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Introduction. The principal results in this paper concern a class of uniform

spaces defined by the condition that every uniformly locally uniform covering

is uniform. Such spaces, called locally fine spaces, generalize the fine spaces,

i.e. spaces bearing the finest uniformity consistent with the topology. The

most striking results are (i) that, subject to a mild cardinality restriction, the

completion of a locally fine space is determined by its uniformly continuous

real-valued functions (generalization of Shirota's theorem [14] for fine

spaces), and (ii) that every real-valued uniformly continuous function on a

subspace of a locally fine space can be extended (generalization of a known

result for fine spaces). However, both of these results are trivial for subspaces

of fine spaces (i.e. the step from fine spaces to subspaces is trivial), and we

have not been able to determine whether this includes all the locally fine

spaces. The principal value of the concept "locally fine" is that it is a simply

defined uniform property which distinguishes a well-behaved class resembling

the fine spaces (for which no uniform characterization is known). The class is

closed under forming subspaces.

For each uniform space (iX there is a coarsest locally fine uniformity \p

finer than /x. The operator X commutes with completion and preserves both

subspaces and uniformly continuous functions. (That is, if /: pX^>v Y is

uniformly continuous then so is/: XjuX—>X»»F; \fiX does not have the same

uniformly continuous real-valued functions as i*X.) These properties of X are

easy to prove once the existence of X/i is established. The existence proof rests

heavily on the lemma, any locally fine uniformity finer than a complete metric

uniformity is fine, and on the known results that every uniformity is a union

of metric nonseparated uniformities and that every metric space is paracom-

pact. These results are employed also in the generalization of Shirota's

theorem. The last section of the paper examines some of the constructions

more closely and indicates some more direct proofs.

The first half of the paper is a review of the elementary theory of uniform

spaces, supplemented with some results not all of which are related. The best

of these results is that every countable uniform covering has a countable

uniform star-refinement. As a corollary it follows that a uniformity having a
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basis of countable coverings is a union of separable metric nonseparated uni-

formities. This fact is used in the generalization of Shirota's theorem. Typical

of the other results are (i) an explicit description of the equivalence relations

corresponding to quotient spaces, and (ii) a proof that Samuel compactifica-

tion of a complete noncompact space involves adjoining more points than

the power of the continuum (generalization of a known result on Stone-Cech

compactification).

The authors are indebted to Richard Arens for suggestions which bridged

a major gap in our first attempt to generalize Shirota's theorem. (Arens

showed us how to construct certain partitions of unity on locally fine spaces.

This step is now handled by a construction which works on any uniform

space, but Arens' contribution was of critical importance.) We are indebted

to Melvin Henriksen and Ernest Michael for contributions which appear

below, and the second-named author is indebted also to Pierre Conner, K.

Morita, and F. J. Wagner for illuminating discussions of some of these ideas.

1. Coverings. Our terminology and notation for coverings are essentially

those of Tukey [17, pp. 43-50]. Generally u denotes a covering of a space X;

u= { Ua\aEA}, or u= { Ua}, for short. We say that u is a refinement of v,

and write u <v, when u and v are coverings of the same set and every element

of m is a subset of some element of v.

We wish to employ the language of partially ordered sets in connection

with coverings ordered by refinement. The language will be more natural if

we make use of two simple remarks. First, the relation < (on coverings of a

fixed set) is only a quasi-ordering; but there is no difficulty in applying the

usual concepts of cofinal set, residual set, filter, to quasi-ordered sets. Second,

it is the finer coverings or predecessors under < which are important; in a

sense, our quasi-ordered set is ordered downward. Specifically we define a

subset Q of a quasi-ordered set P to be cofinal in P if, for every p in P, a q

in Q can be found satisfying q^p. A subset Q of P is residual in P if q in Q

and r^q in P imply that r is in Q. Q is a filter in P if (1) Q is an antiresidual

subset of P, i.e., q in Q and r^q in P imply r is in Q, and (2) Q is directed,

i.e., for q and q' in Q, there exists q" in Q such that q" ^q and q" ^q'. However,

if P is a family of sets ordered by inclusion, one requires that the empty set

0 not be an element of Q. A filter base is a cofinal subset of a filter.

The following notation is almost identical with that of [17, Chapter V]

(which see for definitions). For an intersection { UaC\ V$} of coverings,

{ Ua} A { vp}, or uAv. For the star of a set 5 with respect to a covering u,

St(5, u); but in the case of the star of an element Ua of u this may be short-

ened to U*. For the star of a covering u, u*. The star-refinement relation

u* <v is sometimes written u < *v; the convenience of this special symbol will

become apparent.

We assume the reader is acquainted with the concepts of star-finite and

point-finite [17] and finite order; we also assume an acquaintance with the
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concept of the nerve of a covering [7, pp. 68-70]. Later in the paper we shall

be concerned with the uniform structure of the nerve; this will be induced by

regarding the nerve as a metric space in which the distance between any two

points is the maximum difference in their barycentric coordinates. From now

on we shall not speak of order, but use the same terms, "finite-dimensional" or

"»-dimensional," for a covering as for its nerve.

Besides finiteness we shall need two other concepts involving cardinal

numbers, namely countability and nonmeasurability(2).

The following theorem is essentially known.

Theorem 1.1. Suppose that u and v are coverings of a set and that v* <u.

If u is (a) finite, (b) star-finite, (c) finite-dimensional, (d) point-finite, or (e) non-

measurable, then there exists a covering w such that v<w<*u and w has the

respective property (a), (b), (c), (d), or (e).

Proof. Let w = {Ua\ and v = { Vp}. Let y be any subset of u such that

there is at least one point common to all members of y; and let C be the

family of all possible such y. For each ordered pair (7, b) of elements of C,

let Wyt he the union of all Vp such that

(i) the set of all Ua which contain Vp is precisely 7, and (ii) the set of all

Ua which contain Vp is precisely 8. Let us call these Vp parts of Wyt. Let

W={Wyt).

For any nonempty Vp, the set y(8), respectively b(B), of all Ua containing

Vp, respectively Vp, is in C. The element W^jcm of w thus contains Vp, i.e.,

v<w. Given Wyt, let W,TC\Wyt be nonempty. Then VaC\Vb is nonempty for

some part Va of W„ and some part Vt of Wyt. Any Ua in 8 contains V*.

Hence Va E Ua. Then Ua is in a, that is, 5 is a subset of a. Therefore W,T C Ua.

We conclude that W*sEUa, i.e., w<*u.

If u is finite or nonmeasurable, then so is C, thus also w. Suppose that u

is star-finite. Given Wyt, let U in u contain Wyt. Then for every W\v meeting

Wyt, it is easily seen that both X and u are subsets of the star of U. Since u is

star-finite, the number of X and u are finite. Hence only a finite number of

W\p meet Wyt, i.e., w is star-finite. Finally, if a point p is in at most n mem-

bers Ux, • ■ ■ , Un of u, then p is in at most 22n members of w, namely W\„,

where X and ll are subsets of 7= { Ui\i^n\. This proves (c) and (d), and

completes the proof.

Tukey proved 1.1 for finite and star-finite coverings [17]. We have not

seen the rest of the theorem in the literature.

(s) A cardinal number is nonmeasurable [18] if a set of that power has no ultrafilter

(maximal proper filter) of subsets which is closed under countable intersection, other than the

trivial ultrafilters which consist of all sets containing a given point; equivalently, there is no

nontrivial countably additive two-valued measure, or Ulam measure, on the set. The non-

measurable numbers are closed under all the operations of transfinite arithmetic. In particular

if m is nonmeasurable then so are 2™ and any n <m [18]. It is consistent with the axioms for set

theory that no measurable numbers exist [16].
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It can be shown that 1.1 is not true for countable coverings. However we

do have

Theorem 1.2. Suppose that u and v are coverings of a set such that v**<u.

