
AN ANALYSIS OF THE WANG ALGEBRA OF NETWORKS^)

BY

R. J. DUFFIN

1. Applications of Wang algebra. An algebra with the property that

(1) x + x = 0   and   x-x = 0

for each element x of the algebra is termed a Wang algebra. This algebra

gives a very interesting method of determining the basic functions associated

with an electric network. (These functions are termed discriminants.)
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The application of the Wang algebra to networks can be illustrated by the

problem of the joint resistance of the Wheatstone bridge. The diagram of the

Wheatstone bridge network is shown in Figure 1. The letters a, b, c, d, and k

designate the five branches of the network. The numbers 0, 1, 2, 3 designate

the four junctions of the network. The problem of interest is the determination

of the current J flowing when a battery of potential difference E is connected
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between junctions 0 and 1. By Ohm's law E — IR where R designates the

joint resistance of all the branches between junctions 1 and 2.

A star of a network is defined as the branches meeting at a given junction.

Thus the star at junction 3 consists of the branches a, c, and k. Let the

branches of the network be regarded as independent generators of a Wang

algebra. A star element of the algebra consists of the sum of the associated

branches. Thus the star element at junction 3 is a+c+k. The element 5i is

defined as the Wang product of all star elements except those at junctions 1

and junctions 0. The element 5 is defined as the Wang product of all star

elements except one. (It makes no difference which one is omitted.) Then the

joint resistance R between junctions 0 and 1 is symbolized by

5i
(2a) R = — •

5

Here 5i and 5 are to be simplified by carrying out the indicated operations

and making use of the Wang rules (1). After that the Wang algebra is

dropped; the resulting polynomials are considered to be ordinary polynomials,

and the symbols a, b, c, ■ ■ ■ , etc., are taken to be the conductances of the

corresponding branches. (In the trivial case when there are only two junc-

tions, 5i is to be given the value 1.)

Formula (2a) can be illustrated by the application to the network of

Figure 1. First Sx = (b+d+k)(a+c+k). Carrying out this product and mak-

ing use of the Wang rules (1) gives

5i = ab + be + bk + ad + cd + dk + ak + ck.

Next S=(a+b)Su so again making use of the Wang rules gives

5=0+ abc + abk + 0 + acd + adk + 0 + ack

+ 0 + 0 + 0 + abd + bed + bdk + abk + bck.

Here the terms abk cancel by (1). Substituting in (2a) gives

ab + be + bk + ad + cd + dk + ak + ck
(3) R =-

abc + acd + adk + ack + abd + bed + bdk + bck

That this is correct can be checked by solving the Kirchhoff equations.

In the present case it is convenient to do this by expressing Kirchhoff's first

law (the net current entering a junction point vanishes) at the junctions 1, 2,

and 3. This gives three equations in the potentials E, E2, and E3 of junctions

1, 2, 3 relative to junction 0.

7 = (a + b)E - b E2 - a E3

0=      -bE+(b + d + k)E2 - k £,

0=      - a E - k E2+ (a + c + k)E3.
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The application of Cramer's rule yields (3). In fact 5 is precisely the deter-

minant of these equations. This determinant expressed as a function of the

conductances of the branches is termed the discriminant of the network.

The Wang algebra may be used to evaluate any symmetric determinant.

It is simply necessary to make a substitution to transform the determinant

to network type. For example to evaluate

e'   b     a

S=    b    d'    k

a    k     c'

let — e = e' +a+b, — d = d'+b+k, and —c = c'+a-\-k. Then 5 is obtained by

forming the Wang product

-S = (a + b + e)(b + k + d)(a + k + c).

Carrying out this product according to (1) gives the determinant S expressed

as a function of a, b, k, c, d, e.

The rules (1) were originally proposed merely as a short-cut method and

not as an algebra; see K. T. Wang [l]. Wang's method has been studied by

several writers [2; 3; 4; 5; 6]. The method just given here is somewhat differ-

ent from that of Wang. The difference will now be brought out.

Wang's treatment is based on meshes rather than stars. A mesh is a set of

branches which forms a simple closed circuit. For example branches (A, B, K)

form a mesh of the network of Figure 1. Here we use capital letters in place

of small letters to designate the branches in order to avoid confusion with the

previous method. The sum of the mesh (A, B, K) and the mesh (C, D, K)

under addition mod 2 is manifestly the mesh (A, B, C, D). A set of meshes

is said to be a basis if they are independent under addition mod 2 and if any

mesh can be expressed as a sum of the meshes of the basis under addition

mod 2 (see [19]). In the network shown (A, B, K) and (C, D, K) form a basis

because (A, B, C, D) is the only other mesh.

