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1. Introduction. This paper has as its objectives the determination of

complete sets of formal solutions of a differential equation of the form

d*w ( d2w dw \
(1.1) — + X2 |P(2, X) — + Q(z, X) — + R(z, \)wj  = 0,

over a z-domain that includes a turning point, and the construction of a

related equation. Elucidations of this statement are the following:

(i) The differential equation (1.1) is one in which X is a parameter, real

or complex, whose absolute value is large, namely | X | > N with some suitably

large positive constant N. For generality, X will be dealt with as complex.

(ii) The variable z ranges over a closed bounded domain, in which certain

hypotheses, that will be enunciated, are fulfilled. It may be real or complex.

For generality it will be dealt with as complex.

(iii) The coefficient functions P(z, X), Q(z, X), and R(z, X) are power

series in 1/X, namely

p(z, V) = Y ——'
»-o    xn

^     Qn(z)
(1.2) C(z,X) = £^>

n=0        X"

£,    Rn(z)*(», *) = Y ——,
n=0        X"

the series converging when |X| is sufficiently large, and their coefficients

Pn(z), Qn(z) and Rn(z) being analytic (indefinitely differentiable) over the

z-domain.

(iv) The z-domain contains a (just one) zero of the function Po(z), this

zero being of the first order. A zero of Po(z) is called a turning point of the

differential equation, the order of the zero being the order of the turning

point.

(v) A differential equation is said to be related to a given one if it has

known solution forms, and its coefficients coincide with those of the given

equation to the extent of all terms to a prescribed degree in 1/X.
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A turning point is not, in the classical sense, a singular point of a differen-

tial equation. The solutions there are uniform. Nevertheless, the point is

critical in a specific way for the asymptotic representations of the solutions. A

differential equation (1.1) has associated with it the algebraic equation

(1-3) x4 + Po(z)x2 = 0,

which is known as its characteristic or auxiliary equation. The roots of this

have an invariant coincidence pattern over any z-region that includes no

turning point. Thus two roots, say Xi(2) and Xziz) — 0, coincide identically,

whereas x^iz) and the remaining two roots, Xziz) — ̂ Po/2(z)> and Xi(z)

= — iPo (z), remain distinct. Where such invariance maintains, classical

theory is applicable for the derivation of formal solutions, these being of the

forms

(1 • 4) exp (i\ J Xj(z)dz\ Z ^^ > j= 1,2,3,4,

with analytic coefficients Xi,niz)- At a turning point the coincidence pattern

is abruptly different, all four roots being coincident there because they all

vanish there. The effect of that is to engender singularities in at least some of

the functions Xi.niz). The useableness of the expressions (1.4) is thereby

destroyed.

A related equation has been found, in the case of many linear ordinary

differential equations, to supply a medium through which the asymptotic

solution forms can be deduced. Analytical method which is quite familiar is

applicable to that end. The key to this deduction lies, of course, in the dis-

coverability or constructibility of a related equation.

I submit this paper as a second study of the differential equation (1.1).

In method, scope and objective it is in part parallel to, but also in large part

divergent from, the earlier paper [l]. The analysis here is more direct and

self-contained, and obviates what heretofore were substantial complications.

The theory as here presented seems more perspicuous, and its scope is wider.

In the paper [l] a certain distinctive sub-class of equations (1.1) could not

be dealt with; the present paper fills this omission.

By contrast with the paper [l ] the present one has been delimited to the

formal derivations. The analysis by which the asymptotic solutions are in-

ferred from the solutions of the related equation is omitted. The omission

has been partly dictated by the desire to keep the dimensions of the paper

within bounds, but partly also by the desire to avoid extensive repetition

with the paper [l]. The latter, to be sure, is lacunary in the matter of equa-

tions (1.1) of the distinctive category. The analysis which establishes the

asymptotic solutions of such equations remains to be given.

As in the paper   [l], it is to be remarked that the "Orr-Sommerfeld"
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equation of hydrodynamics, namely

rfty d2f T /dV \      d2ul

(i-5) ̂ -2°v+°'*""",4("-')t-'"**)-^J=o'
is of the type (1.1). The substitutions

rdo>-\
(1.6) z = y — y0,       u = f,       X2 = iaR\— ,

\-dyJ „_„„

transform it into the form (1.1) with Q(z, X)=0, and with

w(y) — c
Po(z) = —-;      P2= - 2a1; P„ m 0, for n ^ 0, 2.

R0(z) = - a2Po(z) - Po"(z);        P2 = a4; Pn = 0, for « ^ 0, 2.

The existing studies of equations of the type (1.1) have mainly been inspired

by the equation (1.5). Papers by W. Wasow [2] and by C. C. Lin [3] are

especially to be noted in this connection. These authors, as well as the paper

[l], give further references.

The present paper is self-contained. No reference to the paper [l] is

called for. The matter which is critical to all the formal manipulations here

developed is the avoidance of singularities at the turning point. It is of some

interest to note that despite this stricture the derivations set forth are all

performable in terms of quadratures when only a single solution of a certain

differential equation of the second order, the equation (2.3) below, has been

found.

2. Preliminaries. The differential equation (1.1) is unchanged in form by

a translation of coordinates. We may, therefore, take the origin at the turning

point, and that we shall do. In consequence of it, and because there is no

other turning point,

(2.1) P0(0) = 0;        P0(z) * 0, for z ^ 0.

The parameter X is not identified by the equation (1.1), since it occurs in

the equation only in products with other coefficients. A normalizing relation

to inhibit the transfer of constant factors to or from X is needed. We shall, to

that end, adopt the relation

(2.2) P'„(0) = 1,

observing this to be permissible under the hypothesis that has been made,

that the turning point is of the first order.

The limiting form of the Equation (1.1) as X—»=° is the differential equa-

tion of the second order
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(2.3) Po(z)«" + Qo(z)u' + R0(z)u = 0.

The origin is a point at which the leading coefficient of this equation vanishes.

It is therefore in general a regular singular point, though it is not such in the

special cases in which the remaining coefficients also vanish there. However

that may be, the equation has, relative to the origin, the exponents 0 and p,

where, in accordance with the evaluation (2.2),

(2.4) p-l-e,(0).

We shall adopt it as a hypothesis that

(H) p 75 not a negative integer^).

In association with its exponent p the differential equation (2.3) has a

solution Mp(z), whose quotient by z" is a power series in z with the constant

term 1. The formula

/dz

up(z)0(z)

in which

a(?o(z)      \
*»*)■

familiarly gives a solution u0(z) which is linearly independent of u„(z), and is

associated with the exponent 0.

In general only one solution of the pair up(z), u0(z), is analytic at the origin,

the other one having a branch point there. Thus when p is not an integer,

u0(z) is analytic, while up is multiple valued like z", whereas, on the other

hand, when p is an integer, uf is analytic and u<>(z) ordinarily of the character

of u„(z) log z. There are, however, instances—ones in which p is an integer—

in which the solutions u„(z) and Uo(z) are both analytic. The equation (2.3)

may, after all, not have any singularity.

It will be found requisite in the course of the discussion to restrict the

z-domain from including any zero of uP(z) other than that at the origin. Also

to require the exclusion of such zeros of the function flP]/2(z)dz, —a matter

which is not implied by the condition (2.1) when z or Po(z) is complex. We

shall therefore adopt the hypotheses:

(H) u,(z) * 0, for z r* 0,

and

(2) A conjecture is that this restriction could be replaced by an alternative one by ap-

propriately rewriting the paper. However, as was remarked in the paper [l], adjoint equations

(1.1) have exponents with opposite signs. The conclusions for an equation with a negative

integral p are thus inferable from those of its adjoint.



1959] A CLASS OF FOURTH ORDER DIFFERENTIAL EQUATIONS 375

(H) f  P\'\z)dz j* 0, for z ^ 0.
•I o

It will be convenient to symbolize the left-hrnd member of the equation

(1.1) by £(w), namely to set

(2.7) £(w) m w"" + X2{ P(z, \)w" + Q(z, \)w' + R(z, X)w}.

Part I. Formal solutions as power series in 1/X

3. An algorithm. Let w*(s) denote the power series in 1/X,

x A    Un(z)
(3.i) «*(*) = £—— >

»-o     X"

in which the coefficients Un(z) are, for the moment, unspecified, but are

presumed to be analytic. The substitution of this into the expression (2.7)

yields formally the relation

00

(3.2) £(W*)   m   Y ^{PoUn +  QoUn +  RoUn +  kn(U)\ ,
n-0

in which

ho(U) m 0,

hi(U) m {PiUo" + QiUo' + RiUo},
(3.3)

K(U)   =    U""2   +    Y   [PjU'n-j+QjU'n-j+RjUn-j],

n = 2, 3, 4, • • • .

The term in X2_n, for any n, can be made to vanish from the relation (3.2)

by taking U„(z) to fulfill the equation

(3.4) Poll/' + Qoli: + RoUn = - hn(U).

Since the expression hn(U) involves only those functions Uj(z) for which

j<n, these equations may be taken successively for n = 0, 1, 2, • ■ • , to deter-

mine the respective functions Un(z). By this means £(w*), as a power series

in 1/X, is made to vanish term by term. The resulting series w*(z) is accord-

ingly a formal solution of the equation £(w)=0, namely of the given differ-

ential equation (1.1). We use the adjective "formal" here to disclaim any

assertion as to either the convergence of the series, or the legitimacy of the

substitution process described. That the series obtained may indeed be

divergent can easily be shown. In any instance in which R(z, X)=0, for in-

stance, the process described permits the choice of each function Un(z) as an

arbitrary constant.