If u is countable, then there exists a countable covering w such that v<w<*u.

Proof. Let «={£/<} and v= { Va}. Define three functions, m, re, and q as

follows: m(a) is the least i such that £/,• contains V*; n(a) is the least i such

that Ui contains Vt*; and q(a) is the set of all i such that £/,■ contains Va and

i^n(a). Note that m(a) ^re(a) and that m(a) and n(a) are elements of q(<x).

For j^=k and <p a set of integers ^k which includes both j and k, let Wy**

be the union of those Va for which m(a)=j, n(a)=k, and q(a)—<f>. Let us

call these Va parts of Wy*#. Clearly { Wjk*} =wis countable and coarser than

v. Suppose that the part Va of W,-^ meets the part Vb of WT,j,. Then VaE V*,

V*EV**EU„ so that jgs. Furthermore, VbEV*EUj. Hence j is in \y.

Therefore PF„* is a subset of Uj, and W%f, C Uj. Consequently w < *u.

A covering u is said to be normal with respect to a family of coverings

if the family contains an infinite sequence { w* } such that u1 < *u and for all

re, m"+1<*m". From 1.1 we see that if u is normal with respect to a filter of

coverings, and u is either finite, star-finite, finite-dimensional, nonmeasurable,

or countable, then u is normal with respect to the subfamily consisting of

coverings of the same special type as u.

2. Basic uniform concepts. The terminology and notations for uniform

spaces are taken with slight modifications from Tukey [17].

A preuniformity on a set S is a family p, of coverings of S which forms a

filter in the quasi-ordering < *. Specifically p is required to satisfy

(Ui)  If y and z are in p., then yAz is in p;

(Ua)  If y is in p and y<z, then z is in p;

(Um) Each element of p has a star-refinement in p.

A uniformity on a topological space is a preuniformity p satisfying the two

compatibility conditions

(Uv) Each element of p has a refinement in p consisting of open sets; and

(UY) For each point x and every open set U containing x, some m in ju can

be found so that St(x, u) C U.

A preuniformity p is said to be a refinement of v, written p < v, if the fam-

ily p contains the family v. Every family of (pre) uniformities has a greatest

lower bound in the quasi-ordering < ; a basis for the greatest lower bound is

given by the set of all finite intersections of coverings in the given uniformi-

ties. Each family {pa} of preuniformities has a least upper bound, namely

the family of all coverings normal with respect to the filter 0a p*. It is not true

though that every family of uniformities has a least upper bound uniformity.

A uniformity frequently is said to be separated if the underlying topology

is To (it then follows that the topology is completely regular [2, Chapter IX,

p. 10]). Instead, we shall consider only topologies which are T0, with a few
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exceptions. These exceptions will be explicitly distinguished as nonseparated.

Under this agreement a uniform space liX is an ordered pair (X, n) where X

is a To space and n is a uniformity on X; omitting "To", one has the definition

of a nonseparated uniform space.

This essentially is Tukey's formulation [17]. Bourbaki [2] defines a uni-

form structure as a filter of reflexive relations in X having a symmetric

(filter) basis and such that every relation in the structure extends the square

of some relation in the structure. The Tukey coverings are called large cover-

ings; the Bourbaki relations are called entourages. We may pass from the

covering u to the relation R(u) of belonging to some common element of u;

conversely, a relation R on X defines a covering of X consisting of all the

left cross sections, i.e., u(R) = {R(x)\R(x) — {y\xRy} }. Since u(R(u)) is a

weaker extension than the star, and R(u(R)) is a weaker extension than the

square, the two formulations are equivalent. We shall use Bourbaki's term,

uniform coverings, for Tukey's large coverings.

A suitable preuniformity on a set defines a topology making the whole

structure a uniform space. Any preuniformity defines a not necessarily sepa-

rated uniform space; the stars of a point X with respect to uniform coverings

are taken as a basis of neighborhoods of x. It is easy to see that this topology

will be Fo if and only if each x is the intersection of its neighborhoods.

A uniformly continuous function /: fiX-^p Y is a function /: X—► Y (into)

such that for each covering Vp in v, the covering/_1( Vp) is in p. In other words,

the inverse image of a uniform covering is uniform. If /is one-to-one onto and

f_1 is also uniformly continuous, then / is called a uniform equivalence.

The concept of a functor [5 ] involves certain set-theoretic complications,

since it is typically an operator applied to some class larger than a set, such

as the class of all uniform spaces. One thinks of a functor as an ordered pair

(X, X*) of functions. However, recalling that a function/: X—>Fis an ordered

triple (/, X, Y), and that ordered pairs and triples of proper classes cannot

be formed, we must write the following definition. A functor h on a class L

of uniform spaces is a single-valued relation XVJX* whose domain is the union

of the class L and the class K of all uniformly continuous functions whose

domains and ranges are elements of L; L is the domain of X and K is the do-

main of X*. (The partition of h into X and X* can be effected, because the

conventions assure that L and K are disjoint.) The values of X are uniform

spaces (not necessarily in L) and the values of X* are uniformly continuous

functions. Finally, h must satisfy

(i) for each /: A—>5 in K, the domain of X*(/) is X(^4) and the range of

X*(/) isX(5);and
(ii) for each /: A-*B and g: B-*C in K, \*(gf) =X*(g)X*(/).
After defining a functor XUX*, we may refer to X.alone as the functor,

X* being understood from the context. Note that the composition of two

functors, when the composition is defined, is also a functor.
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When speaking of a subspace of a uniform space we shall always mean a

uniform subspace, endowed with the induced topology and the induced

uniformity. Usually we shall use the same symbol for the uniformities on the

whole space and on the subspace. For a subspace p Y of pX, the uniform

coverings of pY are precisely the coverings { Uaf~\Y}, where { Ua} is any

uniform covering of pX.

The Cartesian product Y[aPaSa of a family {;UaSa} of uniform spaces is

the product set Jj[a Sa endowed with the uniformity such that a function

into the product is uniformly continuous if and only if each of its coordinate

projections is uniformly continuous. A basis for the uniformity may be de-

scribed as follows. Let {/u<5,| iEF} be a finite subfamily of the given family.

For each i in F let y' = { Y\} be a uniform covering of ptSi. The set of all

IT>6F YyiX YLaiF Sa for all choices of YyiE { Y\}, i in F, is a covering of

Y[a Sa- The family of all such coverings is a basis for IJ« paSa. A third way

to describe the uniformity for JJa paSa is to call it the coarsest one making

all coordinate projections uniformly continuous.

A quotient vYof pX is an identification space of X induced by a uniformly

continuous function / on pX into aZ. The points of Y are the nonempty

inverse imagesf~x(z) of points in Z; and the uniformity is the finest one which

makes the mapping k(x) =f~l(f(x)) oi pX onto vY uniformly continuous.

The existence of a quotient for each/follows from the existence of greatest

lower bounds and the existence of at least one uniformity on Y which makes

k uniformly continuous. The existence of the latter is obvious, since / is

uniformly continuous.

Conversely, if »>Fis an identification space of pX, and the natural mapping

k of pX onto vY is uniformly continuous, then vY is induced by a mapping

/ of pX into oZ as above, with f=k and crZ = vY. This shows that all uni-

formly continuous functions determine all quotients.

It is natural to ask for explicit conditions on an equivalence relation R

on X so that the F-equivalence classes actually form a quotient space. We

now give such conditions.

Definition. A uniform relation R in a uniform space pX is an equivalence

relation on X with the property that for each pair of nonequivalent points

x, y, in X, there exists an infinite sequence {z'} of elements of p satisfying

(i) if x'Fx and y'Ry, then x' and y' are in no common element of z1;

(ii) for each element ZJ|+1 of zB+1, an element Z\ of z" can be found such

that if the point p is in ZJ+1 and pRq, then St(a, zn+i) EZ\.

