
J to  L       OS  { „-0 )

m -i

+ Y Y(s + hm - hn, t)Bn(s + K - hn)\ z(s + hm)ds
n-0 J

=  I    Y(s, t)w(s)ds, t > t0.

Using (13.4), we finally obtain the formula

(13.9) z(t + hm) =   f   Y(s, l)w(s)ds, I > t0.

We can also obtain a representation formula for z'(t + hm). We know that

w(s) is continuous for to^s^t, sES, and that Y(s, t) is continuous for

to^s^t, sET'. Suppose that tES, so that the points of T' are never points

of S. The sets of points S^JT' then divides the interval (to, t) into a finite

number of subintervals within each of which the integrand in (13.9) is con-

tinuous. Write (13.9) as the sum of integrals over these subintervals. Each

of the points of T' is dependent on t, and appears as the upper limit of one

integral and the lower limit of another (except / itself, which appears only as

an upper limit). The points of S, which appear as limits on the integrals, are

not dependent on t. Therefore differentiation of (13.9) yields

z'(t + hm) = w(t) + f   i— Y(s, t)\w(s)ds

(13.10) „   '°r
-     Y    [Y(s+,l) - Y(s-,l)]w(s),      l>lo,l$S,

seT'-(t)

where T'—(t) denotes the set T' with the point t removed. Existence and

continuity of dY(s, t)/dt can be proved by an argument similar to that used

in the scalar case. We have thus proved the following:
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Theorem 8. Suppose that each Bn(t) is continuous and each A„(t) has a

continuous derivative for tgito, and that w(t) is continuous for t^to except for

possible jump discontinuities on the set S consisting of all points

to + jhm — iihi — ■ ■ ■ — im_ihm-i,

fj= 1,2,3, ••• ;0£ii+ •• -+im-i^j).

Let Y(s, t) denote the kernel matrix defined above. Then the unique continuous

vector function z(t) which satisfies (13.1) for t>to, tES, subject to the initial

condition z(t)=0 for t0^t^to+hm, is given by the formula

(13.9) z(t + hm)= \ Y(s, t)w(s)ds, t > tQ.

Moreover,

(13.10) z'(t + hm) = w(l) + j   j— Y(s, t)\ w(s)ds

-     Z    [Y(s+,t) - Y(s-,l)]w(s),     t>l0,lES,
se7"-(0

where T' denotes the set of points

t+hm— jhm + iihi +  • • • + im-lhm-l,

j = 1,2,3, ■■■ ;0^ii+ ■■■ + im-i £ j - 1.

14. Stability theorems for equations of neutral type. We shall now estab-

lish stability theorems, analogous to Theorems 3, 4, and 5, for equations of

neutral type. In order to keep to a minimum the lengthy calculations re-

quired, we shall do this in detail only for the scalar equation (11.1), and

merely state the principal results for the general system (13.1). Let us first

introduce the following definition.

Definition. A continuous solution of (11.1) is said to be bounded as

t—> + oo provided there is a constant Ci such that

| «(/) |   +  | u'(t) |   g a,       l > to,       i ^ to + nh,       n = 1, 2, • • • .

We shall now prove the following:

Theorem 9. Let a(t), ai(t), b(t), bi(t), c(t), and ci(t) be continuous for t^t0,

and let a(t) have a continuous derivative for t^to. Then a sufficient condition in

order that all continuous solutions (l8) of

tt A    N u'(t + h) + [a(t) + ai(t)]u'(t) + [b{t) + biil)]uit)
(14.1) r ,

+ Uit) + ciil)]uit + h) = 0

(18) As defined in §11.
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be bounded as t—* + oo is that the following four requirements be met:

(i) all continuous solutions of

(14.2) u'(t + h) + a(t)u'(t) + b(t)u(l) + c(l)u(t + h) = 0

are bounded as t—>+ oo ;

(ii) ai(i), bi(l), ci(t)~> 0 as t —* oo ;

(iii) fx | ai(t) | dt,       fx \ bi(t) | dt,       fx \ cx(t) \ dt < oo ;

(iv) | v(s, t) |   =" c2, — (5, I)    ^ c2,

for t>to, to^s^t, t — to^nh (n = 0, I, 2, ■ • ■ ). Here v(s, t) is the kernel function

for Equation (14.2), as defined in §12.