Again a Wang algebra is set up with A, B, C, etc., as independent gener-

ators. A mesh element of the algebra consists of the sum of the branches of a

mesh. Then the joint resistance between two junctions is symbolized by

Mi
(2b) R = — •

M

Here M is the Wang product of a basis of mesh elements and Mi = MP where

P is the sum of any branches forming a path between the junction 1 and junc-

tion 0. The indicated operations are carried out and the expressions are

simplified by use of the Wang rules (1). After that the Wang algebra is

dropped and the resulting polynomials are regarded as ordinary polynomials.

The symbols A, B, C, etc., are interpreted as resistances of the associated

branches. (In case there are no meshes we take M=\.)
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For example in the network of Figure 1

J17 = (A + B + K)(C + D+ K)

= AC + AD + AK + BC + BD + BK + CK + DK.

We can take 17i to be (A+C)M. Clearly then

ABC + ABD + ABK + ADK + ACD + BCD + BCK + CDK
(4) R =-

AC + AD+AK+BC + BD+BK + CK+ DK

Now resistance and conductance are reciprocals; thus aA=l, bB = l, etc. If

these relations are employed it is seen that (3) and (4) agree. It is of interest

to obtain (4) directly from the network equations which express Kirchhoff's

second law (the net potential difference around a mesh vanishes). Thus

E = (A + C)I -Ah -C I3,

0=        - A I + (A + B + K)Ii - K /,,

0=        -CI - K Ii+ (C+ D+ K)I3.

Here 72 is a mesh current in mesh (A, B, K) and I3 is a mesh current in mesh

(C, D, K). It can be easily checked that Ifi is the determinant of these equa-

tions and that If is a principal minor determinant.

The determinant 17 expressed as a function of the resistances of the

branches is termed the complementary discriminant. The following identity

holds between the discriminants

(5) S(a, b, c, d, k) = abcdkM(ar\ br1, c~\ d~\ k'1).

An analogous relation holds for 5i and Mx- It is easy to check that relation (5)

holds for the network of Figure 1. Thus bed is a term of 5, and 17 has the

complementary term AK.

We have seen that any symmetric determinant can be written as a dis-

criminant 5. By use of identity (5) it follows that a determinant may also be

evaluated by the Wang algebra applied to the complementary discriminant

M.
It is also of importance to have expressions for the potentials of other

junctions of the network. If £2 is the potential of junction 2 relative to junc-

tion 0, then the voltage ratio is

Ei     5iPi52      MxC\Mi
(6) — =-= —-

E Sx Mx

Here 52 is the product of stars omitting junctions 0 and 2, and 5if^52 means

the terms common to the polynomials 5i and 52. Clearly

52= (a + b)(a + c + k),

so
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S2 = ac + ak + ab + 6c + 6&,

and

£a _ a£ + ab + Jc + *A

E      ab + be + bk + ad + cd + dk + ak + ck'

The derivation in terms of mesh discriminants Mi and M2 is analogous.

Formulae (2a), (2b), and (6) are seen to furnish a complete solution to the

network problem.

A cotree of the network of Figure 1 is a set of two branches which when

removed leave no meshes. For example (A, K) is a cotree. It was proved by

Kirchhoff in 1847 that the terms of the mesh discriminant M are simply the

cotree products. Kirchhoff's work has been amplified by Franklin [17]. A

tree of the network of Figure 1 is a set of three branches which connect all

junctions. For example (b, c, d) is a tree. It was proved by Sylvester that the

terms of the star discriminant 5 are simply the tree products. Sylvester

termed S an unisignant determinant [7]. Sylvester's work was contemporane-

ous with that of Kirchhoff, but he did not seem to be aware of the connection

with electric networks. Long afterwards, in an appendix to Maxwell's treatise,

J. J. Thomson discussed the formation of S by tree products [8, p. 409].

Viewed in this light the Wang algebra is a systematic algebraic method for

finding the trees or cotrees of a network.

2. Limitation and extension of Wang algebra. This paper gives an analysis

of why the Wang method works. In particular the rules just stated will be

proved. This analysis sheds new light on the properties of network dis-

criminants; possibly this is of more importance than the proof of the rules.

To understand the limitations of the Wang trick we now consider systems

more general than the classical networks treated by Kirchhoff. Such systems

can arise by imposing constraints in addition to those imposed by Kirchhoff's

laws. For instance, in the example considered above, suppose that the con-

straints E3 = 2E2 is assumed. This constraint could be achieved by the use

of an ideal transformer having a two-to-one step-up ratio. The diagram of the

network is shown in Figure 2. Thereby the potential difference from 3 to 0

is maintained twice that from 2 to 0. The current entering the coil at 2 is

twice that leaving the coil at 3. Because of the constraint the variable E3

may be eliminated from the network equations. Carrying out the elimination

yields

I = (a + b)E - (b + 2a)£2,

0 = - (b + 2a)E + (b + d + 4a + 4c + k)E2.