Definition. The quotient pX/R of a uniform space pX by a uniform rela-

tion R in pX is the pair (X/R, p/R), where

(a) X/R is the set of equivalence classes of R on X;

(b) p/R is the set of all coverings of X/R normal with respect to the

family of all coverings \k(Za)}, {Za} in p, k being the natural mapping of x

into the equivalence class containing x; and
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(c) X/R is endowed with the topology defined by the uniformity n/R

(see 2.2).

There is no trouble in showing that (regarding a relation as a set of

ordered pairs)

2.1. Every intersection of uniform relations is a uniform relation.

Theorem 2.2. The quotient yX/R of a uniform space by a uniform relation

R is a uniform space. The natural mapping k of nX onto yX/R is uniformly

continuous. If f is a uniformly continuous function on uX into v Y, then the

relation f(x) =/(x') is a uniform relation R, and the function f* on uX/R into

vY, defined by fk~l, is uniformly continuous.

Proof. To prove that uX/R is a uniform space, it is sufficient to show that

u/R is nonempty and makes X/R a Fo space. By (ii) of the definition of a

uniform relation, {k(z")} is an infinite sequence of successive star-refinements.

Hence k(zl) is in n/R. By (i), if k(x) ?*k(y), then k(y) is not in St(£(x), k(z1)).

Hence any pair of points in X/R are separated, i.e., X/R is F0.

It is obvious that k is uniformly continuous.

Let/be uniformly continuous and x'Rx the relation f(x') =f(x). Suppose

that/(x) 9^f(y). Choose a sequence {vn\ in p such that/(y) is not in St(f*(x), f1)

and vn+1<*vn for each n. Then, as is easily seen, zn=f"l(vn) satisfies (i) and

(ii). It follows that the quotient is the one constructed previously and/* is

uniformly continuous (this could be proved directly). Hence the theorem.

At this point we wish to acknowledge a contribution of Ernest Michael.

Michael pointed out to us the first definition of quotients given above, in

terms of "the finest uniformity such that . . . "; we had previously worked

out the approach of 2.2. The two approaches are clearly equivalent.

A Cauchy filter in pX is a filter of subsets of X which contains an element

of every covering in li. A filter converges to x if it contains as an element each

neighborhood of x. A complete space is one in which every Cauchy filter con-

verges.

A space is uniformly locally compact if it has a uniform covering consisting

of compact sets; and similarly for other "uniform local" properties. A collec-

tion {Sa} of subsets of a uniform space uX is uniformly discrete if there exists

a uniform covering u such that the sets St(Sa, u) are pairwise disjoint. A sub-

space is called uniformly discrete if its points form a uniformly discrete

family. A countable union of uniformly discrete sets is said to be a-uniformly

discrete.

Let {jUa-Sa} be a family of uniform spaces. For each a let vaTa be a uniform

equivalent of naSa such that Tair\Tai is empty for ai5^a2. The sum 23«At«'Sa

is the union of the Ta endowed with the following uniformity. A covering of

23m«'S'» is uniform if and only if its restriction to each summand Ta is uniform

in va.

Example A. For each countable ordinal a let Xa = {(£, a) | £ is an ordinal
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^a}. Let (£, a)^(y, a) ii and only if £^7. In the order topology, Xa is a

compact space and thus has a unique uniformity pa consisting of all open

coverings.

Let pX be the sum of the family {m<»-X«| a <wi}. Let R be the equivalence

relation defined by (£, a)R(n, 8) if £ = 17. Let Y be the set of all countable

ordinal numbers with the order topology. Y has a unique uniformity, with a

basis consisting of all finite open coverings of Y. Let / be the function from

pX onto vY defined by/(£, a) =£. It is easily seen that/is uniformly continu-

ous and induces the relation R. Thus R is a uniform relation. Note that

pX/R is uniformly equivalent to v Y.

The primary point we wish to note is that under the natural mapping k

of pX onto pX/R, the image of a uniform covering is not necessarily uniform.

This is shown by the covering {-X„}. Clearly \k(Xa)} has no finite (or

countable) subcovering. Another point we wish to note is that pX is complete

but pX/R is not. It is known [2] that this can happen in a topological linear

space; here we see it happening in a uniformly locally compact space. In

passing we note that pX/R is a direct limit of the compact spaces paXa.

2.3. For any uniform space pX and any cardinal number m, either pX has

a uniformly discrete subspace of power m or every uniform covering has a uniform

refinement of power <m.

Proof. Let u be any uniform covering and v***<u, v in p. Using trans-

finite induction, construct in the obvious way a maximal set of points

E= {py} such that the sets St(py, v) are pairwise disjoint. Clearly E is uni-

formly discrete. Let w= {St(py, v***)}. Let x be any point of X. Due to the

maximality of E, St(x, v)C\St(py, v) is nonempty for some py in E. For this

py, x is in St(py, »***). Thus w is a covering; by a similar argument v<w<u,

and w has the same power as E. In particular, either E has power ^worio

has power <m.

3. Some basic operators. This section discusses six functors, together with

some remarks on successive application of these functors. We first consider

the completion as a functor.

We shall not construct the completion of a uniform space since that is

done in [2] and in [17]. In both places, equivalence classes of Cauchy filters

are used. Two Cauchy filters, D and E, are equivalent if the filter D\/E, con-

sisting of all AKJB, where A is in D and B in E, is Cauchy. Note that each

equivalence class of Cauchy filters contains a unique minimal element (mini-

mal with respect to set inclusion). Bourbaki [2, Chapter IX, pp. 14-15] points

this out in a special case. A filter D is said to be uniform in pX if for each A

in D there exist B in D and u in p such that St(B, u) EA. Note that each

equivalence class of Cauchy filters contains exactly one uniform filter. This

is the family of all St(5, u), u in p, B in D, for any representative D of the

equivalence class.

We designate the completion of a uniform space pX as wpX. It is well
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known that each uniformly continuous function /on LtX into vYhas a unique

extension/ over wyX into wvY [2, Chapter II, p. 101 ]. The completion ir,

together with the single-valued relation taking each / to /, constitutes a

functor on the class of all uniform spaces.

Since the completion of a subspace of fxX is the closure of the subspace

in ttuX, iv preserves subspaces. In view of Example A, ir does not preserve

quotients.

One fundamental property of the completion which will be needed is

Morita's Lemma:

Lemma (Morita). For any uniform covering { Ua] of ixX, let UJ (for each

a) consist of Ua together with all points of iruX which are not limit points of

X—Ua; then { UJ } is a uniform covering of ttliX, and the family of all such

coverings is a basis for ir/x.

The proof is in [10].

Other important functors are obtained by replacing (X, u) with (X, hy),

where hix is a suitable subfamily of (x. Tukey showed [17, pp. 44-49; 57-58]

that the finite uniform coverings of any uniform space uX form a basis for a

uniformity/u. In view of 1.1 and 1.2, the nonmeasurable and the countable

uniform coverings form bases for preuniformities nn, en; since each of these

contains fix, they are uniformities. Similarly those uniform coverings which

are at once countable and star-finite form a basis for a uniformity, which we

shall call six. The mappings re, e, /, s, which take fx into nit, eit, fn, and six re-

spectively, are functors. (The mapping X* in each case is the identity. The

conditions on X* are satisfied since, clearly, if/is uniformly continuous from

fxX into vY, then / is uniformly continuous from h/xX into hvY, h being

re, e,f, or s.)

A uniformity is precompact if it is coarser than /, i.e., if every uniform

covering has a uniform finite subcovering. This is equivalent to each of the

following conditions: (i) the completion is compact; and (ii) each ultrafilter

( = maximal proper filter) is Cauchy.