The equation (3.4) with w = 0 is solved by the formula
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(3.5) U0(z) — c0Mo(z) + koUp(z),

in which c0 and ko are arbitrary constants. That the equations for successive

values of n can be solved by quadratures is shown as follows. Suppose that

for any n the functions Uj(z) with_7<7? have been determined. The function

hn(U) is then known. With u signifying either u0(z) or u„(z) as may be con-

venient, the Equation (3.4) can be put into the form

Pow(—J   +{2P0«' + eo«H—J   =-hn(U).

It thus has the first integral

U2d(—\     =   HniU,u),

in which

JudhniU)
-dz.

— Po

A further quadrature yields the formula

r HniU,u)
(3.7)       Uniz) = u(z)  I-dz + CnUoiz) + knu„iz),      n = 1,2,3, ■■■ ,

J M20

c„ and kn being constants of integration.

By the formulas (3.7), taken for successive n, the function Uniz) is made

to depend upon (2w + 2) constants of integration. For which, if any, of these

constants c7„(z) is analytic, namely devoid of a singularity at z = 0, remains

to be determined. That, it will be shown, depends upon whether the one or

the other of the solutions wp(z), «o(z), is analytic, or whether they are both so.

We observe that, by virtue of the evaluation (2.4), the function Biz),

whose formula is (2.6), is the product of z1-? by a factor that is analytic and

nonvanishing at z = 0.

4. Analyticity when p is not an integer. When the exponent p is non-

integral, the solution «P(z) is not analytic, but m0(z) is so. The formula (3.5)

therefore gives an analytic determination of £/o(z) if, and only if, &0 = 0. Sup-

pose, now, that for some n analytic determinations of the functions [/y(z)

with j<n have been possible, and have been made. The function h„iU) is

therewith analytic, and by the formula (3.6), with m0(z) in the place of «(z),

the function Hn(U, u0) is, like 6(z), the product of z1^ by a power series in z.

The formula (3.7) is thus seen to give an analytic determination of £/„(z)

provided kn = 0. The constants c„ remain arbitrary.

To analyse the dependence of the functions Un(z) upon the constants cn,

the following lemma is useful.
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Lemma. If^n(z), » = 0, 1, 2, • • • , is any sequence of analytic functions, and

(4.1) &(z) = Y c,i,-i(z)
z'-0

with constant coefficients Ci, then

n-l

(4.2) hnCE) = Ycihn-m,

and by consequence

n-l

(4.3) HnCS, u) = Y C,Hn-i($, u).
i=0

This can be proved as follows: By virtue of the relations (4.1) the formulas

(3.3) give

n—2 n     n—j

hn(S)   =   Y C&"-2-i   +   £  12 Ci\Pjin-j-i +  Qjin-j-i +  Rjtn-j-i] .
i=0 j=l   i=0

An interchange of the order of summation yields the alternative form

n—2 n— 1        n—i

hn(E)   =   Y c&n-i-2 +   Y Ci Y   \P)£n-i-j +  QjZn-i-j +  Rj%n-i-j\ ,
i=0 i=0 j'=l

and this is recognizable to be the relation (4.2). The conclusion (4.3) follows

through the formula (3.6).

To apply this lemma, let the sequence of functions 4>n(z) he defined thus

(po(z) = u0(z),

(4.4) r   Hn((p,uo)
<pn(z) = u0(z)   I     -r-dz, n = 1, 2, 3, • • • .

J u\8

These functions, it was observed above, are analytic. The relation

(4.5) Uj(z) = Y Ci<pj-i(z),

is valid whenj = 0. Suppose it to be valid when j <n. Then by the lemma

n-l

H„(U, Mo)   =   Y CiH„-i(<p, Mo),
t=0

whereas by virtue of this the formula (3.7), with kn = 0, assumes the form

(4.5) with j = n. The relations (4.5) are thus valid for all j, which is to say

that an analytic formal solution (3.1) is of the form, and only of the form,
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» \ H

W*(Z)   =   X   — 2] Ctf>n-iiz).
n-0   X"  two

This, however, is equivalently expressed as

A cbJz)
(4.6) w*(z) = c(X) £ — ,

n=0      X"

with

00    c

(4.7) c(X)-Z-'
n-0   X"

The constants c„ are thus seen to be involved only in a factor which is inde-

pendent of z, in accordance with which formal solutions engendered by

different choices of the constants are linearly dependent. A formulation of this

conclusion is the following.

Theorem 1. A differential equation (1.1) whose limiting form (2.3) has a

nonintegral exponent at the turning point admits the formal solution (3.1) in

which the coefficients are the analytic functions c/>n(z). Every formal solution

which is a power series in 1/X with coefficients that are analytic in z is linearly

dependent upon the one that is given by

(4.8) Uniz) =4>„(z).

5. Analyticity when p is an integer and w0(z) is not analytic. When p is an

integer—a non-negative one by hypothesis—the solution wp(z) of the differ-

ential equation (2.3) is analytic. In general, then, m0(z) includes a nonvanish-

ing multiple of wP(z) log z, and by virtue of that has a singularity at z = 0. It

is this case that we shall now consider.

As it is expressed in the form (3.5), the function l7o(z) is analytic if, and

only if, c0 = 0. For positive n the formula (3.7), with mp(z) in the place of »<(z),

and with the use of the evaluation (2.5), can be written in the form

r   {/?„([/, O + cn]
(5.1) Uniz) = MP(z)  I-dz+knu„iz).

J w6
f

Suppose that for some n analytic determinations of the functions C/y(z) with

j<n have been possible and have been made. The functions hniU) and

{H„iU, wp)+c„} are therewith analytic, the latter, when expressed as a

power series in z, having a constant term which depends linearly upon c„.

The factor l/u\B is the product of z_1~" by a power series in z, and in this

series the coefficient of zp is not zero, because if it were the solution Wo(z)

would be analytic. Therefore the integrand of the formula (5.1) has a residue

which is linear in cn, and which vanishes for a specific unique choice of c„.

With that choice the function  t7„(z) is seen  from the formula (5.1) to be
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analytic, and to be so with an arbitrary constant &„.

The dependence of Un(z) upon its constants can be analyzed as follows.

Let the sequence of functions \pn(z) he defined thus

^o(z) = u„(z),

(5.2) r   \Hn(P,u,) - an)
fn(z) = u„(z)-dz,     n = 1, 2, 3, • - ■,

J uld
p

the constants an being those for which these functions are analytic. Therewith

the relation

(5.3) Uj(z) = Y ki^z),
i=0

is valid when j = 0. Suppose it to be valid when j < n. Then by the lemma of §4

n-l

Hn(U,  UP)   =    Y  kiHn-i(+,  U),
i=0

whereas this implies through the formula (5.1) that

n / n-l \

(5.4) U„(z) = Y *.V'»-.-(z) + y» + Y kictn-i\ «o(z).
i=0 \ i=0 '

A necessary and sufficient condition for the analyticity of Un(z) is thus that

c„ be chosen to fulfill the equation

n—1

c„ + Y han-i = 0.
i=0

With this choice the evaluation (5.4) reduces to (5.3) with j = n. With the

constants c„ chosen to fulfill the linear system of equations

Co = 0,

(5.5) .     _V
Cn * { an—i'K{ l

i=0

the formulas (5.3) are thus valid for all j, and the formal solution (3.1) with

analytic coefficients is accordingly

oo        l      n

w*(z) = Y —- Y ki\p„-i(z).
n-,0 X" ,-_o

This is equivalently expressed in the form

w*(z) = *(X) Y —'
«-o    X"

with
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(5.6) *(x) = ib~
n=0   X"

A formulation of this conclusion is the following:

Theorem 2. A differential equation (1.1) whose limiting form (2.3) has

integral exponents but only a one-parameter family of analytic solutions admits

the formal solution (3.1) in which the coefficients are the analytic functions xpniz).

Every formal solution which is a power series in 1/X with coefficients that are

analytic in z is linearly dependent upon the one that is given by

(5.7) Un(z) =- *„(z).

6. Analyticity when «p(z) and w0(z) are both analytic. The differential

equation (2.3) may have at z = 0 only an apparent singularity or no singular-

ity at all, the latter being the case when Qoiz) and Fo(z) as well as Po(z) van-

ish there. When that is so—the instance cannot arise unless p is a positive

integer—the solutions uPiz) and Wo(z) are both analytic. We now consider this

case.

Let the function sequences $„(z) and ^,,(z) be defined by the formulas

4>o(z) = u0(z),

f   {Hn(<i>,uo) - clogz}
#„(z) = «o(z)        -~-dz,

J nie
(6.1)

tfo(z) = MP(z),

r {g.(*,«o) - ft, log«} J
*B(z) = «o(z)  |    -r;-dz,   n = 1, 2, 3, • • •,

J Uq9

the constants an and bn being those for which these functions are analytic.

That such constants exist and are uniquely defined can be shown inductively

as follows.

The functions <F,(z) and ^/(z) are analytic when j — Q. Suppose they are

so whenj<«. The functions h„(&) and A„(SI/) are then analytic, and the in-

tegrands of the formulas (3.6) for H„i$, uB) and FT„(147, w0) accordingly each

have a pole of the order p. With a„ and bn determined as the respective resi-

dues at these poles, the integrands of the formulas (6.1) for $„(z) and ,i7n(z)

are analytic, and therewith $n(z) and ^„iz), themselves, are analytic.

Consider, now, the relation

(6.2) Uf(z) = E {c&t-iis) + k&j-iiz)}.
i-0

It is valid, and gives an analytic determination with arbitrary constants Cq

and ko, when j = 0. Suppose it is valid when j <n. By the lemma of §4, then,
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n-l

IIn(U, Mo)   =   Y   \ciH„-i($,  Mo)   +  kiHn-ity,  Mo)},
t=0

and with this the formula (3.7), with uQ(z) in the place of u(z), assumes the

form
n-l

Un(z)   =   Y   I Ci$n-i(z)   +  k&n-i(z)}

(6.3)
r^, ,1 r log z

+     Y {cia„_i + kibn-i) \u0(z)  I    —Y~dz.
_ i=0 J " Uq6

This reduces to the relation (6.2) with j = n if the constants Ci and ki are

chosen to fulfill the equation

n-l

(6.4) Y {a„-lci+ bn-iki]  = 0.
1=0

The relations (6.2) are assured for all j if the equations (6.4) are fulfilled for

n= 1, 2, 3, • • • .