The determinant S(a, b, c, d, k) of these equations is again termed the dis-

criminant. Evaluating this determinant

S = ab + bi + ad + 4ac + ibc + ak + bk.



19591 AN ANALYSIS OF THE WANG ALGEBRA OF NETWORKS 119

I

0

Fig. 2

Clearly 5 could not be directly given as a Wang product for the simple fact

that the coefficients are not all the same. It follows that there must be a

limitation to the Wang method.

A discriminant all of those coefficients are equal to one we term just.

It was pointed out by H. W. Becker (see reference [14]) that there are just

discriminants which do not come from classical Kirchhoffian networks. The

question thus arises as to whether or not a just dsicriminant can be directly

evaluated as a Wang product. An affirmative answer to this question is given

by Theorem 1 and Theorem 2 to follow.

It is of interest to give an example of a non-Kirchhoffian network to which

the Wang method applies. Consider a network whose branches are on the

surface of a torus. The branches are not allowed to cross except at a junction.

Then the network breaks up the surface of the torus into a number of regions.

Such a network is shown in Figure 3. Two additional constraints are to be

imposed on the current flow; no net current flow is permitted around the

straight axis of the torus, and no net current flow is permitted around the

circular axis of the torus. Then the current flow subject to this constraint can

be achieved by taking mesh currents only around regions. Then the mesh

discriminant M is obtained by taking the Wang product of all region meshes

except one. In the example shown in Figure 3 there are seven meshes in the

product.

This toroidal network is a special example of an interlinked electric and

magnetic network [15]. Thus the two constraints could be achieved by mak-
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Fig. 3

ing the circular axis a core of infinite magnetic permeability. Likewise the

straight axis would be a core of infinite magnetic permeability.

Before taking up the proof of Theorem 1 it is necessary to relate Wang

algebra to the well-known Grassmann algebra. In fact, Wang algebra is

simply the Grassmann algebra over the finite field mod 2. It will be shown

that any discriminant, just or not, can be evaluated by a trick like that of Wang

but using Grassmann algebra instead of Wang algebra.

3. Grassmann algebra. Let U be an re-dimensional vector space with

scalar multipliers from a field F. Let the vectors ei, e2, • ■ ■ , en be a basis for

U. Thus any vector u may be written

u = aiCi + a2e2 + • • • + anen.

The Oi are in F and are termed coordinates. This same basis will be used

throughout in what follows. By the introduction of an outer product U will

now be expanded into an algebra.

Let G be (2n — l)-dimensional vector space with scalar multipliers from

the field F. Let Eit i—1, 2, ■ ■ ■ , 2n— 1 be the basis for G. To convert G

to an algebra the £,• are given a multiplication table. Thus E{ fori = 1, 2, ■ ■ ■ ,n

serve as "generators" by the rules:

(7) EiEj = - EjEi.

(8) EiEi = 0.

With each integer i in the range n<i<2" we may associate a unique set of

positive integers i\, i2, ■ ■ ■ , im where ?re5:2 and ii<i2< ■ ■ ■ <im^n. This

follows from the binomial theorem (1 + 1)"= 23o nC Define
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(9) Ei = Ei.Et, ■ • ■ Ein.

It results from the rules (7) and (8) that the product of two or more of the

generators gives 0 or +£; for some i in the range n<i<2". Moreover, for

any j and k, EjEk is 0 or + £,-. It is seen that this multiplication table is

associative. Now any vectors in the vector space G may be multiplied to give

another vector in C7. Thus G is an algebra, a Grassmann algebra. (For the

present purpose there is no need to adjoin a unit element.)

Returning to the space U we may identify ef of U with E< of G for

i=l, ■ ■ ■ , n. Thus U may be thought of as generating the Grassmann alge-

bra G. To distinguish the elements of U and G the elements of U may be

referred to as vectors, and the elements of G may be referred to as multi-

vectors.

Let px, pi, ■ ■ ■ , pm be m vectors of U. Of especial concern in this paper is

the outer product of such a set

(10) -k = Pxpi ■ ■ • pm.

In the literature a multivector of type tt is termed "simple" or "decomposa-

ble." General multivectors are not of concern here, so iv is referred to simply

as an outer product (even if m = l). Each of the vectors pi is expressed in

terms of the basis, and the product in (10) is carried out and put in the

canonical form

(11) 7r = 23 did^ • • • eim;       »i <*«<••• < im.

Here the d,EF and are termed coefficients of the outer product. Naturally

the coefficients do not depend on the order in which the product is carried

out. Two outer products, tx and x2, are said to be equivalent if TTx — cwi where

c is a nonzero scalar.

The first two lemmas to follow are standard theorems of Grassmann alge-

bra; proof is supplied for the benefit of nonspecialists in geometry and also

to introduce concepts and notations needed later.

Lemma 1. A necessary and sufficient condition that a set of vectors be de-

pendent is that their outer product vanish.