A metric uniformity is one which has a countable basis. A metric space

(d, X) induces a uniformity with a basis {«"}, where un is the covering by

open spheres of radius 1/w. When we speak of a metric space we mean a

metric uniform space. It is a known fact [2, Chapter IX, p. 23] that a metric

uniformity is induced by a metric. Unless specified otherwise, when we speak

of the real line R, we mean R with the usual metric uniformity, m. In a

metric uniformity precompactness is equivalent to being totally bounded.

For proofs and further facts see [2] and [17].

We now quote Weil's uniform version of Urysohn's Lemma [2, Chapter

IX, p. 9].

Theorem (Weil). For every subset A of a uniform space ixX and every

uniform covering u, there is a uniformly continuous real-valued function f on
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pX such thatf(x) = I for each x in A andf(x) =0for each x in X—St(A, u).

Given a uniform space pX, let cp be the filter having a basis consisting

of all finite intersections of the inverse images, under uniformly continuous

real-valued functions, of uniform coverings in mR. It is obvious that cp

satisfies the conditions (U,), (Ua), and (UiV) for a uniformity; (£/T) is a

consequence of Weil's Theorem, and (Um) may be inferred from the observa-

tion that the basis described above can also be described in terms of uni-

formly continuous mappings into Euclidean spaces (finite products of lines).

Thus cp is a uniformity. Clearly the single-valued relation c which associates

to each space pX the space cpX, and to each /: pX^>v Y the mapping /: cpX

—*cv Y, is a functor.

The preceding paragraph suffices to define and establish the existence of

the functor c. The question arises, what are reasonable sufficient conditions

for a uniform covering of pX to be uniform on cpXl No generally satisfactory

conditions are known. The following result will be enough for the purposes

of this paper. A uniform covering of pX whose nerve is uniformly equivalent to

a subspace of some Euclidean space is a uniform covering of cpX. This is part

of 1.6 of [8], and will be cited again in the proof of Theorem 4.10 below.

We already have fairly explicit descriptions for the functors previously

introduced. We add a detail concerning the effect of e. The following result

is well known, except for the bracketed additions.

3.1. For every [every countable] uniform covering u of a uniform space pX,

there is a uniformly continuous mapping of pX into a [separable] metric space

such that u is refined by the inverse image of some uniform covering of the range.

The proof for general u (see e.g. [8]) depends on a normal sequence («")

beginning with u- If u is countable, then by 1.2 we may take every un to be

countable. In this case it is clear from the construction that the range con-

tains no uncountable set of points with mutual distances bounded away from

zero, and it is well known that a metric space having this property is separa-

ble.
Now consider the functors re, e, f, s, c, and ir. The first three and the last

preserve subspaces. We shall see that 5 and c do not preserve subspaces. The

first five functors preserve the points of a space, thus preserving images. The

first five functors also preserve quotients, as is easily worked out. In view of

Example A, t preserves neither images nor quotients.

The first five functors coarsen the structure. Thus they must preserve

Cauchy filters, and cannot create new uniform filters. We shall be interested

in the question to what extent these functors create new Cauchy filters. Note

that / does create many new Cauchy filters. In fact, every ultrafilter in fpX

is Cauchy. If this condition is also true in pX, then pX is precompact, i.e.,

/M=M-
The composite functor irf is called the Samuel compactification [13].

We shall abbreviate wfbyB, i.e., irfpX = BpX. This is in analogy with the
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standard notation BX for the Stone-Cech compactification. The Stone-Cech

compactification of a completely regular space is characterized as a compact

space containing the given space as a dense subspace and admitting an ex-

tension of all continuous, bounded, real-valued functions. The Samuel com-

pactification may be similarly characterized as a compact space Y (with its

unique uniformity) for which the following statement is true. There is a

one to one uniformly continuous function i mapping p.X upon a dense sub-

space of Y such that every bounded uniformly continuous real-valued func-

tion on aX may be extended continuously over Y. BX, of course, is BaX,

where a is the finest uniformity compatible with the topology of X.

Clearly ix<nix<eu<su<CLi<fu, for each u. Furthermore, n/x, eit, and fn

are the l.u.b.'s of ix and, respectively, na, ea,fa.

To see this consider, for example, e/z. It is coarser than both ea and u,

that is, it is a subset of the intersection of these families of coverings. Let v

be any uniformity coarser than both ea and it. We shall show that every cov-

ering in v has a countable refinement in ju. By 2.3, either every covering in v

has a countable refinement in v (a subset of ix) whence we are through, or else

vX contains an uncountable uniformly discrete subspace Y. If the latter is

true, then since ea<v, Yis uniformly discrete in eaX, which is impossible.

A similar cardinality argument applies for fix and nu.

The corresponding statement for six and c\x is false, as the next example

shows.

Example B. Let X be the set of all sequences x= {xn} of real numbers

such that (i) 0^x„^l for all re, and (ii) xn = 0 for all re except possibly one

value. Under the distance function d(x, y) = 23n !*» —y»|, where x={x„J

and y = {y„}, X is a metric space p,X.

Let u= { Ua} be any star-finite uniform covering. There exists e>0 such

that the family of e-spheres refines { Ua}. Suppose that Uo is a Ua which

contains the e-sphere about 0, the sequence of all zeros. One easily verifies

that every Ua is joined to Uo by a chain of intersecting sets Up of length at

most [l/e] +1. Since u is star-finite, it follows that u is finite. Hence s/x

= c/i=/u.

Now let { Ua] be any open covering of X. One of the Ua contains a

5-sphere about 0, for some 5>0. Let V he the 5-sphere about 0. For each k

let Ah~ {x\ 8/2 <xt^l}. Then Ak is an open subset of X and AkC\Aj is

empty for j^k. There exists a denumerable covering vk — { V%} of Ak such

that

(1) each V„ is a subset of some Ua,

(2) no three elements of vk have a common point, and

(3) each V„ is a subset of Ak.

(The construction of vk is easy since the closure of Ak is a line segment.)

Clearly «/= { V] VJ(Uk vk) is a covering of X which refines { Ua]. Furthermore

w is countable, star-finite, and one-dimensional. Thus ca <ju and sa <fx. Hence

u is the least upper bound of ca and ju (sa and fx).
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It is easily seen that cp. = sp=fp9*p.

We now shall see that 5 and c fail to preserve subspaces in Example B.

To this end let Y be the subspace consisting of the points x" = {xi}, where

each xj[ = 1. As a subspace of pX, Y is an infinite, uniformly discrete subset.

Furthermore, pY=aY and saY=caY=aY. From this it follows,that saY

= caY is not precompact. On the other hand, since spX and cpX are fpX,

i.e., are precompact, so are all their subspaces, i.e., so are (spX)(~\Y and

(cpX)f\Y.
Example B also shows that c and it do not commute. Clearly pX is com-

plete. Thus cwpX = cpX =fpX. On the other hand, ircpX = irfpX = BpX is com-

pact, which fpX is not. The same situation prevails with any complete non-

compact bounded convex(3) (hence infinite-dimensional) metric space. In

this connection we mention an unsolved problem raised by Henriksen [l,

p. 122]: Is the completion of pX always homeomorphic with the completion

of the least upper bound of ca and p? An affirmative answer would imply that

the functors t and e commute. This also is an unsolved problem.

The completions of pX, npX, epX, spX, cpX and fpX are topologically

subspaces of each other in the order given, all being contained in the last,

irfpX. The reason is that all of these functors (n, e, s, c, f) preserve uniform

filters. Since/ is the strongest, it suffices to verify this for/. Let D be a uni-

form filter in pX, and let A be any element of D. There exist B in D and u

in p such that St(B, u) EA. Let v be the covering in fp consisting of the two

elements (i) St(5, u), and (ii) the union of the remaining elements of u.