The conclusions that are to be drawn from this are different according as

the constants an, bn, are, or are not, all zero. If a„ = 6n = 0, for all n, the rela-

tions (6.4) are vacuous, and leave the constants C; and ki arbitrary. With a

special choice of these constants the relations (6.2) reduce to Uj(z) = $y(z),

and with another they reduce to Uj(z)=^j(z). The conclusion which this

permits may be formulated thus:

Theorem 3. A differential equation (1.1) for which the functions of the

sequences (6.1) with an = bn = 0;n = 0, 1, 2, • • - are analytic, admits two linearly

independent formal solutions which are power series in 1/X with coefficients

that are analytic in z. Two such formal solutions are

(6.5) w*(z) = Zj -'
n=0 X*1

and

(6.6) wp.*(z) = Y —-
n = 0       X"

It can easily be shown by examples that differential equations of the type

referred to in this theorem exist. Thus the equation

U z2       2z + 1\ /        2z       2\ 2     )

"""+x'{(2'+t - —r ~ v+1 ~ ir'+r •}= °'
whose limiting form (2.3) has an apparent singularity at z = 0, admits the

solutions



382 R. E. LANGER [September

Z 1
w*(z)  =  1 -\-)

X       Xs

1
ro2,*(z) = z2 -|-•

A

The equation

^ + X.{(.-i)*--(.-±).}-ft

whose limiting form (2.3) has no singularity, admits the solutions

w*(z) = cosh z,

w>i,*(z) = sinh z.

When the constants an, bn do not all vanish, an integer N is specified by

the relations

an = bn = 0, for n < N,
(6.7) i      i        i      i

| fl.V |    +   | for |    9^ 0.

The Equations (6.4) are then subsumable into the relation

a(X)c(X) + b(\)k(X) = 0,

in which c(X) and k(X) have respectively the formulas (4.7) and (5.6), and

A aN+„                         "    bN+n
a(X) = Y —— '        b(\) = Y —-

n=0       X" „=0       X"

In accordance with this a particular permissible choice of the constants c„

and kn is that for which k(X) =a(X), and c(X) = — b(X), and every choice must

be proportional to this particular one. With the particular choice the formal

solution (3.1), (6.2) is

oo       1      n

(6.8) w(z) = Y — Z {a.v+J-*„-j(z) - fo+^n^^z)}.
,,=0   X" y_o

Our conclusion is the following one.

Theorem 4. A differential equation (1.1) /or w/mc/i the functions of the

sequences (6.1) are analytic with constants an, bn that fulfill the relations (6.7),

admits the formal solution (6.8). Every formal solution which is a power series

in 1/X with coefficients that are analytic in z is linearly dependent upon the solu-

tion (6.8).

That differential equations of the type referred to in this theorem exist is

easily shown. The equations
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w"" + \*i(z + —\w" - w'\  = 0,

w"" + \~Lw" -\-w'\  = 0,

have limiting forms (2.3) which have respectively an apparent singularity

and no singularity at z = 0. They each admit as formal solutions only those

power series in 1/X in which the coefficients are constants. In each case, there-

fore, every formal solution of the type in question is linearly dependent upon

the particular one w*(z) = l.

Part II. The derivation of formal solutions from a differential

equation of the third order

7. A formalism. The differential equation

(7.1) v + \Hv - \2pv = 0,

in which p is a parameter, and each superscribed dot signifies a differentiation

with respect to x, is one whose solutions, as functions of x, X and p., are of

known forms [4]. We propose to bank upon these solutions with x function-

ally dependent upon z. The formula for this dependence we find it convenient

to take in the form

(7.2) x =  I    <r(z)dz,
J 0

with an integrand cr(z) which is analytic, and which, beyond that, is to be

determined.

With v an undetermined parameter, possibly a function of X, and with

^4(z, v), B(z, v) and C(z, v) as undetermined multipliers that are dependent

upon v, are analytic in z, and (although the notation does not indicate it) are

functions of X, the formula

1 1
(7.3) w(z, p) = A(z, v)v(x, p) H-B(z, v)v(x, p) + — C(z, v)v(x, p)

X X2

formally relates an expression w(z, p) with each solution v(x, p) of the equa-

tion (7.1). The differentiation of this with respect to z, followed by the

elimination of "v(x, p) by use of the equation (7.1), yields the evaluation

w'(z, p) = [A' + apC]v + \c(A - xC) + — B' | v

(7.4)
r i       ii

+    —aB-\-C'\v.
LX X2     J
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The higher derivatives, as they are obtained successively by this process of

differentiating and eliminating, are found to be

(7.5) w"(z, p.) = XH(v, ti)v + XJ(v, n)i + K(v)v,

and

(7.6) w'"(z, p.) = [X2upK + XH']v + [-X2x<rK + X(<tH + J')]v + [XaJ + K']v,

wherein H, J and K are given by the formulas

H(v,p) = o-"~nB + \~l[A" + 2<rnC + <r'p.C],

I(v,p) =  - Xo-2B + X-1[2<r.4' + a'A - 2xaC - xa'C + (p. - l)a2C]

+ \~2B",

K(v) = <r2(A - xC) + X-1[2<7/J' + (t'B\ + X~2C".

These expressions (7.7) depend upon z and X, of course, as well as upon the

indicated parameters v and p.. One further differentiation gives

w""(z, /x) = [XVV + X2(2o-p.K' + o-'nK) + XH"]v

+ [-Xsx<r2I + X2(j2uK - 2xo-K' - xo-'K - <r2K) + X(2<tH' + <r'H + J")]v

+ [X2X(r2K + X(o-2H + 2(tI' + o-'I) + K"]v,

in consequence of which £(w), as given in (2.7), is found to have the formula

(7.8)    £(w (z, p.)) = X25i(j», p)v(x, p) + X2S2(v, p)v(x, p.) + XS3(v, t±)'v(x, p)

with

Si(v,p.) = X[P7J + o-W] + [QA' + RA + p(aQC + 2o-K' + o'K)]

+ x-w,

St(v,n) = X(P - xa2)I + [aQ(A - xC) - 2x(tK' - xo-'K + (p. - 1)<t2K]

+ X-'lQB' + RB+ 2aIT + a'H + J"],

S3(v,p) = X(P - xo2)K + [o-QB + <r2H + 2aJ' + a'l]

+ X-'iQC + RC+ K"].

It is convenient to combine the relations (7.3)—(7.6) into a single one of

vectorial form, namely

"w(z, p.)    "I
[v(x, n)

w (z, p.)
(7.10) ni      N     = M(v,p.)   v(x,p)   ,

w"(z, p.)
Lv(x, u).

lw'"(z, p) J

by introducing the matrix
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~A(z,v) X-'P(z, v) \~2C(z,v)

A' + o-pC a(A - xC) + X-'B'      \-xcrB + X-2C
(7.11) M(v,p) =

\H(V, p) XJ(v, p) K(v)

_\2aK + \H'    -r-xo-K + \(o-H + I')      \crl + K'

Let v, A, B and C be taken, now, to be formal power series in 1/X, namely,

(7.12) "=E->
»_0   X"

and

...        A aniz)
Aiz,v) = Z_, ——'

n-0      X"

(7.13) B(z,v)=±^,
„ = 0       X"

c(z, v) = 2^ ——
,,=o    X"

Our proximate concern will be with the formulas (7.8) and (7.9) when p is

equal to v, namely, more specifically, with the determination of the elements

that have thus far been left unspecified so as to fulfill the formal relations

(7.14) S&, v)=0, J =1,2, 3.

By virtue of the formulas (7.12) and (7.13) the left-hand members of the

Equations (7.14) are each expressible as the sum of a term in X and a formal

power series in 1/X. By reducing these expressions to zero term by term, the

right-hand member of the relation (7.8) is made to vanish. In accordance

with that the expression w(z, v), or, as we shall more concisely write it, w(z),

which has the formulas

'w(z)   ~|
v(x, v)

w'(z)
(7.15) =M(v,v)   v(x,v)

w (z)
J)(X, V)

-W    (z)_

will be a formal solution of the differential equation (1.1).

8. The determinations of x and o(z). The terms in X in the left-hand

members of the equations (7.14) are respectively

X<T2J<o(Po —  Xor-)j3u,

X<r2(Po - X<r2)/?0,

\a-(Po — xai)(a0 — xy0).
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They vanish if x is such as to fulfill the equation

(8.1) xo-2 = Po.

The square root of this equation, multiplied by dz, can, by virtue of the

formula (7.2), be written as

1/2 1/2
x    ox = Po  dz,

this equation being equivalent to (8.1) if the z-domain and the complex x-

plane are taken to be two-sheeted Riemann surfaces, each with a branch point

at the origin. The equation

which is thus obtainable by an integration, permits the determination of x

as an analytic function of z, because P\/2(z) has the character of z1'2 near

z = 0. We may, therefore, write

(3   rz   U2   ) 2/3

(8.2) *={TJoPocfc}     .

As a function of z, therefore, x has a simple zero at z = 0. It has no other zero

in the z-domain, by consequence of a hypothesis which was adopted in §2.

The relation

Po(z)
(8.3) <r2(s)  =-,

which is consequent to (8.1) and (8.2), is analytic except for a removable

singularity at z = 0, and gives for cr2(z) a value which is everywhere different

from zero. It permits a determination of a(z) which is analytic and non-

vanishing over the z-domain, with

(8.4) <r(0) = 1.