Proof. If px, pi, ■ • • , pm are dependent, then one can be expressed as a

linear combination of the others, say p\=aipi+a3p3+ ■ • ■ +ampm. Thus

7r = (aipi + a3p3 + • • • + ampm)p2p3 • • • pm

2 2

= aipip3 ■ • • pm — a3pip3 • • • pm + • ■ ■ ■

Clearly each term vanishes because of a repeated factor.

Turning to the second part of the lemma, we suppose that px, p2, • • • , pm

are independent. Let
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n

pi — 22 kuej; kij E F.
1

Some coordinate of pi does not vanish, say /feu^O. Let pi =pi — bipi for

i = 2, 3, • ■ ■ ,m where bi — kn/kn. Clearly pi, pi, • • • , p'm are independent.

The lemma is obviously true for m = 1, so suppose it is true for the case m — 1.

Then Tr'=pip3  ■ ■ ■ p'm9^0. Consider

n

piw' = AnCiTr' + 22 kue,ir'.
2

Now it' is a product of vectors which have no d component; hence ein-'s^O.

For j = 2 clearly epr' can have no terms with ei as a factor. Hence piir'^0. But

Pnr' = pi(p2 — b2pi)(p3 — b3pi) • • • = pxp2 ■ • • pm.

Lemma 2. Let pi, p2, • • • , pm and qi, q2, ■ ■ ■ , qk be two sets of vectors of U,

both independent. Then these sets have equivalent outer products if and only if

they are a basis for the same subspace of U.

Proof. First suppose they span the same subspace. Take m = k. and

Pi= 2i°«2/; atjEF. Then

pip2 • • • pm = (22 ami)(22 avii) • • • ̂  o.

The qt satisfy the same rules (7) and (8) that the e,- satisfy. Thus if the right

side is multiplied out, each term would contain a repeated g,- factor if m>k,

and so the whole expression would vanish; this is a contradiction. Thus k = re*

and the right side reduces to ^igi^ • • • qm for some scalar A^O.

Now suppose the outer products are equivalent; then k = m and

pip2 ■ ■ • pm=Aqiq2 • • • qm where A 5^0. Let v= X,°»2<- Then by Lemma 1,

vqiq2 ■ ■ • qm = 0. Hence vpip2 • • • pm = 0. Again by Lemma 1, v— 22bipi- Thus

the two sets are a basis for the same subspace.

By virtue of Lemma 2 the subspaces of U and the inequivalent outer

products are in one-to-one correspondence. Thus we may speak of "the outer

product of a subspace"; there is no ambiguity except for a scalar factor. The

following two lemmas are special results suited to the needs of §4.

Lemma 3. Let ^die^e^ ■ • -eim be a canonical form of the outer product for

the subspace V.

(a) // dj = 0 there is a nonzero vector r of V such that

(12) r = £ am with Oh = a,2 = • • • = ajm = 0.

(b) // dj?*0 there is no such r in V. However, there is a set of vectors

r\, r2, ■ ■ ■ , rm with property (12) and such that

?i = «h + n, ?2 = ey2 + r2, ■ ■ ■ , qm = eim + rm

is a basis for V.
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Proof. A basis of this type will be termed a diagonal basis. For example,

if m = 3 and jx = 1, ji — 2, and j3 = 3, a diagonal basis has the form

qx = ci + 0464 + • • • + anen,

qi =        e2        + bid + • • • + b„e„,

q3 — e3 + dd + • • • + cnen.

To get on with the proof, formally replace all e,- by 0 except e,„ 6jt, • • • ,

ejm. In the space U this may be described as a projection of all of U into the

m-dimensional subspace J with basis ey„ e/„ • • • , e,„. In the space G this is a

projection into a subspace Cr. Inspection of the fundamental definitions

shows that Gj may be regarded as the Grassmann algebra over the space /.

The projected elements will be distinguished by a prime. Let px, pi, • • • , pn

be a basis for V. Then clearly p{p{ • • • p'm = djej1eji ■ ■ • ejm.

If dj = 0, then by Lemma 1 the pi are dependent, so 23^»7>< =0 and not

all the bi vanish. Let r= 23&'7'«> then r^O but r'=0. This proves the first
part of the lemma.

If dj9^0, it is clear by Lemma 1 that r' =0 implies all £>, = 0. The pi are a

basis for J, so e3l = 23^1.7'*'> e>j= 23&»P< > etc- Thus c?i = 23^»£.- etc» 's a
diagonal basis.

Lemma 4. 7/ a subspace V of U contains a vector v= 23c»e»' aw^ c.9^0, then

the outer product of V contains a nonvanishing term with e„ as a factor.

Proof. Let px, p2, • • • , pm be a basis for F chosen so that px=v. It is

sufficient to consider the case e, = ex. The second part of the proof of Lemma 1

then proves the statement of Lemma 4.