Clearly St(2?, v) =St(2J, u) and u<v. Thus St(J5, v) EA, i.e., D is uniform in

/<"•
A similar argument shows that a uniform relation in pX is uniform in

fpX. Also, it is easy to deduce that a uniform relation in pX may be extended

over irpX, and hence over BpX. We elaborate on the details.

Theorem 3.2. A uniform relation R in a uniform space pX can be extended

to a uniform relation on BpX. If R* denotes the intersection of all such extensions

of R, then BpX/R*- = B(pX/R).

Proof. Let k be the uniformly continuous function which maps pX onto

pX/R = vY. Clearly k is also uniformly continuous from fpX onto fv Y, and

thus from fpX into the complete space Bv Y. Since X is dense in BpX, k has

a unique uniformly continuous extension, call it j, on BpX into Bv Y. Since

j(BpX) is both compact and dense in Bv Y, the function j is onto Bv Y. Let

R* be the uniform relation on BpX determined by j and let / be the natural

mapping of BpX onto BpX/R*. Obviously j/-1 is a one to one uniformly con-

tinuous function of BpX/R* onto B(pX/R). Since BpX/R* is compact and

8(pX/R) is a Hausdorff space, jf~l is a homeomorphism, and thus an open

(3) A metric space is called convex if every two points are contained in a subspace isometric

with a line segment.
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mapping. From this it readily follows that (jf~l)~l is also uniformly continu-

ous, i.e., BnX/R* = B(ixX/R).
Now let R' be any other uniform relation which extends R over B/xX.

Then R' defines a quotient space Z and a uniformly continuous function k'

of BfxX onto Z. Hence Z is compact. The restriction of k' to X is a function i

which is uniformly continuous on fnX, thus uniformly continuous on p.X.

Since R' extends R, the quotient of ixX determined by i is vY. Then i — i*k,

where k is the quotient mapping deduced from R and i* is some uniformly

continuous function on vY into Z. Z being compact, each covering of Z is

refinable by a finite covering. Hence i* is uniformly continuous on fvY and

thus extends over Bv Y. Let i' be the uniformly continuous extension of i* over

BvY. Then k! and i'j are continuous functions which coincide on the dense

subset ixX of BfiX. Hence k' and i'j are identical. This means that R' is a

stronger equivalence relation than R*, as was to be shown.

Constructing the Samuel compactification of a complete noncompact

space (as with the Stone-Cech compactification [3]) involves adjoining a

huge number of points, none of which can satisfy the first axiom of counta-

bility. This is seen by applying 2.3, a theorem of Pospisil [6], and a theorem

of Katetov [9] as follows. Let fxX be complete and noncompact. Then ixX

is not precompact, and by 2.3, it contains a denumerably infinite uniformly

discrete subspace aN. Every real-valued function on the set N is, of course,

uniformly continuous. According to Katetov's theorem every bounded uni-

formly continuous function on a subspace of a uniform space has a bounded

uniformly continuous extension over the entire space. Hence every bounded

function on N has a continuous extension over BfiX. Hence the closure of Af

in BfxX is a compact extension of N over which every bounded continuous

function on N extends, i.e., it is the Stone-Cech compactification BN. Pospisil

showed that the number of points of BN is 22N° [6]. Here aN is complete and

therefore closed in /xX. Thus all but countably many points of BN, i.e., except

N itself, are in BliX — X. To see that the first axiom of countability cannot

hold at any point of B/xX — X, it suffices to show that every closed Gt set of

PixX, which is disjoint from X, is infinite. (This suffices since a point satisfying

first countability is a closed Gt.) Now observe that any closed Gt set 77 of the

compact space BfxX is the set of zeros of some continuous real-valued function

/. Let {xn} be a sequence of points of X such that/(x„) converges to 0. {x„}

exists since X is dense in BuX and / is continuous. All the limit points of

}xn} are contained in the zeros of/, i.e., in 77, which is in B/xX — X. Thus the

subspace of fxX consisting of all x„ is closed, and hence complete in ixX. Clearly

it is not compact. Hence by 2.3, it has an infinite uniformly discrete subspace

M={xni). As above we obtain the topological space BM(=BN). Here

BM—M is in 77. Summarizing we have

Theorem 3.3. If ixX is complete but not compact, then B/xX—X contains

at least 22K° points. No point in ByX — X satisfies the first countability axiom.
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Any closed G$ of BpX which is disjoint from X contains the topological space

BN-N.

4. Locally fine spaces. A uniform space pX is locally fine provided every

uniformly locally uniform covering is uniform. A covering { Wy} is uni-

formly locally uniform in case there exists a uniform covering { Ua} such that

on each of the subspaces Ua the covering { Ua(~\ Wy} is uniform (in the in-

duced uniformity). This means that for each fixed a we may replace { Wy}

with a uniform covering W = { W%} so that { UaC\W%} = { UaC\Wy} (8 and

y vary here). Evidently pX is locally fine if and only if it is closed under the

"staggered intersection" operation { C/arMF^|all a, all 8}.

We shall next construct a locally fine space \pX which is naturally asso-

ciated with an arbitrary space pX. In fact the construction is a direct trans-

finite iteration of the operation just described. However, our proof that \p

is a uniformity involves an auxiliary transfinite induction; and to simplify

the argument we shall treat metric spaces before the general case. One ac-

companying complication is that we shall have to handle various filters of

coverings, some of which will finally turn out to be uniformities.

Accordingly we begin by defining, for any filter of coverings p, the deriva-

tive p(1) of p as the family of all coverings which have refinements of the form

{ UaC\ W%}, where { Ua} is in p and for each fixed a the family { W%} is in p.

Evidently p(1) is again a filter of coverings. Thus we may define pM for each

ordinal number a, by the inductive rules p<-<*+u = (pW)W and for limit ordi-

nals 8, pm is the union of all previous pM. Since the successive derivatives

pM are expanding, evidently there is a last derivative p(a) = p(a+1). The last

derivative of p is written Aju.

We have no counterexample to the conjecture that when p is a uniformity,

so is p(1\ and hence all M(a>(4)- We shall return to this question later in the

paper.

4.1. Lemma. Let pX be a uniform space. Let P be a partially ordered set

and h a mapping of P into 2X (the set of subsets of X). Let S be a subset of P

such that every chain in P — S is finite. Suppose that (1) the set of all h(p), p a

maximal element of P, is a uniform covering of pX, and (2) for each p in P the

set of all h(q)(~\h(p), q an immediate successor of p, is a uniform covering of

h(p) (in the induced uniformity). Then the set of all h(s), s in S, is a covering of

X and an element of\p.

Proof. The lemma is certainly true if every chain in P — S is of length at

most 1; then {h(s)\ sES}, is in ju(1). (It is uniform on each h(p), p maximal

in P; for either p itself is in S or all its successors are in S.) For a proof by

induction, let us define an ordinal-valued function 5 on P — S as follows. If

every successor of P is in S1, then 8(p) =0. If 8(q) is defined for every successor

(4) In a preliminary announcement [l, p. 106] we erroneously claimed a proof of this.
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q of p which is not in S, then b(p) is the least ordinal greater than all these

5(g). This defines 5 on all of P — S; otherwise 5 would be undefined on some

px, on a successor pi, and so on through an infinite chain in P — S, which is

impossible. Now by induction on S(p), the family {h(s)C\h(p)\ sES} is a

covering in the last derivative of the induced uniformity on h(p); for (a) it is

coarser than {(h(q)r\h(p))r\h(s)\q<p, sES}; (b) the family {h(q)(~\h(p)}
is uniform on h(p) by hypothesis (2), and (c) for each q, {h(s)C\h(q) } is in

the last derivative of the induced uniformity on h(q) by induction. Therefore

by hypothesis (1), {h(s)} is in \/x, as required.