The mapping from z to x is accordingly conformal, and z is, inversely, an

analytic function of x.

By the determinations (8.2) and (8.3), the terms in X are removed from

the expressions on the left of the equations (7.14), and these expressions are

thus reduced to be formal power series in 1/X.

9. The determinations of v0, a0(z), /30(z), and 7o(z). The expressions Sj(v, v)

as power series in 1/X, are found to have as their leading terms Sj0) the func-

tions of va, a0, /30 and 70 with the formulas
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s\°\y0, ao, /So, 7o) = Poao" + [(?o - 4W*]ao' + [Po + 6»0aV]a0

+ j»0o-2Pi/3o — 2voo-Poyo   — vo[T + 2a-4]7o,

(9.1) sl0\vo,oto,Po,yo) =  ~ 2cP0a0'  -  Tao - PoPi/So + 2x<xP07o

+ x[T + 2a*]yt,

S(3°\uo,ao,ffo,7o) = <r2Piao ~ 2<rP0/3o'   - [T + <r4]/30 - PoPiTo,

in which

(9.2) T = Sa'Po - <tQo + (1 - vo)(t\

These terms can, therefore, be made to vanish by choosing the elements

vo, aa(z), 8o(z), 7o(z), to fulfill the equations

(9.3) Sjn)("o, a0, /So, To) =0, j = 1, 2, 3.

We shall show that such a choice is possible, and—what is important—under

the stipulation that «o(z), Bo(z) and 7o(z) be analytic in z.

The system of equations (9.3) implies, and is implied by, the alternative

one

(0) 2 (0)
Po(z)Si   (va, ao, /30, 7o) + voo (z)S2   (v0, a0, (So. 7o) = 0,

(0) 1/2    (0)
(9.4) S2   (vo,ao,Po,yo) + ix    S3   ("o, oco, /So, 7o) = 0,

S2   (vo, ao, /So, 7o) — ix    S3   (vo, ao, /3o, 7o) = 0.

By the use of the relation (8.1), the first equation (9.4) is found to be ex-

plicitly

Poao" + P0[Qo + 2>w3]ao  + [PoPo + 6WVp0 - wV]a, = 0.

It is thus free of the functions fio(z) and 7o(z), namely, is an ordinary differ-

ential equation in «o(z). The substitution ao = x~<'u transforms it into

.v2P0| Pom" + Q0u' + R0u]

+ (vo - p)P0{2.wP0u' + [xo-'Po + x«Qo + (v0 - p - l)<r2P0]«} = 0.

Hence it is fulfilled by the determination

(9.5) „„ = P,

and the choice of u as a solution of the differential equation (2.3). This latter

equation has the solution ufi(z), which has the character of z" near z = 0. Since

x" also has that character, and is nonvanishing elsewhere in the z-domain, the

determination

«p(z)
(9.6) au(2)=_^i,
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is analytic, and, with (9.5), fulfills the first equation (9.4). In accordance

with it

(9.7) «o(0) = 1.

That «o(z) is different from zero over the z-domain, follows from the relevant

hypothesis imposed upon the domain with respect to the solution up(z) in §2.

The second and third equations (9.4) are found, again by the use of the

relation (8.1), to be expressible as

— 2aPofao — xy0 ± ix    fio}' — [T + ivPo   Pi]jao — xyo + ix   ~/30\  = 0.

They are thus amenable to integrations as linear equations of the first order.

The integrals are respectively

(9.8) a0 - xyo + /.r1/2)3o = «*<*>**<«>,

with

T(2)=-/o   £7. ^'
(9.9)

rz  Pi
t(z) =-dz.

Jo   2PJ'2

The functions (9.9) exist, since the function T, as given by the formula (9.2),

has a zero at z = 0, by virtue of the determinations (9.5) and (2.4).

Combinations of the results (9.8) yield the evaluations

sinf(z) 1    . .
(9.10) 0o(s) = er<2)-, 7o(z) = — jao(z) - erU) cosf(s)}.

X1'2 X

The singularities which appear here at z = 0 are removable; the determina-

tions accordingly analytic. The equation

.2 2 2r(z)

(9.11) (ao - xyo)   + x/30 = e

which follows from (9.10), establishes the fact that the quantity upon its left

is nonvanishing over the z-domain. That fact will later have to be appealed

to.

10. The determinations of v„, aH(z), /3„(z), and 7„(z). We shall suppose,

now, that with an assigned n analytic determinations of the elements vk,

akiz), fikiz) and 7*(z) with k <n, to remove the terms in 1/X4 from the expres-

sions Sj(v, v), have been possible, and have been made, and shall show that

as a consequence the same is possible for k = n.

By the collection of all relevant terms in the formulas (7.9) with v in the

place of p, the total coefficients of 1/X" in the expressions Sy(c, v) are found

to be the left-hand members of equations
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(10.1) S-°\p, «., ft., y„) - /y,„(z, r.) = 0, j = 1, 2, 3,

in which the terms Sf have the formulas (9.1) and the functions /,-,„ are

specific analytic combinations of i>„ and elements that have already been

determined. The dependence of the second one of these functions, namely,

/2,n, upon vn, is of immediate moment. That is found to lodge exclusively in

the term

<r4(a0 — xy0)vn,

which reduces, at z = 0, to vn itself. With an appropriate determination of vn

the function f2,n(z, v) accordingly vanishes at z = 0. We shall adopt this deter-

mination, whereby it is assured that

(10.2) /M(0, 0 = 0.

As a consequence, f2,n(z, vn)/x is analytic. The equations (10.1) now con-

stitute a nonhomogeneous differential system for the functions an, 8n(z), and

7„(z). An equivalent is the system

PfrSl     (p, a„, Bn, 7n)   + P(T S2    (p, an, Bn, 7n)   =   Po/l,n + P<T f2,n,

(10.3) S2    (p, an, Bn, 7f>)   +  ix      S3    (p,an,Bn,yn)=fi,n+ix     f3,n,

02   (p, a„, Pn, yn) — tx    £>3   (,p, a„, |3„, 7„; = /2,„ — JX    j3,n.

The first equation (10.3) is, more explicitly,

Poan" + Pofeo + 2p<ri]a/ + [P0P0 + t>P(r\'Po ~ PvT]an = Po/i,» + P^h.n.

The substitution an = x~pun, transforms it into

pf2 n~\
Poll"   +  QoUn'   +   Rnlln   =   X" \fUn  H-L     .

This equation is of the type (3.4), and can be integrated in the manner of §3.

The determination of an(z) which is so obtained, namely,

—       x> \fi.n + — l-^dzdz,
o   eu2Jo    L x J p0p

is analytic. Moreover

(10.5) aB(0) = 0.

The second and third equations (10.3) are expressible in the form

— 2aPo{an — xyn ± ix    Bn}' — [T + iaPo   Pi]{an — xy„ ± ix    /S„}

= fi.n  ±  *V2/3,„.

They have the integrals
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l . il2 f.//...(/) ^ ./*.(/) W*<'.<>±*«.<>
a,< — X7„ + ix    Pn=   I     i -+ i- >-dt,

Jo   X   x(t) x"2Wi        2o-\f)

in which

t(z, I) = riz) - ril),

(10.6)
f(z, /) = f(s) - f(/).

Combinations of these yield the analytic determinations

0»(*) = -TZ        1—7— sm f z, 0 + —— cos f z, 0 ^ —— dt,
x"2J0   I x(0 x"2(0 j 2o-3if)

(10.7)
1   T /* *  (f2.nil)

7«(z) = —   <*»(z) -  I    ^—77- tos f(z, 0
x L Jc I x(/)

/»..(0  .    ,    N) «T(2'° ,1
-• sin f (z, 0 >-eft   .

x1'2^) 7 2a3(0     J

11. The functions vqj(x, p). The solutions of the differential equation

(7.1) have known forms(3) [4]. They can be expressed either as power series

in x—more precisely in X2/3x—or asymptotically with respect to |Xx3/2|. A

selection of certain ones of these solutions, or rather of sets of three of them,

is advantageously based upon their asymptotic forms. The domains in which

specific forms are maintained are identifiable by the integers q (positive,

negative and zero), as is set forth below. An accepted notation for the respec-

tive solutions is(") wg,,(x, p),j=l, 2, 3.

With

(11.1) Xq = jexp[-(2(7+l)y]xx3/2,

and with e0 as an arbitrarily small positive constant, the forms are the fol-

lowing:

For

(q — 3)ir + ta 5; arg (Xx3/2) ^ qir — e0,

(11.2) / ^ U«™«\  *'3+"2      ̂       " 5nip)
»„,i(x, p) ~ <-> e 2X" 2_-'

I  xq ) to i3ixqy

(') The formulas of the paper [4] are adaptable to the present equation (7.1) by replacing

u by — u/3. Errata to be noted in [4] are: in formula (8.4) for f,,0 the factor exp(l—2g)7ri

should be exp(l — 2q)fnri; in formulas (8.5) for f,,i and vq«, factors ( — 1)" should be inserted.

(4) The solution here denoted by v„,z{x, 11) is the solution (iX/iy^va of the paper [4], as

that is adapted to the present equation (7.1) by the replacement of /u by —p/3.
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and for

(q - 2)tt + eoi arg (Xx3'2) g (q + l)x - co,

(11.3) /e(a+i)xiw/3+./2 .        Sn(li)

(.    A,   J „=o (~3iXq)n

the coefficients 8n(p) being obtainable from the recurrence formulas

So = 1,

«! = ~ [4 - 3(5 + 2M)(3 + 2M)J,
48

5„ = — [4 - 3(6h - 1 + 2/i)(6w - 3 + 2M)j
48w

(11-4)

+   -(6« - 1 + 2p)(6« - 5 + 2p)(6n -9+ 2p)8n-2,
192w

n = 2, 3, 4, • • • .

