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1. The differential equations to be considered in this paper are of the form

(1) V + p(x)y2"+1 = 0,

where p(x) is positive and continuous in (0, ») and re is a positive integer.

While considerable insight into the nature of the solutions of (1) can be

gained by direct manipulation of the equation, it will be seen that a more

penetrating discussion requires the study of an appropriate variational prob-

lem whose solutions must satisfy (1). The obvious choice, namely, the prob-

lem

(2) 8 f   [(« + 1)/' - py2n+2]dx = 0
J a

of which (1) is the Euler equation, proves to be utterly unsuitable for our

purposes. The main reason for this is the fact that the family of extremals of

this problem which pass through a point do not form a field and that, there-

fore, the classical sufficient criteria for the existence of extrema become un-

applicable. We shall show that the proper problem is that of minimizing the

generalized Rayleigh quotient

ab \ n-t-1       /      /% b
y'2dxj      J   I    py**+*dx

for suitable homogeneous boundary conditions. It will be found that this

problem has a solution and that this solution, if properly normalized, must

satisfy (1). This connection between equation (1) and the functional (3) thus

provides an additional tool for the investigation of the solutions of (1). Be-

sides, it is a source of integral inequalities in those cases in which the general

solution of (1) can be obtained explicitly. A few examples of this type will be

exhibited in §10.
2. We begin with a result of an essentially geometric nature which may

be regarded as a substitute for the separation property of the solutions of a

linear equation.
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Lemma I. Let F(x, y) be continuous for 0 <x < ~ and — =c <y < x , and let

u(x), v(x), w(x) be solutions of the differential equation

(4) y" + F(x, y) = 0.

//, in an interval [a, b](0<a<b< °°), u(x) ^v(x) ^w(x) and if F(x, y) is a

convex function of y for min u<y < max w and any fixed positive x, then

(5) 0(x) = (w — v)(v' — u') — (v — u)(w' — v')

is a strictly increasing function in [a, b] except when equation (4) is linear.

Proof. It is easily confirmed that

0'(x) = wv" — vw" + uw" — wu" + vu" — uv".

Hence, if we abbreviate F(x, y) to F(y) and use (4), we obtain after some re-

arrangement

0(*2) - 0(*i) =   f    {(v - u)[F(w) - F(v)] - (w - v)[F(v) - F(u)]}dx,

where a^Xi<x2g&. Since u<v<w and F(y) is convex, we have

F(v) - F(u)      F(w) - F(u)

v — u w — u

with equality only if the points (u, F(u)), (v, F(v)), (w, F(w)) lie on a straight

line. It follows that the integrand is positive unless F(x, y) is linear in y in

the range concerned. This completes the proof.

We remark that Lemma 1 applies to equation (1) only if the solutions

u, v, w are non-negative in [a, b].

The following result is an immediate consequence of Lemma I.

Lemma II. Let F(y, x) satisfy the hypotheses of Lemma I. If u(x, v(x), w(x))

are solutions of (4) such that u(x) <w(x) and v(x) <w(x) in [a, b], then the curves

,C = «(x) and f = v(x) cannot intersect in [a, b] more than once.

Indeed, if there are more points of intersection there will exist two points

x = xi and x = x2 (a^xi<x2g&) such that w(xi) =i»(xi), m(x2)=v(x2) and, say,

v(x)>u(x) in (xi, x2). If 0(x) is the expression defined in (5), we then have

0(*i) = [w(*i) - v(x1)][v'(x1) - «'(*!)] > 0

and

0(*2) = [w(*2) - i'(*2)][w'(*2) — «'(*2)] < 0.

This contradicts Lemma I, and thus proves Lemma II.

If y(x) is a solution of (1) for which y(a)=y(b) =0 and y(x)>0 in (a, b),

we may conclude from Lemma II (and the fact that y = 0 is a trivial solution
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of (1)) that any solution curve J = u(x) of (1) which satisfies u(a) =0, 0<u'(a)

<y'(a) must intersect the curve ^ — y(x) in (a, b). Moreover, if v(x) is another

solution of (1) and v(a)=0, 0<v'(a) <u'(a) <y'(a), the curves £ = u(x) and

f = v(x) cannot intersect in the interval bounded by x=<z and the first point

of intersection of f = y(x) with either of these curves. If this is combined with

a continuity argument and some additional elementary considerations, it is

not difficult to show that for any a, b such that 0 <a <b < oo equation (1) has

a solution which vanishes for x = a and x = b and is positive in (a, b). We omit

this argument, since the existence of such solutions will be established by

the solution of the variational problem of §6.

If it were true that this solution is uniquely determined by its two con-

secutive zeros, we could conclude that the first zero in (a, °o) of a solution

y(x) of (1) which vanishes at z = a will move to the right if |y'(ffl)| decreases,

and this would lead to a very considerable simplification of the theory of

equation (1). While all the "reasonable" examples of such equations for which

we can obtain the general solution show this regular behavior, the following

example shows that there may be exceptions. Let yo(x) be the solution of

(6) y" + y2n+l = 0

which satisfies y(0)=0, y'(l)=0, and y'(x)>0 for 0gx<l. We note that

jo(2—x) is also a solution of (6) and, moreover, is identical to yo(x); thus

yi (x) <0 for 1 <x^2. Now for any number c, cy0(cnx) —y(x, c) is a solution

of (6), and

— (1, c) = y0(cn) + ncnyi(cn),

dc

^(l,c) =C"+iy0'(C),
ax

are continuous functions of c. By our above remarks and these formulas

(dy/dx)(l, c) changes sign at c = l, and (dy/dc)(l, 1)>0; therefore, by a con-

tinuity argument there exist two numbers C\ and c2, 0<Ci<l<c2, such that

0 < y(x, ci) < ya(x) < y(x, c2), 0 < x 5S 1,

dy dy
Q<~(l,Cl) = --i(l,c2).