Proof. From Equation (11.7), we know that every continuous solution of

the nonhomogeneous equation (11.1), with w(t) continuous except for jumps

at to+nh (n = \, 2, 3, ■ ■ ■ ), has the form

u(t + h) = r(l + h) +  I   v(s, l)w(s)ds
J to

where r(t) is a continuous solution of the corresponding homogeneous equa-

tion (14.2). Equation (14.1) has the form of (11.1) if we write

w(t) = - ai(t)u'(t) - bi(t)u(t) - ci(l)u(t + h).

For a continuous solution u of (14.1), we know from §11 that u'(t) is continu-

ous except at t = t0+nh (n = 1, 2, 3, • ■ ■ ); hence w(t) is continuous except at

these points. Consequently a continuous solution u of (14.1) must satisfy the

integral equation

u(t + h) = r(t+ h) —  I   v(s, l)[ai(s)u'(s) + bi(s)u(s) + Ci(s)u(s + h)]ds.

Furthermore, from Equation (12.1),

u'(t + h) = - ai(t)u'(t) - bi(t)u(t) - ci(t)u(t + h) + r'(t + h)

—  I    <— v(s, Of [ai(s)u'(s) + bi(s)u(s) + Ci(s)u(s + h)]ds
J to ydt '

N

+ Y WiU ~ nh)u'(t — nh) + bi(t — nh)u(l — nh)
n-l

+ Ci(t — nh)u(t — nh + h)]  [v(t — nh+, t) — v(t — nh— , /)],

t>t0, t^to + kh, k = l, 2, ■ ■ ■ , where N is the greatest integer such that

t-Nh>t0.

By hypothesis (iv),
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| uit + h) |   g  I r(t + h) |  + ci I    | aiis)u'(s) + bi(s)u(s) + Ci(s)u(s + h) \ ds,

| u'il + h)\  g  | r'(t + h)\  +| aiil)u'it) + hit)u(t) + ci(t)u(t + h) \

r'i i
+ ci I     I 01(5)7/(5) + c/i(s)w(.y) + Ci(5)m(5 + h) \ ds

N

+ 2ci Z I aiil ~ nh)u'(t — nh) + biQ — nh)uil — nh)
71=1

+ ciit — nh)u(t — nh + h)\ ,

t>to, tj^to + kh, k=l, 2, ■ ■ ■ . By hypothesis, there exists a function g(t),

which decreases monotonically to zero as t—>+ oo, which satisfies the condi-

tion

g(t) ^ max (| ai(l) \ ,  \ bi(t) \ ,  \ a(t - h)\ , \ a(t) \ )

for all t^t0, and for which ftlg(s)ds<&. Then, taking into account the

boundedness of r and r', (hypothesis i), we have

| u(t + h) |   ^ ci + c2 I    g(s)( | u(s) |   +  | a'(s) \ )ds
J to

/. t+h g(s) I u(s) I ds, I > to,
h

\ u'(t + h)\ g a + g(t)( | u(t) | + | u'(t) | ) + g(t) | u(i + h) |

C      i      i      i       i+ c2 I    g(s)( I u(s) I   +  I u'(s) I )ds

/, t+k g(s) I  U(s) I  c/5
h

N

+ 4c2 Z gil - nh)i | «'(< — nh)\   +  \ uit — nh) \ ),
71 = 0

t>h; t^t0 + kh, k=l, 2, ■ ■ ■ . Let

||«(0|| =   I u\t) |   +  | uit) | ,

and take t0 sufficiently large(19). Then the expressions given above yield

/. t+h N
g(s)\\u(s)\\ds + c3 Z gi' - nh)\\uil - nh)\\.

to 71=0

0") It is permissible to suppose to as large as required. For, given to, we can regard u as

determined from (14.1) by its values over any interval (to+ph, to+ph + h) where p is any

positive integer.
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Let

(14.3) ui(t) =   max ||m(s)||.

Then ui(t) is monotone increasing. It follows that

N N

Y &U ~ nh)\\u(l — nh)\\ i Y s(l ~ nh)u\(l — nh)

(14.4) "~°
\      N      C t-(n-l)h

= - Y \ g(r- h)ui(r)dr.
h   n-O*'  t-nh

Hence

/.  t+h c        p  t+h
g(s)ui(s)ds + - g(r- h)ui(r)dr.

H h J to

Thus

/, t+h
g(s — h)ui(s)ds,

to

which yields

r      /» t+h

(14.7) iii(t + A) = ct exp   c\ I       g(s — h)ds   .

Thus Ui(t) is bounded, and the proof of Theorem 9 is complete.

15. Stability theorems for equations of neutral type with constant co-

efficients. We shall conclude this paper with several theorems concerning

stability of equations of neutral type with constant coefficients.