For

fa - 2)tt + to ^ arg (Xx3'2) g qir - fa,

(11-5) " Kn(p)
vQ,3(x,p) ~ x" 2^   ,,„ -,    '

n=0     (X2X3)"

with the coefficients

r(i + m)
(11.6) Kn(p)   =-

3T(1 + p - 3«)r(M+ 1)

These solutions have the convergent formulas

»,.»(*, p) = 2 (yj     exp [(1 - q) (j + -^j «J

- (3e<")/3X:/V
• 2^-'

r(i H-)T(n+ 1)
(11.7) V 3    /

»«.*(*, m) = 2 f —J     exp    -9 L— + —j «

• 2-i-'

r(i + ^-jr(w+i)
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and
(n — p\       2/3 „

r(-)(3Xq )
/g2(«-l))Mri\   1/3    » \      3       /

(11.8) vUx,p)=\-}      £-
I   3*X2"   f      to     3Ti-p)Tin+l)

Their Wronskian, which we shall denote by tW(»«,y(x, p)), has the value

/3\2"'3
(11.9) WivqJix,p)) = 6XV-<»*M— J      .

The solution d3,3(x, p.) is of a markedly reduced and simpler form in the

special case in which p is a non-negative integer. The coefficients in the

formula (11.8) are then either indeterminate or vanishing, according as n is,

or is not, such as to make (»—p)/3 a nonpositive integer. To resolve the

indeterminacies the standard identities

sin 3wr)
- =1   +   2  COS 27T77,

sin XT?

(11.10)

r(r,)r(i-,) =-r^—,
Sin 7T7;

may be used. The formula (11.8) is therewith found to reduce to

iSnli   K.(„)

(11.11) »,(*,„) = x"  £ -r^7' for p. = 0,1,2, •• •,
y=o     (X2X3)'

the designation v3 having been introduced here to replace ^3,3, because the

solution is independent of q. It is clear that ^(x, p) is a polynomial in x and

in 1/X. The formula (11.11) in this case replaces the relation (11.5) as well as

the formula (11.8).

Through the relation (7.10) the forms that have been displayed relate to

the differential equation (1.1), as may be summarized in the following terms.

Theorem 5. A differential equation (1.1) admits, for each integer q, the set

of linearly independent formal solutions w,j(z), j= 1, 2, 3, whose formulas are

"wg,y(z)l
,   . , r»«.y(*, ")"

zv    (z)
(11.12) ',;')    = ii/(v,,) m*,') >

///. , Ldj.A^, ")J
Lwq,j(z)J

the functions vqjix, v) having the formulas (11.7) and (11.8), and being of the

asymptotic forms (11.2), (11.3), and (11.5). If v is an integer iin which case

v = p) the formal solution wq,$iz) is independent of q, and, when denoted by w3(z),

has the formulas
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~w3(z) "I

,., r»3(*, ")"
w3(z)

(11.13) „„     = Jf(*. v)   v3(x,v)   ,
W3 (Z) . ,

Lv3(x, v)J
Lw3 (z)_

the function v3(x, v) being given by the formula (11.11).

12. A first integral of the given differential equation. The expressions

wq,j(z, p.), i=l, 2, 3, together with any suitably differentiable function or

formal expression/(z), have a Wronskian V?(wqj(z, p),f(z)) which is repre-

sentable, in the standard manner, as a four rowed determinant. The deter-

minant which is the Wronskian of the functions vqj(x, p.), j= 1,2,3, is three

rowed, but can be supplied with a fourth row and column in which the com-

mon element is 1 and the others are 0. In terms of this representation the

relations (7.3)-(7.6) may be seen to insure the equation

(12.1) W(wq,j(z, p)J(z)) = L(f, v, p)WK,y(x, „))

in which

A(z,v) X~XB X~2C f

A'+apC       o-(A-xC) + \-lB'       \-lo-B+X-2C f
(12.2) L(f,v,p.)= .

XH(v,p) XJ(v,p) K(v) f"

X2apK+XH'   -X2x<tK+X((tH+J') Xo-J+K' f"

The derivative of the equation (12.1) is

(12.3) °W'(wq,j(z, p)J(z)) = L'(f, v, p)V?(vqJ(x, p)),

because the Wronskian on the right is independent of z, as may be inferred

either from the form of the differential equation (7.1), or from the evaluation

(11.9).
Now the Wronskian on the left of the equation (12.1) is formally differ-

entiable by merely differentiating those of its elements as are third deriva-

tives. And when that has been done, the result is unaffected by the replace-

ment of the consequent elements w"// and /"" by the respective expressions

£(wq,j(z, p.)) and £(f). Thus

I wq,i(z, p.)   wq,2(z,p)   wq,3(z,p) f(z)

W,  1 If,  2 Wq>3 f
(i2.4)    w'(wqJ(z,p),f(z)) =    *•        ?; :;       '    .

Wa.i w4l2 Wq,3 f

£(wq,i)      £(wq,2)      £(wq,3)      £(/)

This evaluation can be factored, by the use of the relations (7.3)—(7.6), in

the manner of the relation (12.1). A comparison of the result with the relation

(12.3) shows that
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A(z,v)       X-1F(z, i.) X-2C(z, v) fiz)

A' + o-pC   a(A - xC) + \~lB'   X^aB + X"2C /'
(12.5) L'(f,v,p) =

\Hiv,p)     \J(v,p) Kiv) f"

ySiiv,p)    \2S2iv,p) \Sziv,p) £(/)

Consider the relation (12.1), now, with v and any formal solution w(z)

of the equation (1.1) in the places of p and fiz). The Wronskian of w«,y(z, v),

j—1, 2, 3, and w(z) is constant with respect to z, because the equation (1.1)

involves no term in w'". It follows from this, that every formal solution of the

equation (1.1) fulfills a relation

(12.6) Liw, v, v) = c,

in which c is independent of z. The relation (12.6) is thus a "first integral"

of the given differential equation.

The expression Liw, v, v) is a differential form of the third order in w. By

(12.2) its coefficient of w'" is the determinant Doiv, v), whose formula is

A(z,v) X^B X"2C

(12.7) Doiv, p)    A' + o-pC   o-iA - xC) + X-'B'   X-'oP + X"2C   .

\H(V> p)       XJiv, p) Kiv)

It is verifiable at once that Doiv, v) is a formal power series in 1/X, the X-free

term of which is

(12.8) cxoa [icto — xyo)   + x/30].

That this term is nonvanishing over the z-domain is guaranteed by the

evaluation (9.11) and the nonvanishing character of c*o(z) and criz). The first

integral relation (12.6) is, therefore, nonsingular.

It will be seen directly, from the equation (12.1), that those, and only

those, formal solutions w(z) as are linearly dependent upon those of a set

wqjiz, v),j=l, 2, 3, fulfill the relation (12.6) with 0 in the place of c.

13. Has a complete set of formal solutions been derived? In the total set

of functions fl9,y(x, v), no more than three are linearly independent, since

they all solve the differential equation of the third order (7.1). Those with

any particular q are three and are linearly independent. It suffices, therefore,

to consider only those that are associated with a specific q. That fact is

projected through the formulas (11.12) to the functions wqjiz).

The differential equation (1.1) admits a formal solution of the form (3.1)

namely one which is a power series in 1/X with coefficients that are analytic

in z. It is pertinent to inquire whether such a solution may be linearly de-

pendent upon those of a set w9,y(z), j= 1, 2, 3. We shall press this inquiry

by exploring the consequences of the

Surros'moN. There is a formal solution w(z) which is a power series in 1/X
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with analytic coefficients, and which is a linear combination of the formal solu-

tions wq,j(z), j=l, 2, 3.

Let v(x, v) be defined in terms of the vq%i(x, v) by the combination which

gives w(z) in terms of the wq,j(z). Then w(z) and v(x, v) fulfill the system of

equations (7.3)—(7.5) with v in the place of p. The determinant of that system

is Do(v, v), which is obtainable from the formula (12.7). This was seen in

§12 to be a formal power series in 1/X with analytic coefficients, and with

the X-free term (12.8), which is different from zero over the z-domain. The

system is accordingly solvable for v(x, v), the solving formula being

w(z)     X"1P(z, v) X~2C(z, v)

(13.1) v(x,v)-   w'       <t(A - xC) + X-'P'    X-VP + X-2C   .
Do(v, v)

w"       \J(v, v) K(v)

From this it is to be seen that v (x, v) is also a power series in 1/X with analytic

coefficients, and, moreover, that the X-free terms of w(z) and v(x, v) have zeros

of the same order at z = 0. We shall inspect the conformity of this with the

differential equation (7.1).

The substitution of a power series in 1/X into the differential equation

(7.1) shows the series to be a formal solution if, and only if, it is a multiple

(with a multiplier that is independent of x) of the specific series

(13.2) ±^>
n=0     X    A

in which the values nn(v) are those given by the formula (11.6). The coeffi-

cients of this are not analytic if v is not an integer. In such a case, therefore,

the supposition above is untenable.

If v is an integer, the series (13.2) is found to be no more than a poly-

nomial in 1/X, in fact precisely the function v3(x, v) which is given by the

formula (11.11). It thus indeed does have analytic coefficients, its X-free term

being *'. The supposition relative to w(z) is therefore in this case endorsed,

the X-free term of w(z) having at z = 0 a zero of the order v. We may draw

consequences from this conclusion as follows.

An integral value of v implies, through (9.5), that v and p are the same.

The instances to be considered are, therefore, those in which the Theorems

2, 3, or 4 are relevant. If the Theorem 2 is relevant, the formal solution of the

form ascribed to w(z) is unique, except for a factor which is independent of z,

and w*(z) and w3(z) are both such solutions. In this case, therefore,

(13.3) w*(z) m Q(X)w3(z)

with a multiplier fl(X) which is independent of z.