We now redefine the Wang algebra to be a Grassmann algebra over the

finite field mod 2. Now e,e,= — e,e< = eye,-, so the algebra becomes commuta-

tive. If x is any element of the algebra x+x = 2x = 0. Let x= 23*» where the

Xi are monomials. Note that for a monomial in any Grassmann algebra

x2 = 0, so

x =23*< + 22323 XiXj = 0.

Thus..* satisfies the rules (1), x+x = 0 and xx = 0.

The lemmas just proved hold, of course, for Wang algebra. There would

have been simplification in the proofs if it had been assumed from the outset

that F was the mod 2 field. However, this paper is also concerned with the

Grassmann algebra when F is the real field.

For other applications and developments of Grassmann algebra, see

Lichnerowicz [20], Bourbaki [21 ], S. MacLane [10], and Whitney [22J. A

matrix theory related to Grassmann algebra is given by Wedderburn [ll].

4. The notion of a just subspace. We say a vector is just if its coordinates

are restricted to the values +1, —1, and 0. A subspace is said to be just if

it has an outer product with coefficients restricted to the values +1, — 1, or 0.



124 R. J. DUFFIN [October

Such an outer product will be termed a just outer product. The following

theorem will be basic to the analysis of Wang's method.

Theorem 1. Let V be an m-dimensional subspace of a real vector space U.

A necessary and sufficient condition that V be a just subspace is that the just vec-

tors of V constitute an m-dimensional vector space under addition mod 2.

Proof. Let £/0 be the re-dimensional vector space over the finite field mod 2.

Let V, be the set of just vectors of V and suppose they constitute an Tri-

dimensional vector space under addition mod 2. This means that each ele-

ment of V, has an image in Z70 obtained by neglecting the signs of the co-

ordinates. (This may be a many-one correspondence.) Let Vo be the image of

F„ then Vo is an rej-dimensional subspace of f/0. Let 7r0 be an outer product

of Vo with coefficients d?, and let it be an outer product of F with coefficients

d{. Ii d^ = 0, then there is a vector r0 which satisfies the conditions of Lemma

3a. Then r0 is the image of a vector rE V, which also satisfies the condition

of this lemma. By Lemma 3b it follows that dj nust be zero. If dj?*0, there

is a diagonal basis in Vo relative to the jth term of tto- Let this diagonal basis

be the image of the set pi, p2, • • • , pm in V,. Clearly this set is independent

and hence is a basis for V. Moreover, by a correct choice of signs, it may be

supposed that this set is a diagonal basis relative to the jth term of ir, so dj= 1

for this set, and clearly all the other coefficients of ir have integral values. If

dl^O, it follows in the same way that there is a diagonal basis qu q2, ■ ■ • , qm

in V, with an outer product having coefficients Z>, and Dk=\. Then Lemma 2

gives \=djDk = dkDj. Since dk and Dj are integers, this implies that Dj=\

and dk = i, or Dj= —1 and dk= —1. Thus we have shown that the outer

product of pi, p2, • ■ ■ , pm has the property that d$ = 0 implies dj = 0, and

(tf^O implies dj= +1. Thus this is a just outer product and V is a just sub-

space.

To prove the second part of the theorem we need the following lemma.

Lemma 5. Let pi, p2, ■ ■ ■ , pm be a diagonal basis having a just outer product.

Then any subset of these vectors has a just outer product. In particular these vec-

tors are just.

Proof. Let the set p\, pi, • • • , pm be a diagonal basis relative to the jth

term of w. Let t1' =p2p3 • ■ • pm, so w — piw'' = e^ir''+riir''. Then n and -k' have

no factor ejl in their terms. Hence ej,ir' and mr' have no terms in common.

Then e^w' is just, and consequently w' is just because there can be no can-

cellation. By the definition of a diagonal basis it is apparent that any subset

is a diagonal basis of lower dimension. Thus starting with ir' we can perform

a reduction by the same arguments, etc.

Returning to the proof of the theorem, suppose that V is a just subspace

and let pi, p2, ■ • ■ , p„ be a diagonal basis for V. By Lemma 5 these vectors

are just and p2, p3, ■ ■ ■ , pm serve as a diagonal basis for a just subspace V
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of dimension m — 1. The theorem is obviously true for a one-dimensional sub-

space, so by the inductive method suppose it is true for a (m— l)-dimensional

subspace. In particular it thereby follows that there is a vector yE V! such

that

y =• p2 + p3 + ■ • ■ + pm mod 2.

We seek a vector xE V, such that

(15) x = px + pi + ■ ■ ■ + pm mod 2.