ax ax

We set p(x) = \ in [0, l] and [a, a + l], where

,  , y(i,c2) - y(i»ci)
a = 1 H-i

dy

r-(Mi)ax

and ^>(x)=0 in (1, a). Although this function p(x) is neither positive nor

continuous in the interval considered, it is not difficult to show that the small
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change of p(x) required to remove these deficiencies will not affect the basic

behavior of the solution. The two solutions of equation (1) yi(x) and y2(x)

are defined as follows

yi(x) = yo(x), 0 ^ * g 1

= yo(l), 1 Ik x ^ a

= — yo(x — a — 1), a ^ * ^ a + 1.

y*(x) = y(x, d), 0 ^ * ^ 1

= y(l,ci)+ —(l,ci)(x-1), ISx^c*
dx

= — )»(* — a — 1, c2), a^*|a+l.

Both yi(x) and ;y2(x) are continuous and have continuous derivatives on

[0, a + 1 ] which is all that is required of solutions of equation (1) for piecewise

continuous p(x). It may be remarked that there is still a third solution, posi-

tive on (0, a + 1) and zero at the end points, namely, y(a + l—x).

3. We now turn to the discussion of the oscillatory behavior of the solu-

tions of (1). Here, certain precautions are necessary. It will be shown in §8

that, for any given a, b (0<a<b< «>), there always exist solutions of (1)

which have an arbitrarily given finite number of zeros in (a, b). Even if there

is no solution of (1) with an infinite number of zeros in (a, °°), it is therefore

not possible to find a value x = Xo such that the number of zeros of all solu-

tions in (x0, °°) is bounded. Another complication is the fact that some solu-

tions may have an infinite number of zeros in (a, <»), while other solutions of

the same equation do not oscillate at all in the same interval. This behavior

may be illustrated by the example of the equation

T2n+1

which is also instructive in other respects. The general solution of (7) is

(8) y = (*)W2M(iog x)t

where u(t) is the general solution of

(9) 4m + m2"+1 - u = 0,

which can be found expicitly. All solutions of (9) are solutions of

M2n+2 ain+2

(10) 4w2 H-m2 = 462 H-a2 = A
n + 1 n + 1

where u(0) =a, «(0) =b. If A =0 and, say, b<0 and a>0, then the solution is

given by
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/ds -
u        /               52"   Y'2

A   ~ n+V

u(t) is initially decreasing and by (11) will either decrease monotonically to

zero as t—»<» or u'(t0)=0 for some finite value t0. In this last case u(t0)

= (» + l)1/2n, but ,4=0 also implies that (n + l)Uin>a>u(t0), which is im-

possible.

The function u(—t) =w(t) is also a solution of (9) and is given by

Cw               ds
*=2 -,

\        n+lj

from which it is evident that w increases monotonically and assumes the value

(m + 1)1'2" for some finite value h, Since w'(h) =0, the function w(2t\ — I), being

a solution of (9), is identical to w(t); thus w(t) decreases monotonically to zero

as t runs from t\ to +°°. Thus the curve % = u(t) is found to be symmetric

about t= —h and u(t) to take all values a such that 0<a^(« + l)1/2n. This

last remark shows that all solutions in the case .4=0 are given by +u(t-\-r)

for any r.

The asymptotic behavior of u(t) near t = °° is expressed by

lira \Lz± _ logl»±i>q , f •*"'"••{[,. _£_r _ a*
«-.- L    2 u(t)      J     Jo IL       n+lj j  ^

= 7>0;

i.e., m(0~Co exp{ —(< —/O/2+7} (a0= (« + l)1/2n). As (8) shows, the cor-

responding solution y(x) of (7) has the initial data

y(l) = a,        y'(l) = y a + 6 > 0.

Evidently, there are two positive bounded solutions through every point

(1, a), 0<a<a0, asymptotic to a0e+,U2 and a0e— "/2. For the point (1, a0)

there is exactly one bounded solution, asymptotic to aae">.

All other solutions of (9) are obtained when A A0. A discussion similar

to the above shows that all these solutions are periodic. If A >0, u(t) has an

infinite number of zeros in (0, 00). However, if A <0, $" = «(/) oscillates in-

finitely often without crossing the horizontal axis. Since between a maximum

and a minimum of f = u(t) there must be a point such that w" = 0, (9) shows

that f = u(t) intersects the solution u=\ infinitely often. We thus obtain the

following picture for the totality of solutions of (7) which pass through the

point (1, a). If y'(l) =a/2 ±b, where b is the positive solution of (10), y(x) is
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positive and tends to a finite limit as x—*<». For a/2 — b<y'(l) <a/2-\-b,

3/(1)5^1/2, the solutions are positive and intersect the solution x1/2 an

infinity of times. For y'(l) <a/2—b and y'(\)>a/2-\-b, the solutions are

oscillatory.

4. This example raises the question as to the proper definition of a "non-

oscillatory equation." Should one merely require the existence of at least one

nonoscillatory solution, or should this term be reserved for an equation none

of whose solutions have an infinity of zeros? While we cannot give a com-

pletely satisfactory answer to this question, the following remarks may throw

some light on the matter. It will be observed that none of the nonoscillatory

solutions of (7) vanish even once in the entire interval of continuity (0, 00)

of the coefficient of the equation. As will be seen later, the existence of a

nonoscillatory solution which vanishes at least once in the interval of con-

tinuity of the coefficient is a considerably stronger condition than the mere

existence of a solution which does not oscillate. Indeed, a good case can be

made for regarding as properly nonoscillatory only the solutions of the

former type. Whether an equation (1) may have both oscillatory solutions

and nonoscillatory of this restricted type is a question we cannot answer.