Theorem 10. Let a, b, and c be constants, let a(t), b(t), and c(t) be continuous

for t^to, and let a(t) have a continuous derivative for t^to. Then a sufficient

condition in order that all continuous solutions of

(15.1) u'(t + h) + [a + a(t)\u'(l) + [b + b(l)]u(l) + [c + c(l)]u(l + h) = 0

be bounded as t—>+ °c is that the following three requirements be met:

(i) all solutions of

(15.2) u'(l + h) + au'(l) + bu(t) + cu(l + h) = 0

for which u(t+h)+au(t) is continuous, are bounded as t—>+ co ;

(ii) a(t), b(t), and c(t) approach zero as t—*+ oo ;

(iii) f"\a(t)\dt, f"\b(t)\dt, fx\c(t)\dt< oo.

Proof. We see from the adjoint equation (11.3) that v(s, t) can be con-

tinued indefinitely in the negative 5 direction, and hence can be regarded as
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defined for — oo <$_<. Make the substitutions

r = / - 5 + to + h, q(r, t) = v(s, t).

We see that q(r, t) is defined for / > to, to ̂  r < + oo, and satisfies

— q(r, t) + a— [q(T - h, t) J + bq(r - h, t) + cq(r, l) = 0
dr St

for t0+h<r, r^to+nh (n = 1, 2, 3, ■ ■ ■ ). Also

(0,    to g t < to + h
o(r, t) = <
■" \l,    r = *„-M

and

q(r, 0 + «?(r - h, t)

is a continuous function of r for r^to + h. It is clear that q is actually inde-

pendent of t; we shall henceforth write q(r) rather than q(r, t). Condition (iv)

of Theorem 9 can evidently be replaced by the condition that ||c7(r)|| ^c for

T>/0. However, q(t) is a solution of (15.2), and ||g(0|| =c is implied by condi-

tion (i) of Theorem 10. Since (i) of Theorem 10 also implies (i) of Theorem 9,

we see now that Theorem 10 follows from Theorem 9.

Similar theorems can be proved for systems of equations of neutral type.

As we have already remarked, we shall omit the proofs of these theorems.

Theorem 11. Let An(t), Bn(t), Cn(t), and D„(t) be continuous for t^t0, and

let An(t) and C„(t) have continuous first derivatives for t^t0. Then a sufficient

condition in order that all continuous solutions of the system

m—l

Z'(t +  hm)  +   Z   Un(t)   +  Cn(t)]z'(l +   hm)

(15.3)
m

+   Z  [Bn(l)   +   Dn(l)]z(t +  hm)   =   0, t  >   h,  t  E S,
n—0

be bounded(20) as J—>+ oo is that the following four requirements be met;

(i) all continuous solutions of

m— 1 »i

(15.4)    z'(t + hm) + T.An(t)z'(t+ h„) + Y,Bn(t)z(t + h„) =0,    l>l0,lES
71=0 71=0

are bounded as t—> + oo ;

(ii)  Cn(t), DH(f) tend to zero as t—>+ oo ;

(iii)  /-||C,(/)||*,/-||Z?,(0||d/<oo;

(iv)   Y(s, t) is bounded for t>to\

(!0) A solution of (15.3) is said to be bounded as t—»+ oo if there is a constant ci such that

\\z(t)\\+\\z'(t)\\ZcutES',t>to.
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to^s^t, tES. Here Y(s, t) denotes the kernel function for Equation (15.4), as

defined in §13.

Theorem 12. Let A„ and Bn be constants, let Cn(t) and Dn(t) be continuous

for t^to, and let Cn(t) have a continuous derivative for t^t0. Suppose that the

An and B„ commute: that is, each An commutes with every Ak and every Bi and

each Bn commutes with every Ak and every Bt. Then a sufficient condition in

order that all continuous solutions of

m-l

Z'(t +  hm)   +   Y   [An +  Cn(t)]z'(t +  h„)

(15.5)
m

+   Y   [Bn +   Dn(t)]z(t +  hn)   =   0, I  >   to', t E S,
n—0

be bounded as t—>+ <*> is that the following three requirements be met:

(i) all solutions of

m—l m

(15.6)      z'(t + hm) + Y Anz'(t + K) + Y Bnz(t + K) = 0,      / > /„, I $ S,
n— 0 n—0

for which z(t+hm) + X^n-o1 Anz(t+hn) is continuous, are bounded as /—>+ =° ;

(ii) ||C„(/)|| and ||Z>„(/)|| tend to zero as <—>+ °° ;

(iii) /"||C»(0!|<a, f°°\\Dn(t)\\dt<™.
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