Then Xx—px+y satisfies this congruence. Suppose, however, that xi does not

belong to V, for either choice of sign. In any case the coordinates of xi are

restricted to the values +2, +1, and 0. Thus if for one choice of sign a 2

occurs as a coefficient of ea, then with the other choice a zero occurs. Suppose

then the sign is chosen so that Xi has no ea component. By Lemma 4 the outer

product of V contains a term c/ye;ie;-2 • ■ • «yw and ejh = ea and dj9*0. Let

<Zii qi, ■ ■ • , qm be a diagonal basis relative to this term. Then xi = 23™ &•<?••

By the property of a diagonal basis, all the bi are integers, since Xi has integer

coordinates. Moreover, g>a = 0, since xi has no e;A component. Thus xi is in

the m — 1 dimensional subspace V" with basis qx, t/2, • • • , qh-x, qh+x, • • • , qm.

This subspace is just by Lemma 5. Now xi is congruent mod 2 to a set of the

qi since the bt are integers. By the inductive hypothesis there is an xEV."

such that x = Xi mod 2. This is the desired solution of (15). The same argument

shows that there is an x£ V, congruent to the sum of any subset of the p,.

Thus

(15a) x = 23 5<P<>       5< = °    or   8< = 1.

Now let u and v be two arbitrary elements of V,. Then u+v= 23&>Pf

where the bi are integers. Thus u+v is congruent mod 2 to a sum of a subset

of the pi. We have shown that such a sum is congruent to a single element of

V$. This proves the group property under addition mod 2. As the set pi, p2,

• • • , pm is independent mod 2 and is a basis for this space, it follows that the

space has dimension m.

5. The discriminant of a subspace. Let the vectors pi, p2, • ■ • , pm be a basis

for an m-dimensional subspace V of an w-dimensional vector space U. Let

ku, kn, • • •   be the coordinates of pi, etc. Thus

n

(16) pi = 23 knej.
x

The outer product of pi, p2, • • • , pm has the canonical form

(17) t = 23 dte^ei, • • • eim.

Let K be the rectangular matrix with matrix elements k,j. Let K{ be the

square matrix consisting of the ix, ii, • ■ ■ , im columns of K in order. Then
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(18) di = det K\

The derivation of (18) is clear from the definition of a determinant together

with the projection method of proof used in Lemma 3.

Let gi, g2, ■ ■ ■ , gn be indeterminate variables. Let G be an re by re diagonal

matrix whose diagonal elements are G,-, = g,-. The matrix KGKt may be re-

garded as an m by m matrix (Kt is the transpose of K). Let

(19) f(gi, g2,---, gn) = det KGKt.

Then / is termed a discriminant of the matrix G in the subspace F. The dis-

criminant is a multilinear form in the g, and homogeneous of degree m in

these variables. The following relation is a key theorem, stating that a dis-

criminant is a sort of inner product of the outer product with itself.

(20) / - 22 d'gngh ■ ■ ■ a.-

The proof of (20) is given by noting that if all g, = 0 except gy„ gy2, • • • , g,-m,

then (20) reduces to one term whose coefficient is d2 = det K' det K[. Clearly

the degree of/ can not be greater than m, so this accounts for all the terms of

(20). Of course there is no significance in the order of the g,- in the terms of/

as the gi are commutative. Comparing (17) and (20) and making use of

Lemma 2 shows that except for a constant factor the discriminant does not de-

pend on the choice of the basis for V.

A discriminant may be termed just if its coefficients are restricted to the

values 1 or 0. The above considerations show that a subspace is just if and

only if it has a just discriminant.

Several properties of the discriminant were studied in a paper by Raoul

Bott and the writer [9]. (This paper will be referred to as B-D.) The discus-

sion in B-D was restricted to real vector spaces, and the discriminant was

arbitrarily normalized by the rule /(l, 1, • • • , 1) = 1. Because of theorem

(20), the results of B-D imply certain properties of outer products. For exam-

ple it was shown that two subspaces have the same discriminant if and only

if one subspace is a reflection of the other in the coordinate planes. Then (20)

gives

Corollary 1. // one subspace is a reflection in the coordinate planes of

another subspace, then they will have outer products whose coefficients differ only

in sign. Conversely two outer products with this property correspond to reflected

subspaces.

Let F and V be orthogonal complementary subspaces, i.e., V consists

of the vectors which are orthogonal to all the vectors of V. Let / and /' be

normalized discriminants of Fand V respectively. It was shown in B-D that

the following identity holds

(5a) f(gl, g2,   ■   ■   ■   , gn)   =   glgl  •   ■   ■  g*f'(gl   ,g2,---,gn    )•
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This is essentially the same as relation (5) stated above. Clearly the following

statement is a consequence of (5a).

Corollary 2. If a subspace is just, its orthogonal complement is also just.