4.2. For any complete metric space ixX, Xn=a.

Proof. It is well known that for a metrizable space X, a consists of all

coverings which have open refinements. Every covering in fx has an open re-

finement. This property is evidently preserved in taking derivatives, and

therefore \u is contained in a.

For the converse, let { Vp} be any open covering of X. For each n, let

u"= { Un,a] be a uniform covering of ixX consisting of sets of diameter at

most 2"n. Partially order the set P of all indices (re, a) as follows: (re + 1, 8)

<(n, a) if Un+x,0 meets Un,a; (n+k, y) <(n, a) if there is a chain (n+k, y)

< (re + k — 1, 5) < • • • < (n, a). Let 5 be the set of all (re, a) such that

St( £/„,„, un) is a subset of some Vp. Since ixX is complete and each Un,a is of

diameter at most 2~n, each infinite descending chain in P converges to a limit

point x. Since some e-neighborhood of x is in some Vp, only a finite number

of the Un.a in the chain can be in P — S. The remaining hypotheses of 4.1

are obvious. Therefore y= {t7„,a| (re, a)G>5} is in Xju. Since y< { Vp}, {Vp}

is in \fx.

4.3. For any uniform space jxX, every covering in /x is normal with respect

to the family of all point-finite coverings in \fj.

Proof. By 3.1, for each covering u in n, a uniformly continuous mapping

/ of ixX into a metric space v Y and a uniform covering v of v Y can be found

such that/-1(i>) is a refinement of u. We may take vY to be complete. Since

every metrizable space is paracompact [15], there is a normal sequence of

locally finite open coverings of Y, (vn), with v*=v. Each vn is in \v, by 4.2.

By an evident induction, if vn is in vM, then /-1(^n) is in fxM. Evidently

f~1(vn) is point-finite, and (f~l(vn)) is a normal sequence, as required.

Remark. The coverings just constructed are locally finite. We wish to

emphasize the property of point-finiteness, so that we can use 1.1 in the next

proof.

Theorem 4.4. For every uniform space uX, Xju is a uniformity; it is the

coarsest locally fine uniformity finer than ju. Every locally fine uniformity has a

basis of uniformly locally finite a-uniformly discrete coverings. X is a functor

preserving subspaces and commuting with completion.

Proof. Let us abbreviate "normal with respect to Xju" by "normal." We
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prove by induction that every covering in \p has a point-finite normal re-

finement. By 4.3 this is true for coverings in p. Let a be the least ordinal

such that the assertion fails for some u in pM. We may suppose u has the

form { Vp(~\ Wy}, where { Vp} and each w? = { Wy} are in previous derivatives

of p. Thus { Va} has a point-finite refinement \Ai] which has a point-

finite normal star-refinement { Fp}. For each 5 choose one 8 such that V$

contains Ai. Since {.4s} is point-finite, each Y„ is contained in only finitely

many As; let bp be the intersection of the corresponding coverings w&. Since

each ju(a) is a filter, the inductive hypothesis implies that b" has a point-

finite normal star-refinement {Z%}. Computation shows that { Y„r\Z*} is a

point-finite star-refinement of u. Moreover, since { Y„} and each \Z9a} are

normal, the construction may be continued, demonstrating that { YPC\Z*} is

normal.

Thus Xju is a uniformity. By construction it is locally fine and finer than p.

Moreover, any locally fine uniformity finer than p is finer than ju(1) and, by

induction, finer than X;it.

In particular, if p is locally fine then p =\p. Then every uniform covering

has a uniform refinement which is uniformly locally finite and c-uniformly

discrete because of 3.1, 4.2, and the known fact that this is true in spaces

aX when X is fully normal [15].

Obviously X is a functor and preserves subspaces. Since \wpX is irpX with

a finer uniformity, it is complete; and since X preserves subspaces and topol-

ogy, \irpX is a complete space containing \pX as a dense subspace, i.e. the

completion of XpX. This completes the proof of 4.4.

4.5. If pX is locally fine, so are npX and epX. Every precompact space pX

is locally fine.

Proof. The first part of the statement is obvious, since the cardinal number

of a covering { Ua(~\W^} is the sum of the powers of the coverings { W%} for

each a. The second part is obvious either by a direct use of the intersection

axiom (Ua) or from the facts that compact spaces, and subspaces of locally

fine spaces, are locally fine.

We shall need three formulas: (i) XreX = reX; (ii) reX«=X«; (iii) circ = irc.

(i) follows from 4.5. The proof of (ii) is a routine induction on the successive

derivatives p(a). The proof of (iii) is a routine application of Morita's Lemma

(given in §3).

The functors X and e do not commute. We leave it to the reader to verify

this in the following example: X is topologically an uncountable sum of two-

point discrete spaces Pa; a covering is uniform provided that all but countably

many Pa are each contained in one set Ua of the covering. We also note that

X does not commute with /, c, or 5. (As it happens, Example B proves all

three parts of this statement.) We cannot prove a corresponding result for

re, since it is consistent with the axioms for set theory that n is the identity

functor. We know of no further commutativity relations among the functors
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we have introduced; but it is worth mentioning again the unsolved problem

whether tt and e commute.

The functor X does not preserve quotients. We leave it to the reader to

work out the details in the following example. Let ixX be the space of Exam-

ple B. Let/ be the function on fxX into mR which is defined by/(0) =0 and,

forx = (xi), xn = c^0,f(x) =c(l — 1/re). Clearly/ is uniformly continuous. Let

R be the uniform relation induced by/. One can show that fxX/R is precom-

pact (and hence locally fine), but XjxX/R is not precompact.

Theorem 4.6. Every Cauchy filter in e\/x is Cauchy in n\/x (and a fortiori,

in nix).

Proof. Let D be a Cauchy filter in eX/x. Let { Una} be a u-uniformly dis-

crete covering in «X;u=XreX;u, with each collection { Una} for fixed re a uni-

formly discrete collection of nonmeasurable power. Let Vn = \Ja Una. Then

{ Vn} is in e\fx and hence some Vn, say Vm, is in D. Hence D, restricted to the

subspace (ri\/x) Vm = v Y, is Cauchy in evY. Now vY is a nonmeasurable sum

of subspaces Uma. In the complete atomic Boolean algebra of all unions of

atoms Uma, the set of all elements which are members of D is an ultrafilter

closed under countable intersection and therefore contains an atom [18].

This means that some Um„ is in D. In view of 4.4, D is Cauchy in reXju and

hence also in nil.

A uniformisable space X such that eaX is complete is called e-complete,

or real-complete (6).

4.7. Corollary. For any uniformisable space X, the following statements

are equivalent:

(a) The topological space naX is real-complete.

(b) Every space Y which is homeomorphic with the completion of a space

homeomorphic with X is real-complete.

(c) aX = naX.

(d) aX contains no uniformly discrete subspace of measurable power.

Proof, (c) and (d) are equivalent by 2.3. Evidently (b) implies (a), (a) im-

plies (d); for if Y is a measurable uniformly discrete set in aX, Y is complete

in aX and closed in iraX, but for any Ulam measure m on Y, the family

{SE'"'aX\m(Sr\ Y) = 1} is a nonconvergent filter which is Cauchy in the

uniformity ea on the topological space iraX. Finally, (c) implies (b). For let

vY=irfxX. If eaY = ehaY is not complete then, by 4.6, neither is naY; a

fortiori nvY = nirixX is not complete. But, as noted in §3, w/n is the l.u.b. of

(6) To read the growing literature on these spaces the following glossary is unfortunately

necessary. They were introduced by Hewitt [6] under the name of Q-spaces. Shirota [14]

proved a number of theorems, in particular that these are precisely the closed subspaces of

products of real lines, and called them e-complete spaces. The term real-compact has been intro-

duced by Gillman and real-complete by Jerison. In the book in preparation by Gillman and

Jerison they will (at last report) be called realcompacl (no hyphen).
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rea and p, which in this case is p. That is, p has a basis of nonmeasurable

coverings; therefore so does irp, nirpX = irp,X, and we have a contradiction.