If the Theorem 3 is relevant, there are formal solutions w*(z) and w„,*(z)

which are power series in 1/X. Of these the former one does not have the form
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inferred for w(z), since it has a X-free term which is not zero at z = 0. This is,

therefore, linearly independent of the solutions wqj(z). That in this case

wp,*(z) is a multiple of w3(z), can be inferred from the fact that a differential

equation (1.1) cannot have five linearly independent formal solutions. The

hypotheses of the Theorem 3 are thus incidentally shown to be consistent

only with an integral value of v.

If the Theorem 4 is relevant, the solution of the form (3.1) is effectively

unique. Therefore a relation (13.3), with w*(z) as given by the formula (6.8)

maintains. That, however, is possible if, and only if, the constant bn is zero,

since otherwise the X-free terms of w(z) and w*(z) do not have zeros of the

same order at z = 0. We must conclude from this, that when the Theorem 4 is

relevant and v is an integer, then the constant bx referred to by the theorem

is zero. The relation (13.3) then maintains.

We formulate our result as follows.

Theorem 6. A differential equation (1.1) is one for which the formal solu-

tions w*(z) and wqj(z), j = l, 2, 3, with any q are a complete (fundamental) set,

unless it is one for which v is an integer and either the Theorem 2 or the Theorem

4 is relevant.

Part III. Differential equations of the distinctive category

14. The existence of distinctive equations. The differential equations (1.1)

which are exceptional to the Theorem 6, and for which a complete set of

formal solutions has, therefore, not yet been derived, are those for which

(a) v is an integer, and

(b) the formal solutions of the type (3.1) with analytic coefficients

(14.1) are all linearly dependent upon one of them, and have initial

terms which vanish to the order v at the origin.

We shall designate the category of these differential equations (1.1) as the

distinctive category. An equation of this category has three linearly independ-

ent solutions wq,i(z), wq,2(z) and w3(z). A fourth remains, however, to be found.

It is, of course, pertinent to inquire whether, in fact, such equations exist.

That they do is shown by the following examples. To the first of these the

Theorem 2 is relevant, and to the second one the Theorem 4.

Example 1. Take the differential equation (1.1) for which

p(ZjX).(2 +  22)(1  +   22)2__Ji_,

(14.2) Q(z,X) = 6(z + z2)(l + 2Z)+(i + 2z)3x2,

144
R(z, X) = - 4(1 + 3z + 3z2)-

' (1 + 2z 4X2
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The limiting form (2.3) for this equation is

(z + z2)(l + 2z)2m" + 6(z + z2)(l + 2z)m' - 4(1 + 3z + 3z2)m = 0.

This has at z = 0 the exponents 0 and 1, and respective solutions

1 (z + z2) T   z + z2   "1 z + z2
M0(z) =-h 4<-} log     -   , Mx(z) = - ■

l + 2z ll + 2zj L(l + 2z)2J' 1 + 2z

Since only one of these solutions is analytic at z = 0, the differential equation

is one for which the Theorem 2 is relevant. The equations (3.4) are found to

be fulfilled by Un(z)=0, for » = 1, 2, 3, ■ • • . Therefore

z + z2
w*(z) = - •

1 + 2z

The formulas (8.2) and (8.3) give, for this differential equation, x = z+z2,

and o-=l+2z. Therewith the equations (7.14) are found to be fulfilled by

v = l, and A = l/cr, B = C = 0. The equation (7.1) with p= 1 gives v3(x, 1) =x.

By the formula (7.3), therefore, w3(z) =x/o, and this is identical with w*(z).

Example 2. Take the differential equation (1.1) for which

/        1 + z2       z\/ z        IV"1
,(,,X)„(, + _+-)(l + - + _)    ,

(.4.3) efeX)_(A+±)(1 + _L+_L)-',

1   / z 1\"1

The limiting form (2.3) for this equation is zm" = 0. This has at z = 0 the ex-

ponents 0 and 1, and the respective solutions m0(z) = 1, iii=z. Since these

solutions are both analytic, and the relations (6.7) are fulfilled with Oi = l,

&i = 0, the differential equation is one for which the Theorem 4 is relevant.

It is found that w*(z) = z + 1/X.

The formulas (8.2) and (8.3) give, in this instance, x = z, and a=l. There-

with the equations (7.14) are found to be fulfilled by v = \, A =B = \, C = 0.

The formula (7.3), with v3(x, l)=x, thus shows that w3(z) is identical with

w*(z).

15. A perturbation of the given equation. The differential equation (1.1)

with which we are now concerned is one with the features (14.1). We propose

to consider in place of it the differential equation which is formally solved by

the expressions w(z, p.) given by the formula (7.3) with

(15.1) p = v + — ,
Xs
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e being a parameter which is numerically small and free to approach zero as

a limit, and 5 being a positive integer whose specification we defer. To begin

with, we shall determine the form of that differential equation.

By the formulas (7.7) and (7.9), the expressions H(v, p) and J(v, p), and

therefore Sj(v, p),j=l, 2, 3, are polynomials in p, all but Si(v, p) being linear,

and that quadratic. Because the equations (7.14) maintain, in virtue of the

determinations of v, A, B and C, it follows that

e e2

s&>ti = t^ •*!,, + — Si,2,

(15.2) S2(v,p) = — St.i,
X"

e
Sa(v, p) = — 53,i,

Xs

each symbol S,-,,- signifying a formal power series in 1/X with coefficients that

are analytic in z.

From the system of equations (7.3), (7.4), (7.5), and (7.8), the functions

u(x, p), i)(x, p) and v(x, p) can be eliminated. The eliminant relation is

(15.3) L'(w(z,p),v,p) =0,

the left-hand member of this having the formula (12.5). The expressions

w(z, p) thus formally solve the differential equation

D0(v, p)£(w) + Di(v, p)w" + D2(v, p)w' + D3(v, p)w = 0,

namely, on account of (2.7), the equation

(15.4) w"" + X2JF(z, X, p)w" + Q(z, X, p)w' + R(z, X, p)w\ = 0,

in which

Di(v, p)
P(3,X,p) = P(z,X) + ———,

X2D0(v, p)

D2(v, p)
(15.5) Qiz, X, p) = Qiz, X) + ——- ,

X'Doiv, p)

Dz(v, p)
Riz, X, p) = R(z, X) + ——- •

X2Doiv, p)

Diiv, p) is, of course, the cofactor of the element in the (4 — i)th row and

fourth column of the determinant in (12.5).

Because of the evaluations (15.2), and the fact that Hiv, p) and Jiv, p)

are polynomials in e, it is found that
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€ €2

Do(v, u) = Da(v, v) + — Do.i + — Z>0.»,

e e2
Di(v, p) = —— Di.i + —— DU2,

Xs"1 X2"

D2(v, p) = — Z>2,i + -4-: D2,2 + — - Z?2>3,
X""2 X2"-1 X3s

D3(v, u) = -^— D3,i + -f- D3,2 + -f— D3.3,
X""2 X2'"2 x38-1

each symbol Dij signifying a formal power series in 1/X with coefficients that

are analytic in z. Moreover, the X-free term of D0(v, p) is the function (12.8),

which does not vanish anywhere in the z-domain. The formulas (15.5) thus

have, more explicitly, the structures

e e2
P(z, X, u) = P(z, X) + -p(z, X) + — <?(z, X, e),

(15.6) Q(z, X, p) = Q(z, X) + 4- q(z, \)+4r «(*> X> £)>
X* X"

€ e2
R(z, X, p) = R(z, X)+— r(z, X) + —- (R(z, X, «),

X' x2s

in which

p(z,x) = Y~-> po(z)=-0,
n=0      X"

A   Qn(z)

n-0      X"

r(z, X) = 2-, ——'
n-0     X"

the functions pn(z), qn(z) and rn(z) being analytic, and (P, Q and (Jt being

formal power series in 1/X whose coefficients are analytic in z and in e.

The differential equation (15.4) manifestly reduces to the given equation

(1.1) when e—*0, namely when p—*v. It is of the same type as (1.1), and there-

fore has a solution w*(z, p) which is of the type (3.1) and reduces to the solu-

tion w*(z) of the equation (1.1) when p—>v. By construction it has the formal

solutions wqj(z, p), j=l, 2, 3, which reduce to the solutions wq,j(z) of the

equation (1.1) when p—>v. It is not of the distinctive category when e^O,

for in the formula (7.3) which solves it p has the nonintegral value (15.1).

For it, therefore, the expressions w*(z, p) and wq,j(z, p),j= 1, 2, 3, are a com-
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plete set of formal solutions. We shall call the equation (15.4) the perturbed

equation.

16. A solution wtli(z) of the given differential equation. For a differential

equation (1.1) of the distinctive category, such as we are presently consider-

ing, a relation (13.3) maintains, and may be taken to define the multiplier

fi(X). That this multiplier is a formal power series in 1/X, follows from the

fact that it is independent of z, whereas at a point z which is near but not at

the origin both w$iz) and w+(z) are such series with X-free terms which are

different from zero.

Consider the perturbed equation, namely the Equation (15.4) with pj*v.