That the mere existence of nonoscillatory solutions—regardless of type—

gives but little indication of the behavior of the totality of the solutions of

(1) is shown by the following recent result of Atkinson [l], which gives a

complete and elementary answer to this question of existence.

Theorem I (Atkinson). Equation (1) has a nonoscillatory solution if, and

only if,

(12) j    xp(x)dx < 00.

Indeed, even more is true. It was shown in [l] that (12) insures the exist-

ence of a solution y(x) such that y(x)—*\ for x—>». Since, for any constant a,

the function ay(x) likewise satisfies an equation of type (1), it follows that

(1) has solutions y(x) such that y(x)—*8 for x—»w, where B is an arbitrary

constant. Hence, (12) guarantees even an infinity of nonoscillatory solutions.

Finally, it follows from the necessary and sufficient character of (12) that if

(1) has one nonoscillatory solution it must have an infinite number of them.

If it is known that (1) has a nonoscillatory solution of sufficiently fast

growth, (12) can be strengthened. A modified form of the argument showing

the necessity of (12) yields the following result.

Theorem II. If (1) has a nonoscillatory solution for which

r"   x"dx
(13) <  CO, „>-l

J      \y(x)]2"
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then

/oo
x"+2p(x)dx < oo.

If y(x) is a solution of (1) such that y(x)>0 for a^x< oo, it follows from

the fact that y"(x) <0 that y'(x) >0 in [a, <*> ]. Equation (1) may be brought

into the form

y'(a) y'(x) Cx   y' rx

= + (2n + 1) I    -^—dt+\   pdt, a<x,
y*-+l(a) y2«+l(X) Ja    yW J«

which shows that

y'(a) (•*
>  I   pdt.

y2n+\a) ~ J a

Integrating over a from a to x, we obtain

—— ̂  —- + 2n f  (t- a)p(t)dl S: 2» f  (< - a)^W*.
y2"(a)      y2"(x) Ja J„

Since x may be taken arbitrarily large, this is equivalent to (12). Multiplying

the inequality

—— ^ 2n f  (I- s)p(t)dt
y2n(s) J,

by (s— a)" and integrating over 5 from a to x, we have

rx (s - a)" 2n rx
|- ds > - I    (5 - a)-+2p(s)ds.

Ja      y2»(s) ~ (v+l)(V+2)JaK

Since x may be taken arbitrarily large, this proves Theorem II.

5. It was shown in Atkinson [l] that no solution of (1) will be oscillatory

if

X2n+1p(x)dx <   00,

provided p(x) is a differentiable and nonincreasing function of x. Again, this

condition implies much more than mere nonoscillation. As the following re-

sult shows, (14) is—without any monotonicity or differentiability conditions

—equivalent to the existence of a certain simple type of solution.

Theorem III. Equation (1) has solutions for which

y(x)
(15) lim ^-- = a > 0

z-»»       *

if, and only if, condition (14) is satisfied.
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The necessity of condition (14) is obvious, since

(16) y'(a) = y'(b) + J   py2"+ldx, b > a,

and y'(b)>0 if y(x)>0 in (a, °o).

To show sufficiency, we assume that (14) holds and choose a value of a

which is large enough so that

x2n+1p(x)dx < «

a

where the positive constant e may be taken arbitrarily small. We define a

solution y(x) of (1) by the initial conditionsy(a) =0, y'(a) =c, where 0<cgl,

and we assert that y(x) will be positive in (a, <*) and will show the asymptotic

behavior (15).

If y(x) has a zero in (a, <»), there must exist a value x = b in (a, °°) such

that y(b)=0 and y(x)>0 in (a, b). Since y(x) is necessarily concave in the

latter interval, we have there y(x) ^y'(a)(x — a) and we may conclude from

(16) that

y'(a) < y'(x) + [y'(a)]2n+1 j    (x - a)2n+lp(x)dx, a < x < b.

•J a

In view of (17) and the assumption 0<y'(a) <1, it follows that

y'(a) g /(*) + ey'(a),

i.e.,

(18) (1 - •)/(«) ^ y'(x).

This proves that y'(x) > 0 in the entire interval (a, b), provided e < 1 and thus

shows that y(x) cannot vanish for x = b. Since, for positive y(x), y'(x) de-

creases monotonically we see, moreover, that Iimy'(x) for x—><» exists and

is positive. This completes the proof of Theorem III.

It will be noted that the nonoscillatory solution whose existence was

proved in the preceding argument does have a zero at x = a. This shows that

condition (14) is strong enough to produce the type of proper nonoscillatory

solution discussed in §4. There is yet another aspect of condition (14) which

is worthy of note. According to Lemma II, it cannot happen that there are

two solutions u(x) and v(x) of (1) such that v(a) =v(b) =0 (0<a<6< °o) and

0<v(x)<u(x) in (a, b). In many cases, this restriction will remain in force

even if b= <x>, i.e. if u(x) and v(x) are nonoscillatory in (a, «>). It is, for in-

stance, easily confirmed that this is true if u(x) remains bounded as x—><».

However, if condition (14) holds, there will exist pairs of solutions u(x), v(x)

such that v(a) =0 and 0<t>(x) <u(x) in (a, <»).
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We assume, for simplicity, u(a)=0; the case in which u(a)>0 can be

handled by a trivial modification of the same argument. We take 0<v'(a)

<u'(a) < 1, where a is taken sufficiently large so that (17) is satisfied. By (18),

we have

«'(*) - v'(x) > u'(a)(\ - £) - v'(a).