Next we recall Morita's Theorem [ll] that the Lindelof property implies

the star-finite property; i.e. if every open covering has a countable subcover-

ing (as in a separable metric space) then every open covering has a star-

finite refinement. Applying 3.1 and 4.2 we have at once

4.8. Every countable uniform covering of a locally fine space has a star-

finite countable uniform refinement. Hence the functors s, e, X, satisfy s\ = e\.

4.9. Every countable star-finite uniform covering of any uniform space has a

refinement of the form { Ui(~\ Wj}, where { Ui} and each wi= [W]} are uniform

coverings whose nerves are uniformly equivalent to subspaces of Euclidean spaces.

Proof. Let { F,} be a countable star-finite uniform covering. Define i=j

to mean that F,- and Vj are joined by a finite chain of overlapping sets Vk.

" = " is an equivalence relation with equivalence classes Cn. For each re choose

a set Vi in CH and call it t/J. Having defined U^, let U^+i be the union of all

Vi meeting U?n but not meeting UI for k<m. Then { Um} is a uniform cover-

ing. Its nerve is simply a countable collection of line segments and rays, and

thus a subspace of the plane. For each m and n, since { F,} is star-finite,

U\\ is a union of finitely many sets F,- and meets only finitely many more sets

Vi. Therefore, there is a finite uniform covering w(m, re) such that its inter-

section with the set U\\ is finer than } F,}. The nerve of w(m, re) is a finite

polyhedron and hence is homeomorphic to a subspace of some Euclidean

space; since it is compact, any homeomorphism is a uniform equivalence.

We are now ready to complete the proof that ir and c commute on locally

fine spaces which have no uniformly discrete subspaces of measurable power.

The credit for the last step is due to Richard Arens, who in 1955 suggested

a construction of suitable real-valued functions which turn out to be uni-

formly continuous on p^3)X in general. However, we can now apply the result

1.6 of [8] noted in §3, for a quicker proof of

Theorem 4.10. cirkn = irckn.

Proof. From 4.8, 4.9, and the lemma just mentioned we see that a Cauchy

filter in c\pX is always Cauchy in e\pX; using 4.6, we have an identification

of the Cauchy filters in c\pX and in n\pX. Replacing p, with np. and using the

relation «Xre=Xre, we have a one-to-one correspondence between the points

of wknpX and of irchnpX, leaving fixed all the points of X. Since the operators

7r and c do not change the real-valued uniformly continuous functions, hence

cirKnpX = circhnpX. But arc = ire, and the proof is complete.

We turn next to extension theorems. Let us first give a simplified proof of

KatStov's extension theorem for bounded uniformly continuous functions

[9]. The simplification is due jointly to Melvin Henriksen and the authors.

Theorem (Katetov). A bounded uniformly continuous real-valued function

on a subspace vA of a uniform space pX can be extended to be uniformly continu-
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ous over ixX (with the extension also bounded).

Proof. Let A be a bounded uniformly continuous real-valued function on

vA. Then h is uniformly continuous on fvA, a subspace of f/xX. Since BvA

is the closure A~ of A in BuX, h can be extended over A~ (necessarily bounded).

Now by the Tietze extension theorem, h can be extended to be a uniformly

continuous function on the compact space P/xX. Restricting h to X completes

the proof.

On a locally fine space, a uniformly locally uniformly continuous function

is uniformly continuous. In more detail,

4.11. If a function f on ixX into vY is uniformly continuous on each of a

family of subspaces of ixX which form a uniform covering, then f is uniformly

continuous from \jxX into v Y. If f is uniformly continuous on each member of a

finite uniform covering of ixX, then f is uniformly continuous on fxX.

Proof. The first statement is obvious. As to the second, let { Va} be in v.

Let {l7.-|l^i^re} be the finite uniform covering of ixX as given in the

hypothesis. Then for each i, UiC\f~l( { Va}) = Uit~\ { W\} for some { W\} in ix.

Then {0„} =A?.t {W\} is also in ix. Since { Ui} A{ 0„} is finer than /-J( { Va}),

the proof is complete.

Theorem 4.12. A uniformly continuous real-valued function on a subspace

vA of a locally fine space uX has an extension which is uniformly continuous on

ixX. In particular, cX preserves subspaces.

Proof. Let/ mapping vA into mR he given. Let Vn=f~1(n — 1, « + l)

and Un= Vnyj(X— A). Then { Vn} is uniform on vA and hence { U„} is uni-

form on fxX. Let { Wt} be a uniform star-refinement of { U„}.

The function / is defined on the subspace A C\ W* of the subspace

W*r\(A W Wx). Since W* C Un for some re, so that A C\ W? C Vn, f is bounded

on Ar\W*. By Katetov's Theorem/may be extended to a bounded uniformly

continuous function gi and W*(~\(A\JWx) to mR. By 4.11 the function/i on

AKJWx defined by the values of/and gi is uniformly continuous.

Having extended / to/„ on ^4WU?_i Wi, the same argument yields an ex-

tension fn+x on .4WU?*!1 Wi. In this way we obtain, in the obvious way, a

well-defined function /, extending/ over all of X. On each Wi, f agrees with

fi. By 4.11, / is uniformly continuous on \/xX.

The following corollary is essentially known.

4.13. Corollary. A real-valued continuous function on a subspace Y of a

uniformisable space X is continuously extensible over X if and only if it is uni-

formly continuous in the uniformity induced on Y as a subspace of aX.

5. More details. In this section we present some additional results and

comment on unsolved problems connected with locally fine spaces. Some

parts of the proofs are given at the end of the paper and some parts are left

to the reader.



164 SEYMOUR GINSBURG AND J. R. ISBELL [October

Theorem 5.1. For a uniform space pX, the derivative pw of p is a uniform-

ity provided (a) pX is metric, (b) p has a basis of cr-uniformly discrete coverings,

or (c) pX is uniformly locally compact. In case (b), p(1) also has a basis of

a-uniformly discrete coverings, and therefore all derivatives pM are uniformities.

In case (c) pwX = aX.

The proof in the c-uniformly discrete case depends on the same indexing

scheme as in Theorem 1.2, which clearly works as well for a-uniformly discrete

coverings as for countable ones. If pX is metric, then in the expression

{ UaC\ W%} we may replace the coverings wa = {W%} with the elements wn

of a countable basis for p, and work the same indexing scheme with these

auxiliary indices re. The uniformly locally compact case is quite routine.

5.2. For any uniform space pX, the derivative /*(1) of p is a regular uniformity

in the sense of Morita [10 ]. Indeed, this is true whenever p is a regular uniform-

ity (a la Morita), and hence it is true for all pM.

This means that ju(l) satisfies a certain weak version of the star-refinement

axiom together with (Ui), (Ua), (UiV), and (Uv). With this axiom system,

Morita has shown [10] that one can develop a substantial part of the ordinary

theory of uniform spaces, particularly the theory of completion. However,

Weil's Theorem does not hold; indeed, every regular space has a regular

uniformity [10], so that there can be no assurance that continuous real-

valued functions exist.

With respect to the two unsolved problems (i) is p(l) always a uniformity

and (ii) is ew = ire, the present authors cannot visualize the structure of a

possible counterexample. With respect to the problem "is every locally fine

space a subspace of a fine space" (i.e. of a space aX), the difficulty is in deter-

mining whether or not a given space is a subspace.