It has solutions w*(z, p) and w3.3(z, p.), and therefore also the solution

Vw*(z,p) - n(\)wg,i(z, p)~\

The limiting form of this as p—>v is a solution of the equation (1.1), and

evidently has the form

(i6.i)      x-r^^  - 0(x)dwUz>m)I 1
L      dp       „_v dp       Ip-J

The relation (15.4) with XI_sw*(z, p) in the place of w, is a formal identity

in z, X and p. Its derivative with respect to p has, at p = v, the form

(dw*(z, p)\     \ , ,
X1"8-       ) + Xi-°{piz,X)wi'iz) + qiz,X)wiiz)+riz,X)w*iz)} =0,

dp        I p=„/

in which the coefficients are those of the formulas (15.7). Thus

X1_83w*(z, p)/dp |p=„

is a particular solution of the nonhomogeneous differential equation

(16.2) £(F) = - Xs-*{piz, X)wJ'iz) + qiz, X)w*'(z) + r(z, X)w*(z)} ■

Let F»(z) be any formal solution of this differential equation. The differ-

ence

dw*iz, p)
(16.3) F*(z) - X1- --?—

L dp        p=„_

is then a formal solution of the "reduced" homogeneous counterpart, namely

of the equation (1.1), and since the expression (16.1) is also such a solution

the sum of these two expressions, which we shall denote by wq^iz), is simi-

larly so. The formula

dwq,aiz, p) I
(16.4) «V„(z) = F*(z) - X'-O(X)

dp I „=,„
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thus yields a solution of the given differential equation (1.1).

Our reason for preferring the solution (16.4) over the more immediately

derived one (16.1), lodges in the fact that the term dw*(z, p)/dp\ll_r of the

latter depends upon a determination of w*(z, p) as that particular formal

solution of the equation (15.4) which reduces, when p—>v, to the particular

w*(z) which enters, through (13.3), into the determination of fl(X). The ex-

pression V*(z), by contrast, is not subject to such a boundary condition,

but may be taken as any convenient formal solution of the differential equa-

tion (16.2).

17. A determination of V*(z). The expression V^(z) has been prescribed

to be a formal solution of the differential equation (16.2). Let it be taken in

the form

(17.1) Mz) = Z^.
n=0        X"

By this, along with (3.1), the equation (16.2) is formally fulfilled if for each n

(17.2) P0F„"   +  QoVn'   +  RoVn   =   -   K(V)   -   \)n(U),

with hn(V) as given by the formula (3.3), and with

\)n(U) = 0, for n < s - 1,

(17.3) "+2rs .       „ , ,
t)n(U) =   Y  \pjU„+i-,-j + qjUn+is-j + rjUn+1-.-j),   for n ^ s — 1.

J=0

In the manner of §3, it follows that with

r   udi)n(U)
(17.4) 3Cn(U,u) =  \    -dz,

J — Po

the solving formula is

r   Hn(V, u) + SCn(U, u)
(17.5) Vn(z) = u(z) I    -dz + c,*uo(z) + k*u,,(z),

J u2d

c* and k * being constants of integration. We shall show that with these con-

stants suitably disposed the functions Vn(z) are analytic.

To a differential equation of the distinctive category either the Theorem 2

or the Theorem 4 is relevant. We must consider these cases separately, and

shall take them in turn. For a differential equation (1.1) to which the Theorem

2 is relevant, let the relation (15.1) be adopted with s— 1. With the use of the

formula (2.5), and with u(z) =u„(z) and k„* = 0, the formula (17.5) assumes the

form

(17.6) Vn(z) = u„(z)-dz.
J u29

p
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On the basis of this it can be shown, in the manner of §5, that with a suitable

choice of c* the function F„(z) is analytic.

A differential equation (1.1) to which the Theorem 4 is relevant has ipso

facto a positive integer N associated with it by the relations (6.7), and when

it is of the distinctive category, then &# = 0. Let the relation (15.1) be adopted,

in this case, with s = N+l. We shall consider the relations

(17.7) Fy(z) = Ay(z) + £ {ct*tJL%) + k^-iiz)} ,
i-0

in which $„(z) and ^n(z) have the formulas (6.1), and

Ao(z) =■ 0,

(17.8) r   Py(A, «„) + 3Cy(t/, «0) - a* log z       .
Ay(z) = «0(z)  I->    j = 1, 2, 3, ••• ,

J u\fi

the constants a* being those for which the functions (17.8) are analytic.

That such constants exist is demonstrable in the manner of §6. It is readily

seen that Ay(z) =0, and of = 0, for j<N.

The relation (17.7) is valid when j = 0. Suppose it to be so when j<n.

Then, by the lemma of §4,

n-l

HniV, Mo)   =   H„iA, «0)   +   E   {<*#«-<(*,«<>)  + k*Hn-ii*, «o)) ,
i = 0

whereas, in virtue of this and the relations (6.1) and (17.8), the formula

(17.5) assumes the form

n

Vniz)   =   A„(Z) +  £  {C^n-iiz) + kfVn-iiz)}
«—0

+ {a„* + £ [c*a„-ii + k?b„-i] > «0(z)  I    —r~dz.
i       ,--o )       J    u\e

This reduces to the relation (17.7) with j = n, and thus establishes these

relations for all j, ii the constants c* and k* are assigned values which fulfill

the equations

n-l

(17.9) a* + Z [cto-4 + k*bn-i] = 0, n = 1, 2, 3, • • • .
1=0

Because ay = 6y = a* = 0 for j<N, this system of equations (17.9), whose solu-

tion values cf, k* yield analytic determinations of the functions V„iz), can

be alternatively written

(17.10) £ {a/n-i + bjkl-i] = - a*H, n = N, N + 1, N + 2, • • • .
i-N
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18. The form of the solution wqA(z). The formula (16.4) involves the

/^-derivative of the expression wq,3(z, p), whereas the formulas for this latter

are found from (7.10) to be

- d
— Wg.3

dp rd
-  »«,3

d     , dp
— w,,3 ^ rvq,3-

(18.1) M =M(v,p)   — vt,3   +M2(v,p)   vq,3
d     „ dp

— wq,3 Lvq,3_
dp                                      d

8     ,„ Ldp        J
— W4,3

Ldp J

with

(18.2) M2(v,p)=—M(v,p).
dp

We therefore turn our attention to the function vq,3(x, p), writing its formula

(11.8) so as to display its dependency upon p thus,

(3XVY
(18.3) vq,3(x,p) = C^ZgnGu)     ,  ',       >

n_o 3Y(n + 1)

with

(18.4) Gq = 3-1'3X-2/3e2(»-1)"i'3

and

(18.5) gB(M)==r(^^Wr(-M).

The differentiation with respect to p, coupled with the fact that vq,3(x, p)

reduces to v3(x, v) when p assumes the integral value v, yields the evaluation

d
(18.6) — vq,3(x, p)        = v3(x, v) log G„ + yq(x),

dp „_„

with

„ A (3A2'3)"
(18.7) yq(x) = GqY gn1 M    "       ,'   •

n-0 3r(M +  1)

The formula (18.5) is disadvantageous for the evaluation of gn(v), be-
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cause it gives an indeterminate result. It may, however, be alternatively writ-

ten as

_-r<1 + „)r(^)^,

"M - <-"-r" + '> ll + 2m2JtrJL)\,
{      T(l + (p - n)/3) \ \    3    ))

by virtue of the identities (11.10). From these formulas it is found that

(n — v\
= (-i).+ir(i + ,)r(——),

n — v
when -^ 0, -1, -2, ••• ,

(,8'8)    S-W i,        «! + .)        )
= 3(-l)»— {-\,

dv \ r(i + (v - »)/3) /

n — v
when - = 0, —1, —2, •■• .

3

For values of arg (Xx3/2) to which the relation (11.5) pertains, it is to be

seen that

d
— vg,t(x, p)        ~ v3(x, v) log x + rto(x),
dp ,,=»

d
(18.9) — *,.,(x, p)        ~ *,(*, v) log x + vi(x),

dp „=,

d
— $<1.3(X, P-) ~ J'3(-V,  >0   log X + T)2(x),
dp                            „_

with

A   «/ (,)
i|o(j) = x" Y r-r- '

„=o  (XV)"

"    K.W + (»- 3w)k„»
(18.10) „(*) = x-1 Z —-— >

nTo (X2X3)«

-   (2v - 6« - 1K« + (r - 3»)(» - 3m - IK' (*)
n2(x) = x" 2 y_-•

n=0 (X2X3)"

The formula (11.6) is suitable for the calculation of nn' (v) when 3n^v,

but is otherwise advantageously replaced by the alternative
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/    ,, ^, T(l + P)r(3» - m) sin/iTr
Knip)   =   (~1)"+1-•

3vr(» + 1)

It is thus found that

f 1 d   (      Til + v)      )
=-<-> , when 377 ̂  v,

(18.11) k„»        3T(w + 1)   dv (r(l + v - in))

.= (-l)'+"-13-'ir(l + v)T(3n - v), when 3n > v.

The right-hand member of the relation (18.1) at p = v is shown by the

formulas (18.6) and (18.9) to have the form

"d3(x, v)~\ Vyqix)'

[Miv, v) log Gq + M2iv, v)]   vt(x, v)   + M(v, v)   yQ(x)

.h(x, v)J Ly,(x).

and to have the asymptotic form that is obtainable therefrom by replacing

Gq, y(x), yix) and y(x) respectively by x, 770(x), 771 (x) and ti2(x). We may for-

mulate the conclusion to be drawn from these results together with the formula

(16.4) thus:

Theorem 7. A differential equation (1.1) of the distinctive category admits,

for each integer q, a formal solution wqAiz) whose formulas are

"wfl,4(z)l      TF*(z) "I

'   t\ ir'rs P3(x' v>
w„Az) V*(z) r

, = - X'-«fi(X)[Jlf (v, v) log GQ + M2(v, v)]   v3(x, v)
w«,«(z) V*(z)

,,,,. ..,„,. Lvi(x,v)J
Lwq,i(z)j LF* (z)J

"?«(*)"

-X^QiX)Miv,v)   yq(x)   .

-%ix).