Hence, if v'(a) is taken small enough, the left-hand side of this inequality is

positive for all x>a, and we may conclude that u(x)>v(x) in (a, ■»).

According to Theorem III, equation (1) has solutions with the asymptotic

behavior (15) if condition (14) holds. As shown in [l], this equation also has

bounded solutions. The following theorem which generalizes a result of Hille

for the case n = 0 shows that no other types of nonoscillatory solutions are

possible.

Theorem IV. If condition (14) holds, all nonoscillatory solutions of (1) are

either bounded, or else have the asymptotic behavior (15).

Proof. Let y(x) be a solution of (1) for which y(x)>0 for a^x< oo. By

(14), it is possible to choose a value B such that for all b^B,

p(x)x2n+1dx < e,
b

where e is an arbitrarily small positive constant. We replace (1) by the

equivalent integral equation

y(x) = y(b) + f\l- b)p(t)y*»+Kt)di + (* - b)y'(x),
J b

and we note that y(t) ^y(x) for b^t^x. Hence,

y(b)        rx xy'(x)
1S^+       tp(t)y2»(t)dt+-^-

y(x)      J h y(x)

If B is also taken sufficiently large so that By'(a) ^y(a), we have

y(t) ^ y(a) + (/ - a)y'(a) ^ y'(a)[B + / - a] :g 2ty'(a).

and it follows that

y(b)      . ,     r°° */(*)
1^+ [2y'(a)]2"       pW+W + -^\- -

y(x) J b y(x)

and thus

y(b)      xy'(x)

y(x)       y(x)

If y(x) is not bounded for x—>», we therefore must have
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xy'(x)
1 ^ lim inf -^ £ 1 - e,

i-,»      y(x)

where the left hand-inequality follows from the concavity of the curve

£■ = y(x). This shows that unless y(x) is bounded it must be such that

xy'(x)
lim -^ = 1.
*-.»  y(x)

To show that this is equivalent to (15), we choose b large enough so that

xy'(x)> (1 — e)y(x) for x^b. We then have

/t  X /• X /• X

py2»+idt ^  I   tpy2ny'dt ^ y'(b) j   tpy2ndt.
b J b J b

Since, as shown above,

tpy2ndt ^ [2y'(a)]2n I    t2n+1p(x)dt < e,

h Jb

this leads to

(1 - 2t)y'(b) g (1 - «)/(*).

Hence, y'(x) has a positive lower bound as x—>°o. But y'(x) is monotonically

decreasing as x increases, and it follows that y'(x) tends to a positive limit

as x—>=o. Since xy'(x)[y(x)]~l—*l for x—»<», this cpmpletes the proof of

Theorem IV.

It may be remarked that Theorems III and IV imply the following result.

// equation (1) has one solution with the asymptotic behavior (15), then all

other nonoscillatory solutions either show the same behavior, or else are bounded.

6. We now turn to the problem of minimizing the Rayleigh quotient (3)

within the family of functions which belong to class D' in [a, b] and satisfy

certain homogeneous boundary conditions. While, with very minor modifica-

tions, the treatment of the problem to be given here can be applied to the

most general type of such boundary conditions, we restrict ourselves to the

following two cases which are of special relevance to the oscillation problem

of equation (1):

(19) J(y) = min,        y(a) = 0;

(20) J(y) = min,        y(a) = y(b) = 0.

We first show that, under these conditions, there exists a positive lower

bound for J(y). Since the side conditions in (20) are more stringent than in (19),

it is sufficient to do this for problem (19). We denote by fi the lowest eigen-

value of the linear differential system

(21) (x--m')' + up(x)u(x) = 0,        u(a) = u'(b) = 0,
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and we use the well-known fact [2] that n>0 and that, for any function

v(x) of D'[a, b] which vanishes at x = a, the inequality

u I    pv2dx ̂    I    *~V2d* (0 < a < b < oo)
J a J a

holds.  If y(x) vanishes at x = a and belongs to D'\a, b], we may set v(x)

= y"+1(x). This yields

/■ b /% b
py"-n+2dx S (n + l)2 I    x-ny2ny'"'dx.

a J a

Since

/» X /• X /» Xy'dl2 ̂  (x - a)  I    y'*dt < x I    y'*dt,
a J a J a

it follows that

/b /* b /    /» x \n

py2*+2dx ̂ (n + l)2 I    y'2(x) (   I    y'!(*)^J <fx

ax \ n+1

Hence,

(22) (n + l)/(y) ^ y.,

and the existence of a positive lower bound for J(y) is established.

If we set X = inf J(y), where y(x) ranges over all functions subject to the

admissibility conditions of problem (19), we have \>0 and there will exist a

sequence {y»(x)} such that lim,_M J(y*) =X. A similar statement applies to

problem (20); since the discussion of (19) and (20) is almost exactly alike,

we shall refer to problem (20) only when there is a difference in the treatment

of the two problems. The following lemma shows that the minimizing se-

quence \y,(x)} may be replaced by another sequence \uv(x)} of functions of

C"[a, b] which satisfy the boundary conditions uy(a) =u' (b) =0.

Lemma III. If y(x)EC'[a, b] and

(23) f  y'dx = 1,
" a

then

(24) J(u) g a :g J(y),

where u(x) and a are, respectively, the first eigenfunction and the first eigenvalue

of the linear differential system



1959] NONOSCILLATION THEOREMS 41

(25) u"(x) + ap(x)y2n(x)u(x) = 0,        u(a) = u'(b) = 0.