The utility of the Wang algebra rests on the following result:

Theorem 2. Let Vbe a just, m-dimensional subspace of a real n-dimensional

vector space U. Let px, pi, • • • , pm be a set of vectors of V which have integral

coordinates and are independent mod 2. Then a discriminant of V is given by the

Wang product pip2 ■ ■ • pm when in the canonical form d is identified with g,-.

Proof. Consider the Grassmann algebra Go generated by the M-dimensional

vector space Uo over the finite field mod 2. This is the Wang algebra. In this

algebra pip2 • • • pm does not vanish because of Lemma 1. The resulting

outer product may be expressed with coefficients d? = 0 or 1. Since this is an

algebra, the operation may be carried out in any order. Thus if no use is

made of the mod 2 property, we obtain the ordinary outer product in G with

coefficients d{. Clearly the di are integral valued. Now di=d% mod 2, so not

all of the di vanish, and it follows that the set pi, p2, • • • , pm is a basis for V.

Since V is just, dt = d, —d, or 0. Thus d° = 0 if and only if J, = 0. Likewise

d°—l if and only if di= +d. Comparing with (20) completes the proof.

Not every homogeneous multilinear form is a discriminant. The question

arises as to the possibility of the generation of a new discriminant from two

given discriminants/and F. If the variables are all different, it is easy to see

that the product fFis again a discriminant and is just if/and Fare just. The

following theorem is a somewhat deeper result.

Theorem 3. Letf(xx, x2, • • • , xn) and F(yi, y2, ■ • ■ , yr) be discriminants.

Let /,: = df/dxi, then for any i

H(xx, • • • , xn, y2, ■ ■ ■ , yr) = fiF(f/fit y2, • • • , yr)

is a discriminant. Moreover, if f and F are just, then H is just.

Proof. We may write F = Ayx+B where A and B do not contain yi. Thus

B = MAf/fi + B) = Af+ Bft.

In case /,- vanishes identically, we interpret the last expression as the defini-

tion of 77. It is clear that 77 is a homogeneous multilinear form, or else it

vanishes identically. Moreover, if/and F have coefficients 0 and 1, then H

has coefficients 0 and 1.

We now employ Theorem 9 of B-D, which states that a necessary and

sufficient condition that a homogeneous multilinear form f(xx, x2, • • • , x„)

be a discriminant is that — xpa be a square of a rational function. Here

^ = log/and ^,j=dV/dXidx/. In applying this criteria to 77 it is necessary to

consider the variables x and y separately. Let X = log H and p = log F. It is

obvious that the criteria is satisfied for d2\/dykdyj. Now consider d*\/dykdxj.
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X = p + log/<

d\/dyk = pk
2 2

— d X/dykdXj = putpn/^i-

The right side is clearly the square of a rational function. Now consider

d2\/dxkdxj. We may write

H = A(f + fiB/A)    or    H = Af(Xi. ■ ■ ■ , *,• + B/A, ■ ■ ■ , xn).

It is obvious that the criteria is satisfied, since

d2\/dXkdXj = \[/kj(Xi, ■ ■ ■ , Xi + B/A, ■  ■ ■ , xn).

This completes the proof.

6. The subspaces of Kirchhoff. It is now appropriate to link the theory

just developed to the network problem. In particular it is desired to prove the

rules stated in §1.

In order to be precise, the following definitions are introduced: An electric

network is a finite number of two-terminal branches arbitrarily interconnected

at their terminal points. A point where one or more of these terminals meet

is called a junction. A direction is arbitrarily assigned to each branch. A net-

work is connected if any two of its junctions are connected by a chain of

branches. Otherwise it consists of a number of disconnected pieces, each piece

being a connected subnetwork. A star is the set of branches having one and

only one terminal meeting at a given junction point. A mesh is a set of

branches which form a simple closed chain. A tree is a connected set of

branches (in each piece) which contain every junction but no meshes. A

cotree is the complement of a tree.

Let a set of real numbers ui, u2, ■ ■ ■ ,un be associated with the branches

of a network. This set may be regarded as the coordinates of a vector relative

to the basis of a real re-dimensional vector space U. Let a set of real numbers

Zi, Z2, ■ ■ ■ , Zj be associated with the junctions of a network. These are the

potentials of the junctions. If the terminals of the branch i have potentials

Za and Zb, then z\ = Za — Z& is the voltage across the branch. Order a, b is

determined by the preassigned direction of the branch. The voltages

fli, v2, • • • , »» define a vector v of V. The class of such vectors gives an m-

dimensional subspace F which we term a Kirchhoffian voltage space.

Let Z< = 1 and Z, = 0 for i^j. This defines a star vector piE V. Delete one

star vector from each piece of the network. Then it is obvious that the re-

maining ones, say pi, pi, • • • , pm form a basis for F. Then if xG V

(21) x = 22 aipi-

Clearly each star vector is a just vector. The just vectors of F are a subset

of the vectors obtained by giving the Z, integral values. Thus if x is a just

vector, the a,- must have integral values. Let y = 22^iPi De another just vector.