In the domain

(q - 2)ir + eo ^ arg (Xx3'2) g ?tt - ce,

the asymptotic formulas obtainable from (18.12) by writing x, -no(x), vi(x) and

v2(x) in the places of Gq, y(x), y(x), and y(x) respectively maintain. The equation

also has the formal solutions wq,i(z), wq,2iz) and w3(z) described by the Theorem 5.

Part IV. The construction of a related equation

19. Truncations of the formal solutions. The formal solutions that have

been derived for the differential equation (1.1) all involve power series in

1/X which are in general divergent. They are, therefore, not functions, and

hence not actual solutions. Functions are obtainable from them by the trun-
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cation of their infinite series, but these do not fulfill the differential equation.

We shall show, however, that if the truncations are appropriately made the

resulting functions do fulfill a differential equation which is of the same type

as (1.1), and which has coefficients that coincide with those of the equation

(1.1) to the extent of all terms to prescribed degrees in 1/X. This differential

equation—which we shall call the related equation—is solvable, since it is,

in fact, derived from explicitly known solutions.

The construction of a related equation has been found, for whole classes

of linear differential equations, to open the way to a determination of the

asymptotic solution forms. Analytic method is available for showing that the

resemblance between the two differential equations insures a corresponding

resemblance in appropriately associated solutions(6).

Let m he chosen as a positive integer which exceeds a value later to be

specified. Except for this condition, the choice may be made at pleasure; in

particular m may be taken arbitrarily large. The effect of replacing the ele-

ments Un(z), vn, <xn(z), Bn(z) and 7n(z) for which n>m by zeros, is to truncate

the infinite series in the formulas (3.1), (7.12) and (7.13) at their terms in

(1/X)"1. We shall make these truncations, and shall distinguish the functions

which are thereby obtained through the use of the superscribed accent ^,

thus

A    Un(z)
(19.1) ^(S) = ]£_LL,

n=0        X"

m      v

(19.2) v(z) = Yr1
n-0    X"

and

At        \ V   an(Z)
A (z, v) = Y —— '

71=0 A"

A Bn(z)
(19.3) B(z,v)^Y^'

n=0       X"

rt     \      V yMC(z,v) = Y ——
n=0       X"

The functions wq,j(z, p),j=l, 2, 3, H(v, p),J(v, p), K(v), Sj(v, p),j=l, 2, 3,

the matrix M(v, p), and the determinant L(f, v, p), shall be those that are

obtainable from the respective formulas (7.3), (7.7), (7.9), (7.11) and (12.2)

by the replacements of A, B, and C by A, B and C. It is found that

(5) The paper [l j includes this analysis for differential equations (1.1) except those of the

distinctive category.
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~?*Vy(z, p)~| _      .      ._
.    , , [Vgjix, P)

Wq y(Z, p)
(19.4) „ - M(y,p)   !>9.y(x, p)

ws,y(z, p)
.„,      , L^,y(x, p)J

Lw8,y(z, p) J

and

(19.5) £(<&,,,■(*)) = X2Si(y, v)vqJix, v) + X2S2iv, *)%,(*, P) + X53(r, 0)f,,y(x, P).

Also, it may be drawn from the relations (12.1) and (12.3) that

V?iwqJiz,p),fiz)) = Lif, v, p)V?ivqJix, p)),
(19.6)

-W'iwqjiz,p),fiz)) = L'(f, v, p)-W(vq,,(x, p)).

The function X_2Z(7i»*, v, v), which is thus obtainable from the formula

(12.2), is a polynomial in 1/X which coincides to the extent of its terms to

the wth degree in 1/X with the terms of the formal power series \~2L(w*, v, v).

This latter, by (12.6), is independent of z. It follows that the first (m + 1)

coefficients of the polynomial \-2L(w*, v, v) are constants.

20. The related equation in the general case. When the formal solution

w+(z) is linearly independent of wq,%(z) it fulfills the first integral relation

(12.6) with c different from zero. There is accordingly an integer 7W0 such that

°°       Cn

(20.1) X~2L(w*, v, v) = 52 —' with cm<> ^ 0,
n=mQ A

and m0 is hereby determined. We shall impose upon the choice of the integer

m the condition that m>ma. It follows then that

™    cn      E(z, X)
(20.2) X~2L(w*, v,v)= Z - + —77- >

with E(z, X) denoting a function that is bounded over the z-domain when

|X| is sufficiently large(6). It follows that

(20 3) V{ih*, "' P) = E(Z' X) •

L(w*, v, v)       Xro-m°+1

Consider the relation

W'iWgjiz),   W^Z))
(20.4) W'(A,y(z), w) - —^yf—7^ W(^,i(z), w) = 0.

W(*,,y(z), W*(z))

It is a linear differential equation of the fourth order, and is seen at once to

be fulfilled when w is taken to be any one of the functions &*(z), or il»,,y(z).

(°) We shall henceforth use the symbol E(z, X) as a generic designation for functions that

are so bounded.
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It is, therefore, the differential equation of which the functions w*(z) and

wq.j(z), j=i, 2, 3, are a complete set of solutions. We shall show that it is

of the type (1.1) and that it has coefficients which coincide with those of the

equation (1.1) to the terms of the (m — m0)th degree in 1/X.

By use of the relations (19.6) the equation (20.4) is immediately reducible

to the form

L'(w*, v, P)
(20.5) L'(w, v, P) - -y- L(w, v, P) = 0.

P(w*, v, P)

Its independence of q is hereby clearly shown. The function Sj(v, i>) and the

respective formal expression Sj(v, v) coincide to their terms in (1/X)m, and

the latter vanishes, as is shown by (7.14). Thus

E(z, X)
(20.6) Sj(v, P) = ——- , j= 1,2,3,

Xm+1

whereas by virtue of this it may be drawn from the truncated formula (12.5)

that

(20.7) L'(w, v, P) = D0(v, i»){£(w) + X'^XEw" + X2Ew' + X2Ew]}.

The truncated formula (12.2) yields

(20.8) L(w, v, P) = D0(v, P){w'" + XEw" + X2Ew' + X2Ew}.

The related equation (20.5), after division by Do(v, P), is shown by the

evaluations (20.7), (20.3), and (20.8), to have the form

1
(20.9) £(w) -\-\Ew'" + XEw" + X2Ew' + X2Ew\ = 0.
v -yn— mo+1

That its coefficients coincide with those of the given differential equation

(1.1) to terms of the order of (1/X)m_m» has thus been established.

21. A related equation in the case of the distinctive category. For a

differential equation (1.1) for which v is an integer and the formal solutions

w*(z) and w3(z) are linearly dependent, the formal solution wq,t(z) with the

formula (16.4) has been derived. This fulfills the first integral relation (12.6),

namely

(21.1) L(wqA, v, v) = c

with a right-hand member c that is independent of z and is not 0. We are

interested in the form of c as it depends upon X.

By virtue of the formula (16.4), it is seen directly that

(21.2) L(wqMv,v) = L(V*,v,v) - \i-n(X)Lf X- -wq,3(z,p)\     , v A
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From the equation (12.1) it can be inferred that the relation

(21.3) L(wttiiz, p), v, p) = 0,

is an identity in p. The derivative of this identity yields the fact that

L\ \— wq,3(z,p)\     ,v, v)+   — L(w3(z),v, p)\       =0,
\Ldp JM=,       /      Lop _!„=,.

whereas hereby the evaluation (21.2) is made replaceable by

(21.4) L(wqA, v, v) = L(V*, v, v) + V-QQ) |~— L(w,(z), v, M)l      .
Lop J u~,

Now w3(z) is a formal power series in 1/X, and by consequence of that

\~2L(w3(z), v, p) is also such a series, the coefficients of which are polynomials

in p. The element \-2[(d/dp)L(w3(z), v, p)]„=„, as well asX~2P(F*, v, v) and

XI_sfi(X), is thus a 1/X power series. By (21.4), therefore, a more explicit

form of the equation (21.1) is

°°       Cn

(21.5) X~2L(wq,i, v,v) =>   £ — ; with cm„ j* 0,
n=mo A

and by this the integer m0 is defined.

For each differential equation (1.1) of the category now in question an

integer 5 was defined in §17. The condition we shall impose upon the trunca-

tions signified by the formulas (19.1)—(19.3) shall be that m exceed both m0

and s. With such an m we shall designate by V*(z) and 0(X) the truncations

of the formal power series F*(z) and Q(X) at their terms in (1/X)m, and shall

define the function wq,i(z) by the formula

(21.6) wqA(z) = V*(z) -\l-Q(\)\— wg.3(z,p)]     .
Lop J a=y

The relation that is obtained from (21.3) by the replacement of L and

wq,3 by L and w„,3 is assured by the equation (19.6). From that, and the

formula (21.6), we may derive, in the manner of (21.4), the evaluation

(21.7) Liwq,h v, v) = Li?*, v, v) + X1-«0(X) |~— LiwUz, v), v, p)~]      .
Ldp J „_

The functions F*(z), wq,3(z, v) and Q(\) are polynomials in 1/X which coincide

with the formal series V*iz), w3(z) and fl(X) to their terms in (1/X)m. Because

of that the right-hand members of the relations (21.4) and (21.7), when they

are multiplied by X-2, similarly coincide. In accordance with (21.5), therefore,

™      Cn P(Z, X)
(21.8) A-2/.(«y W ) = £ -+—TT-
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whereas from this it may be concluded that

L'(wq,t, v, v)       E(z, X)
(21.9) „ —-^— ■

L(wqA, v, v)       X'-'-'oo+i

We may proceed now as in §20. The differential equation

L'(w0,i, v, v)   „
(21.10) L'(w, v, v) - -j-- L(w, v, v) = 0,

L(wq,i, v, v)

is of the fourth order, and is solved by each of the functions w3(z) and wq,j(z),

7 = 1, 2, 4. The evaluations (20.7) and (20.8), combined with (21.9), show it to

have the form (20.9). It is a related equation.
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