By classical results, we have

py2nu2dx =   I    «'"rfx, a I    py2nv2dx ^  |    i/2<fx,

where i>(x) is any function of D'[a, b] which vanishes for x = a. If we set y(x)

— v(x), we have, in particular,

J» b /• 6
py2n+2dx g   I   /'<** = 1,

a ^a

which is equivalent to the right-hand inequality (24). Using this, and the

Holder inequality, we obtain

ah \ n+l /        n b \ n+1 /        /» b \ n    /» &
u'2dx)       = (a I    py2nu2dx\       g a I a j    py2n+2dx\    I    pu2n+2dx

^a I   pu2n+2dx,
J a

and this completes the proof of Lemma III.

In view of (24), the original minimizing sequence {y,(x)} for problem

(19)—which may be assumed to be normalized by condition (23)—can be

replaced by {«,(x)}, where ur(x) is the solution of (25) for y(x) —y,(x). If

a, is the corresponding eigenvalue, we have

(27) lim J(yv) = lim a, — lim J(u,) = A.
V—» 00 *"—■» CD V—* «

The system (25) may be replaced by the equivalent integral equation

(28) u(l) = a f p(x)g(x, t)y2n(x)u(x)dx,
J a

where

g(x, t) = x — a, a ^ x ■£ t,

g(x, t) = t - a, l ^ x ^ b.

In the case of the boundary conditions u(a) =u(b) =0 i.e., problem (20), the

corresponding function gi(x, t) is given by

(b - a)gi(x, <) = (*- a)(b - t), a ^ x ^ t,

(b - a)gi(x, t) = (t - a)(b - x), t £ x £ b.

It is easily confirmed that

I S(x, h) ~ g(x, fa) | £  | h ~ h |
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and

I gi(x, h) - gi(*, h) | ^  \h-h\,

if t = h and t = ti are two arbitrary points in [a, b]. In both cases, we may

therefore conclude that

| «(/2) - u(h) |   £ a | h ~ h |   f />y2"M<**,

whence

| «(<2) - «(/i) [n+1 ̂  an+11 /2 - /i [n+1 ( f py2n+2dx\   f pun+1dx

ab \n / rb    \1/2 / rb \1/2
£y2"+2<Zx)   I   l    pdx)     f   I    />w2n+2</*j     .

In view of (26), we thus have

ab nb \l/2
pdx I    pu2n+2dxj    .

If w(x) is also normalized by (23)—or, what amounts to the same thing, by

the condition

(29) a f pyinu2dx = 1,
J a

this reduces to

[/. b -|l/(n+l)

a I    pdx\ | h - li | •

For each function u,(x) of our minimizing sequence we now set up a se-

quence of functions v,p(x) defined by

2» C h fl
v,\(x) = u,(x),    v"„ + avlxp,^-\Vrli = 0,    vrlt(a) = vfp(b),      I    tv„rf* = 1,

J a

where a,„ is again the lowest eigenvalue of the system. By Lemma III,

a„,„ ^a„,„_i and a„i ^a„. Since X is a lower bound for all a„„, it thus follows from

(27) that the diagonal sequence a„„ has the limit X. Applying (30) to the func-

tions v,(x) =v„(x) and observing that the a„ are uniformly bounded, we ob-

tain

| v,(l2) - vt(h) |   ^ M\tt- h\,

where M is independent of h, t2, and v.
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The sequence {vy(x)} is thus found to be equiconlinuous in [a, b\. Because

of

2 Cx P

v,(x) ^ (x — a)  I    v, dx ^ b — a
J a

the functions vv(x) are moreover uniformly bounded in this interval. By

classical results there will therefore exist a subsequence {zv(x)j which con-

verges uniformly to a continuous function Y(x). By (29), we have

f b
l 2" 2j i

ct„ I   pu,,y-ivvdx — 1.
J a

Taking, if necessary, a sub-subsequence for which «,,„_] converges -say to a

function Fi(x)—we obtain

(31) X f pY\nYidx= 1.
J a

This shows that neither of the continuous functions Y(x), Y\(x) can be identi-

cally zero. Since the solutions of (25) are positive (if u'(a)>0) and concave

in (a, b) it follows, furthermore, that Y(x) and Fi(x) have the same properties.

We also remark that it follows from the uniform convergence in the closed

interval [a, b] that both functions satisfy the boundary conditions (25).

(31) and the last remark show that Y(x) and  Y\(x) must be identical.

By (31), we have

(32) X-1 = (/ViV<*s)B+1 <; (fjy^dx) fjY^dx.

Since, in view of the normalization of Y and Y\,

a' b \ n+1

- =—-,
pY2n+2dx I    pYs»+*dx

and similarly' for Y\, it follows that

X-"-1 ^ 7-»(F)7-1(Fi) g X--1,

where the last inequality is due to the fact that both Y and Y\ are admissible

functions in problem (19). This shows that the Holder inequality used in (32)

must reduce to an equality and that, consequently Y(x) and Fi(x) must be

proportional. But both are positive and both are normalized by (23); hence,

they are identical.
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If we pass to the limit »>—»oo in (28), we find that Y(x) satisfies the integral

equation

Y(l) = X f p(x)g(x, t) Y2"+l(x)dx.
J a

This shows that F(x) has two continuous derivatives and that it is a solution

of the corresponding differential equation

Y" + \pY2n+1 = 0.

Accordingly, the function y(x) =X1/2"F(x) will be a solution of

y" + py2"+l = 0,

i.e., of equation (1).

The following theorem summarizes our results.

Theorem V. For each pair of numbers a, b such that 0<a<b< oo, equation

(1) has two solutions, y(x) and u(x), which are positive in (a, b) and satisfy the

conditions

(33) y(a) = y'(b) = 0,        u(a) = u(b) = 0.