Then if ae+bef£0 mod 2 etc.
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(22) x + y m p, + pf + ■ ■ ■ + ph mod 2.

The vector on the right corresponds to the junctions e,f, ■ ■ ■ ,h being given

the potentials 1 and all the other junctions the potential 0. Clearly this gives

a just vector. Then the just vectors of V have the group property under

addition mod 2, and since pi, p2, • • • , pm are independent mod 2, it follows

that the just vectors constitute an m-dimensional vector space under addition

mod 2. Thus by virtue of Theorem 1 the Kirchhojfian voltage space is just.

Let v[ be the current flowing through the ith branch of a network. By

Kirchhoff's first law the net current entering a junction must vanish. Vectors

of this class form a subspace V of U which we term a Kirchhoffian current

space. It is not difficult to show that V and V are orthogonal complementary

subspaces; this point is discussed in references [9; 16; 18]. It then follows

from Corollary 2 that the Kirchhoffian current space is just.

It is of some interest to give a direct proof that V is just. A mesh vector

of V is a unit flow of current confined to a mesh. Let x' be a just vector of

V. It is easy to see that

(23) x' = w( +wi + ■ ■ ■ + wi

where w{, w{, ■ • • , wk are mesh vectors, the corresponding meshes having

no branches in common. Conversely any sum of this form gives a just vector

x'. If two mesh vectors are added mod 2, it is clear that the sum is congruent

to a sum of disjoint mesh vectors. Thus the just vectors of V have the group

property under addition mod 2.

Consider a tree of the network and add one other branch; the resulting

network has exactly one mesh. Thus each branch not in the tree defines a

different mesh. This method is employed by Ingram and Cramlet [12] and

by Synge [13]. This gives mesh vectors p{ ,p{, • • • , p/ which are a basis for

V. In fact, they are a diagonal basis and hence they are certainly independent

mod 2. Thus the just vectors of V constitute a vector space under addition

mod 2, and this space has the same dimension as V. The proof that the cur-

rent space is just is completed by again using Theorem 1.

Next a proof will be given for formula (2a) which gives the resistance

between the two junction points 1 and 0. Let gi, g2, ■ • • , g„ be the conduct-

ances of the branches of the network. Then since the voltage space is just,

the discriminant 5(gt, g2, • • • , g„) is given by the Wang product of stars.

To proceed it is at first supposed that there is a branch whose terminals are

at 0 and 1. Let this be the branch gi. Then according to equation (7) and

Theorem 3 of B-D, the resistance across the branch gi is

1    dS
(24) R =-

5   dgi

Comparing this with (2a), we see that it remains to show 5i =35/3gi. By the

definition of 5i we see that 5i is independent of gi because gi only appears in
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the stars at junctions 1 and 0. Then from the Wang product expression for 5

we see S = giSi+P where P is also independent of gi. This proves Si=dS/dgi,

and it follows that (2a) and (24) are equivalent. By continuity it is clear that

formula (2a) remains valid even when gi = 0, and the proof is complete.

To prove formula (2b), let n, r2, • ■ ■ ,rn be the resistances of the branches

of the network. Without loss of generality we may suppose that there is a

branch connecting terminals 0 and 1 and that n denotes its resistance. Let

M*(ri, ■ ■ • , rn) be the discriminant of the mesh space. Then as shown in

B-D, the conductance G presented to a battery inserted in branch gi is

1    dM*
(25) G =-

M*   dri

It is seen that M* = Mi + Mn where Mi and M are as defined in §2. Thus

G = M/(Mi + Mri). Allowingn to vanish, we have R=\/G, and formula (2b)

is proved.

It remains to prove formula (6) for the voltage ratio. This is essentially

the same as relation (33) of B-D. The signs of the terms are not determined

by (33), but it is not difficult to show that no negative terms can occur in the

present case.

The discriminant is defined as the determinant of KGKt. For the star

discriminant 5 it is seen that K is an incidence matrix between junctions and

branches. For the mesh discriminant the matrix K is an incidence matrix be-

tween meshes and branches.

Now consider a matrix K with arbitrary integral matrix elements. It was

shown in a previous paper [15 ] that such K matrices arise naturally in the

analysis of transformer networks. Moreover, K has a simple topological inter-

pretation as the linkage matrix between two networks, one electric and the

other magnetic. The matrix element Ky gives the number of times the ith

mesh of the electric network links the jth mesh of the magnetic network.

Here i and j run over a mesh basis in the networks. In particular any just

discriminant can be realized in this way.

The writer is indebted to Raoul Bott for extensive discussions concerning

the ideas in this paper; several of the problems treated here were formulated

in this way. Acknowledgment is also due to H. W. Becker for use of his notes

on Wang algebra.
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