If I(y) denotes the Rayleigh quotient (3), these functions are characterized by

the minimum properties

J(y) £ /(cr),        J(u) Z J(t),

where, except for the conditions a(a) = t(o) = r(b) =0, <r(x) and t(x) are arbitrary

functions of class D' [a, b].

7. In a previous paper [4] it was shown that in the case of a linear equa-

tion (1)—i.e., for » = 0—the minimal value of J(y) plays a central role in the

oscillation problem of the equation. It was found that the equation is non-

oscillatory in (a, oo)—that is, no solution has more than one zero in this inter-

val if, and only if, J(y) ^ 1 for all b such that b>a. In the case of a positive n,

the connection between the oscillation problem of (1) and the extremal prob-

lem involving J(y) cannot be expected to be quite so simple, the main reason

being that as shown by Theorem V—there does not exist an interval (a, oo)

in which no solution of (1) has more than one zero. In fact, as will be shown in

§8, there does not exist an interval (a, oo) in which no solution of (1) has

more than m zeros, where m is an arbitrary fixed positive integer.

Another major difficulty in establishing the precise relationship between

the extremal problem for J(y) and the oscillation problem of (1) is the fact,

demonstrated by the example discussed in §2, that the solution of (1) deter-

mined by y(a) =y(b) =0, y(x)>0 (a<x<b) is not necessarily unique. For our

purposes it would be sufficient if this uniqueness property could be established

at least for sufficiently large values of b, and only for the boundary conditions



1959] NONOSCILLATION THEOREMS 45

y(a) = y' (b) = 0, y(x) > 0 (a ^ x < b) (which is a less stringent requirement). The

importance of this uniqueness property is indicated by the following results.

Theorem VI. //equation (1) has a solution y(x) such that y(a) = 0, y(x)>0

for x>a and if, for sufficiently large b, there exists not more than one solution

yb(x) of (I) such that yb(a) = y£ (b) =0 and yb(x)>0 in (a, b), then there exists a

constant a (a > 0) such that

f b /    /» b \ n+l

(34) a I   po-2n+2dx ̂ f   I    o-'2dx\     ,

for any b>a and for any function a(x) of D' [a, b ] for which the right-hand integral

exists.

By choosing suitable functions <r(x), it is possible to obtain a considerable

amount of information about the function p(x). For instance, if we set

a(x) = (x—a)(t — a)~1 in [a, t] and cr(x) = l in [t, b], where a<t<b, and extend

the integral on the left-hand side of (34) only over [t, b], we obtain

a I   p(x)dx ^ (I - a)-"-1.

Since b may be taken arbitrarily large, this yields the inequality

(35) (t - a)n+1 j    p(x)dx ga-'< co,

which is thus established for any p(x) satisfying the hypotheses of Theorem

VI. If, for t^xt\b, the definition of a(x) is changed to (x — a)'(t — a)~' with

suitable values of v, the same procedure leads to

(36) I    xn+1~'p(x)dx < oo

for any positive e.

To prove Theorem VI we note that, by the existence theorem for equa-

tion (1), the first zero in (a, <») of the derivative of the solution of (1) given

by y(a)=0, y'(a)=A moves continuously as A varies continuously from 0

through positive values to co. An elementary consideration shows that

A—>co corresponds to b—*a, if x = b denotes the zero in question. If b—>°o for

A—>0, it would follow that the derivatives of all solutions of (1) such that

y(a) =0, y'(a)>0 have at least one zero in (a, <x>), since for sufficiently large

b the quantity A is assumed to be a single-valued function of b. But this would

contradict the assumption that there exists a solution which vanishes at x = a

and is positive for x>c (such a solution necessarily has a positive derivative

in (a, oo)). It follows that lim A for b—»°° exists (for sufficiently large b, A is a

monotonic function of b) and is positive.
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The value of the functional J(y) in Theorem V is decreasing for increasing

b. Indeed, if the right-hand endpoint of the interval to which J(y) refers is

indicated by a subscript we have, by Theorem V,

(37) Jc(yc) ^ JM,

where o(x) is any function satisfying the admissibility conditions. If c>b,

we may set o-(x) =y(,(x) in a^x^b, and <r(x) =y6(&) in b^x^c. Since, clearly,

Jc(a) <Jb(yb), it follows from (37) that Jc(yc) <Jb(yb)-

Multiplying equation (1)—for y = yb—with yb and integrating from a to b,

we obtain

I    yt dx =   I    py      dx
J a J a

and (3) reduces therefore to

Jb(yb) = I J   y'b dxj .

Using the monontonicity of Jb(yb), we thus have

(38) (        y'c dxj   < (   I   y'c dx)   = Jc(yc) < Jb(yb), a < b < c.

As shown above A0 = iimc,„ y'e (a) exists and is positive. In every finite inter-

val, yc(x) will therefore converge uniformly to the solution yo(x) of (1) for

which y0(a)=0, y0'(a)=Ao; evidently, y0(x)>0 in (a, oo). By (38), we have

r" >*
I    y0 dx < Jb(yb).

J o

If we now let b—>oo, the right-hand side of this inequality decreases while the

left-hand side increases. This shows that a = \imb~x Jb(yb) is positive (and,

incidentally, that faVodx exists). In view of the minimum property of Jb(yb)

set forth in Theorem V, this proves Theorem VI.

It may be noted that the proof of Theorem VI does not make full use of

the uniqueness of the solutions yb for large b. All that was used was the fact

—implied by the uniqueness—that yl (a) does not tend to zero for b—> oo.

The conclusion of Theorem VI will therefore remain valid under this weaker

assumption. The following statement refers to a case in which the validity of

this assumption can be directly verified.

If (1) has two solutions u(x),v(x) such that u(a) =v(a) =0 and 0 <v(x) <u(x)

in (a, oo), then the conclusion of Theorem VI holds.

Indeed, suppose that 0<yb (a)<v'(a) for any b>a. By Lemma II, the

curves f = yb(x) and f = v(x) cannot intersect in (a, b), and we must therefore

have yb(b) <v(b). For x>b, yb(x) decreases and, because of the concavity of

the curve f = ?&(*), this curve will intersect the x-axis at a point x = c (c>b).

In (b, c), v(x) is increasing and the entire arch of f = y&(x) in (a, c) will thus lie
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below the curve f — v(x). But this again violates Lemma II, and the assump-

tion 0<yt(a) <v'(b) is thus shown to lead to an absurdity. Hence, y{(a)

>v'(a)>0 for all b>a, and the statement is proved.

It may be remarked that the existence of two solutions u(x), v(x) with the

indicated properties has thus been found to imply condition (36). This may

be compared with the fact, proved in §5, that the existence of two such solu-

tions is guaranteed by condition (14).

8. The following result shows that the "nonoscillatory" character of a

nonlinear equation of the form (1) is something very different from the cor-

responding property of a linear equation.

Theorem VII. For any a, b such that 0 <a < b < co and for any non-negative

integer m, there exists a solution of (I) which vanishes atx = a and x = b, and has

precisely m zeros in (a, b).

Since the case m = 0 is contained in Theorem V, we may assume that

m > 0. The proof will be based on an extremal problem which generalizes the

extremal problem in Theorem V, and whose solution will exhibit the required

properties. We choose m distinct points x = a in (a, b) such that aB = a<a\

<a2< • • • <am<b = am+i, and we denote by J,(o) the Rayleigh quotient (3)

for the interval [a»_i, a,], where aGD'[a, b] and o-(a„)=0 for v = 0, 1, • • • ,

f» + l. The appropriate extremal problem is

m+l

(39) 2 [/,(<t)]1/b = min,
v—l

where a ranges over all functions with the indicated properties, and the

a, (v = 1, • • • , m) may be chosen in any way compatible with the above as-

sumptions.

Theorem V shows that, for a fixed choice of Ci, • ■ ■ , am, the minimum of

(39) will be attained by m + l solutions of (1), each vanishing at two neighbor-

ing points and not vanishing in between. Our task thus reduces to the problem

of minimizing the function of the m variables ai, • • • , am defined in this way.

Since elementary considerations show that min J(y) tends to co if the length

of the interval of integration shrinks to zero, it is clear that the limit of a

converging sequence of sets (oi, • • • , am) for which (39) tends to its greatest

lower bound, will consist of m distinct points. If we can show that, at each

point ar, the functions y,(x) obtained in this way are subject to the conditions

y', (ar) =y'r+l(ar), the existence of a solution of (1) with the properties indi-

cated in Theorem VII will follow; clearly, if we let positive and negative

arches f = +y(x) alternate they will form a regular solution of (1) in [a, b].

In order to derive the required differentiation formulas of J(y) with re-

spect to the limits of the interval of integration, we denote by y(x) and yi(x)

two solutions of (1) such that y(a) = yi(a) = y(8) = yi(B + e) = 0

(Q<a<B<8-\-e< co), wherey(x) andyi(x) are positive in (a, 8) and (a,8+e),

respectively. By Theorem V these solutions exist for any a, 8, subject to the
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above conditions, and the existence theorem for equation (1) shows that

yi(/? + e)—or, if yi((8+e) is not uniquely determined by the conditions imposed

on it, one of the possible solutions yi(/3 + e)—is a differentiable function of e.

If we write yf(x)= lim.^o ^~1[yi(x)—y(x)] and note that

r"+€   2»+i        r"   2n+i        r"+« ,«        r" ,*
I       pyx     dx —  I    py      dx =   I       ys dx —  I    y dx,

an elementary computation shows that

2 f y'yUx + y'~(p) = (2» + 1)  f  /.y2n+ly,d*.
''a •* a

Since, in view of (1), yt must be a solution of

/,'+ (2n + l)pyiKyt = 0,

we have

y'y.'d* = (2n + 1)  I    py2n+1ytdx,
a J a

and thus

/.#
/>y2"+1ytd* = - y'2(/3).

a

Another elementary computation shows that

— |       yU* = 2  I    y'/rf* + /(/J)

= 2(2» + 1) f /.y^+Jy^* + y' 08)

n+1    .
=-/OS)«

and

— I       pyx    dx       = 2(» + 1) I   py2»+ly,dx =-y' ($).

Combining these identities and observing the definition ((3) of J(y), we obtain

^{[/(y)]1'"}        = - (n + l)/2(/3).
ae €_o

If a is made to vary while ;8 is kept fixed, the same argument shows that the

corresponding derivative is (m + 1)/ (a). Hence, if a, is replaced by a,+e

while all other points a,, (ti^v) are kept fixed, the variation of the expression
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(39) is e(n + l)[y£+1(av)— yy (ay)]+o(e), and it follows that for the minimal

set {a,,} we must have yy+1(av) =y'v (ay). This completes the proof of Theorem

VII.
9. As mentioned in §7, nonoscillation of the solutions of a linear equation

(1) (i.e. for w = 0) in (a, <x>) is equivalent to the inequality J(y)^l for all

b>a, where J(y) is the functional defined in Theorem V. While, for reasons

indicated in §7, no such simple connection between nonoscillation and the

lower bound for J(y) can be expected in the general case, Theorem VI shows

that, under certain additional conditions, the existence of a positive constant

A such that J(y) ^ A for all b > a is a necessary condition for the existence of

a nonoscillatory solution of (1) which vanishes at x = a. There are indications

that the inequality J(y) > A > 0 may be valid under the sole assumption that

(1) have a nonoscillatory solution of this type. On the other hand, as a de-

tailed discussion of equation (7) shows, the mere existence of such a constant

A is not a sufficient condition for the presence of a solution of this kind. The

consideration of a number of examples makes it seem likely that there exist

two universal constants Ai and A2 (0<^4i <A2< co) such that J(y) ^Ax is a

necessary, and J(y)^A2 a sufficient condition, but we are unable to prove

this.

In §7 it was shown (formula (35)) that the existence of a positive constant

A with the above properties implies

p(t)dt < =o.
x

The following theorem shows that there will be such a constant if

JQO
xn+1p(x)dx < co .

Theorem VIII. // J(y) is the minimum value defined in Theorem V and

A =lim6_m J(y) for fixed a, then

A(x- a)n+1 I    p(t)dt ^ 1,

(41)
/»  00

A j    (x - a)n+1p(x)dx ^ 1.
" a

To prove (41), we go back to the relation (22) between J(y) and the lowest

eigenvalue of the differential system (21). By the substitution t=(x — c)n+l

(0<c<a), equation (21) is transformed into

ii + (n + l)-*(x - <;)-"/>« = 0,

where the dot indicates differentiation with respect to t, and the boundary

conditions become u(h) =u(h) =0, with h = (a — c)B+1, t2 = (b — c)n+1. It is well
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known (cf., e.g., [5]) and easily proved, that the existence of such a solution

implies the condition

m(w + l)-2 f   (t - tx)(x - c)-"pdt ^ 1.

If we return to the variable x and utilize (22), we obtain

I(y) f  [(* - c)»+! - (a - c)n+1]p(x)dx ̂ 1.

Letting c—>a, we arrive at (41).

We close this section with a result which shows that the expression appear-

ing in (40) is related to the rate of growth of the solutions of (1).

Theorem IX. If

(42) lim inf *"+1 f   p(t)dt > 0,

and y(x) is a nonoscillatory solution of (I), then

y(x) g ex1'2,

where c is a positive constant.

We assume that y(x) >0 for x^a, and we write (1) in the form

y(t) = y(a) + f  (* - a)py2n+1dx + (t - a) j   py2n+1dx + (l - a)y'(b).

Since y(x) increases with x, we have

1 ^ y2n(t)(t - a) j   p(x)dx

for arbitrarily large b; hence,

1 ̂  p^-T(/ - a)»+1 f   p(x)dx.

If this is compared with (42), the result follows.

10. In those cases in which the general solution of an equation (1) can be

found, Theorem V becomes a source of sharp integral inequalities of the type

f    p(x)fn(x)dx ̂ c( f    y'\x)dx\ .

We consider here a few examples of this kind. It may be noted that in these

cases the solutions which are positive in (a, b) and satisfy either set of

boundary conditions (33) are unique.
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If y(x) is a solution of

(43) y" + ny2n~l = 0, » £ 1,

which satisfies y(a) =y'(b) =0, we have

y'*dx = « j    y2nix

and

(45) y'\x) + y2n(x) = y'\a) = y2n(b).

Hence,

/i 6 /% by'*dx +  I    y2ndx = (b - a)y'\a)
a J a

and, if this is combined with (44),

(n + 1)  f  /'<** = »(6 - a)y'~(a).
J a

Thus,

7(y) = «»(w + l)1-"^ - a)"-1[>''(a)]2n-2.

By (45), we have

/■ym        dy r1 &
„      \y*nrb) _ yuyn       l-WJ      JQ     r1_i2n)m

and this leads to the following result.

If y(a)=0 and y(x)GD'[a, b], then

(46) f  y2"dx g k ( j    y'^dxj (n > 1)

where

k = (re + l)"-^-"^ — a)n+ly-2n,

and

r1     dt
47) y =-

Jo  (1 - «2n)1/2

(46) will become an equality if, and only if, y(x) is a constant multiple of the

solution of y" +rey2n_1 =0 which is positive in (a, b) and is subject to the condi-

tions y(a) =y'(b) =0.

The next example concerns the equation

(48) w" + nx-2"-2™2--1 = 0,

whose general solution is of the form
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w(x) = *y(-),
\a       x /

where y(x) is the general solution of (43). We consider here only the boundary

conditions w(a) = w(b) = 0, since the determination of the exact constant in

the case w(a) =w'(b) =0 involves the solution of a transcendental equation.

If / = a-1—x~\ we have

w'*dx =  I    (y + xy) dt =  j   y dt + [xy ]a =  I    y dt,
J a J a J a J a

if t = 0 and t = c = a~1— b~l are two adjacent zeros of the corresponding solu-

tion y(t) of (43). Since, moreover,

j      x-2n~2w2n^x =    j    "yinfy

J a J a

our inequality reduces to the analogue of (46) for the case y(a) =y(b) =0.

Simple symmetry considerations show that in this case the constant k appear-

ing in (46) must be replaced by 21~nk, and we arrive at the following result.

Ify(a) =y(b)=0 and y(x)ED'[a, b], then

C    x-2n~2y2ndx  g,   kl(   C    y'%dx\    ,

where

/ 1        1 V+i
kx = (n + l)"-^"" f--J     y~2n,

and y is defined in (47). The sign of equality will hold only if y(x) is the solution

of (48) which is positive in (a, b) and satisfies the required boundary conditions.

It may be pointed out that in accordance with Theorem VIII, the con-

stant kx has a finite limit for b—>oo, while the constant k of (46) becomes in-

finitely large.
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