To illustrate our comments consider

Example C. Let E be the set of all finite sequences of zeros and ones, par-

tially ordered as follows: x<y if x is an extension of y, i.e. y is an initial sec-

tion of x. Let E carry the discrete topology; and let a covering { Ua} of E be

uniform if the union of all residual sets contained in the Ua is a cofinal

(residual) subset of E.

Obviously pE is a uniform space having a basis of countable partitions.

We shall show that pE is locally fine and complete; and obviously pE is not

aE. This is the simplest example we know of a complete locally fine space

which is not fine. Even in this example we do not know whether or not pE is

a subspace of any space aX.

Proof.To see that pE is locally fine, consider any { UaC\Wp} in ju(1>. For

any x in E, there exist y in E and an index a such that y^x and all successors

of y are in Ua- There exist z^y and an index 8 such that all successors of z

are in W%. Since these successors are also in Ua, it follows that Ua(~\W% con-

tains a residual set which includes a successor of x. Since x is arbitrary,

j U„C\W%} is in p, as required.
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To see that /xE is complete, consider any filter D in E. If D is Cauchy,

there is at most one point common to all its elements, and if there is one then

clearly D converges. Suppose then that D has empty intersection. The com-

plements of the elements of D form a covering { Ua} of E. For any p in E

let A(p)he the set of all successors of p. For each x in E, there exist y and z.

in ^4(x) such that A(y)C\A(z) is empty (that is, E is everywhere branching,

or antidirected). Since A(y), A(z), and E— A(y) — A(z) together constitute

a uniform covering, one of them (and only one) is in the Cauchy filter D.

Hence either ^4(y) or A(z) is in { Ua}. Since x is arbitrary, the residual sets

in the Ua are cofinal and { Ua} is uniform. But D contains the complement of

each Ua and hence no Ua is in D, a contradiction. Therefore liE is complete.

We now apply Example C.

5.3. Every uniformisable space which has a nonprecompact uniformity has

at least 22t*° different (but possibly uniformly equivalent) locally fine uniformities.

Every noncompact space which is complete in some uniformity is complete in at

least 2N° different (but possibly uniformly equivalent) locally fine uniformities.

The first part of 5.3 follows from the fact that, under the given hypothesis,

there are at least 22"0 different complete spaces a Y homeomorphically con-

taining X—a result of Colmez [4]. The second part is gotten by taking an

infinite uniformly discrete subspace of aX, and then 2Ko infinite subsets of this

set such that the intersection of any two is finite; and finally taking the finest

uniformity on X which induces the structure of Example C on a specified

(and indexed) subset.

In deriving Theorem 4.10 we used the connection between general uni-

formities and metric ones (3.1) to invoke two fairly deep properties of metric

spaces, namely Stone's theorem that every open covering has a cr-discrete

open refinement and Morita's theorem that in the separable case every open

covering has a star-finite open refinement. We can, of course, give direct

proofs of the corresponding results for locally fine uniform spaces (and also

for the uniformly locally finite refinements involved in the derivation of 4.4).

These proofs are as complicated as the original ones of Stone and Morita.

One item of interest is that while we have not been able to reproduce Stone's

construction with less than the rather formidable Lemma 4.1, Morita's con-

struction needs no more than the operation { UaC\Wp}. Specifically,

5.4. Every countable uniform covering of a uniform space /xX has a star-

finite countable refinement in /*C1).

This is not hard to see by inspecting Morita's proof [ll]. Note that 1.2

seems to be required for the construction.

We conclude with a description of locally fine metric spaces.

Theorem 5.5. A complete metric space ixX is locally fine (i.e., ixX = aX) if

and only if both of the following conditions are satisfied:

(a) The set C of all nonisolated points of X is compact.

(b) Outside any neighborhood of C, distances are bounded away from zero.
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A metric space is locally fine if and only if

(a') the set of all nonisolated points is precompact, and

(b') in any complete set of isolated points, distances are bounded away from

zero.

Theorem 5.6. For a uniformisable space X, aX is metric if and only if X

is metrizable and the set of nonisolated points of X is compact. X has a locally

fine metric uniformity if and only if X is metrizable and the set of nonisolated

points of X is separable.

Theorem 5.7. For a metric space pX, \pX is metric if and only if the set of

nonisolated points of wpX is compact.

The family likeness in these theorems is apparent. Let us include another

curious member of the same family.

5.8. Let pX be a metric space. A real-valued function f is uniformly continu-

ous on pX into aR if and only if pX has a uniform partition { Ua} such that

on Ui, f is bounded and uniformly continuous into mR, and on every other Ua,

f is constant. In particular, if X is connected, f is bounded.

Proof of 5.1(a). Let pX be a metric space and { UaC\W%} a typical cover-

ing in /u(1). Choose a countable basis (yn) for p, with y+1<.*yn for each n;

and for each a choose an index n = n(a) such that yn< { W%}. Choose { Vy}

<**{Ua} in p. For each y let p(y) be the least integer i such that there is a

such that V**EUa and n(a) —i. Define the covering z= { Vyf~\Y%} by inter-

secting each FTwith the covering y", where£is/>(y)+1. Thenz<*{ UaC\Wp},

and specifically St(F70 Yg, z) is contained in any set UaC\Wji satisfying the

following conditions. (1) Ua contains F*, and subject to this condition,

n(a) =« is as small as possible. Clearly re ̂ ap(y), so that St(F£, yn+l) is con-

tained in some W%; (2) choose such a set W%. To prove the assertion, consider

any ViC\ Y\ in z which meets VyC\ Yg. There exists a set Ut such that n(e)

= p(8) and Ut contains F**. Since Vy meets Vi, hence Ut contains F*. There-

fore n, as chosen under (1), is ^p(8). Thus Y\, meeting Y%, is a subset of

Wp, and ViC\Y\ is contained in Uar\W^, as required.

The proof of 5.1(b) is quite similar except that, since the desired conclu-

sion is stronger, all the apparatus of 1.2 is needed. We do not know if pm

must be a uniformity when pX is metric.

We omit the routine proofs of 5.2-5.4. We also omit the proof of 5.5; a

proof of a stronger statement than the second part of 5.5 may be found in

[8]. Similarly for the first part of 5.6, an immediate consequence of Theorem

3 of B. Levshenko, Mat. Sb. vol. 42 (84) (1957) p. 482.
Proof of 5.6 (second part). If X has a locally fine metric uniformity, then

by 5.5 the set of nonisolated points of X has a precompact metric uniformity,

and hence is separable. Conversely suppose that X is metrizable with dis-

tance d and suppose that the subspace Cof nonisolated points has a countable

base Vt. We shall construct a distance function eon! satisfying (a') and (b')

of 5.5.
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The family P of pairs (V{, V,), where Ff C F,- and d(Vu X- Vj)>0 is

countable. Arrange the elements of P into an infinite sequence (repeating

elements if necessary) {(Ui, Wi)}. For each re let e„(x) = 2_n min [d(x, Ui), 1 ].

For x and y in C let e(x, y) = (23« [en(x)—e„(y)]2)U2. It is well known that

the mapping of C into the Hilbert cube, defined by

h(x) = (ex(x), d(x), ■ ■ ■ , en(x), ■ ■ ■)

is a homeomorphism. The metric e on C is obtained by measuring distance

as in the Hilbert cube. Hence e is consistent with the topology on C. Since

| d(x, Ui) —d(y, Ui) | ^d(x, y), e(x, y) ^d(x, y) for x and y in C. We now ex-

tend e to all of X. For x in Candy in X— C, lete(x,y) =inf e(x, z)+d(z, y)\zEC.

For x and y in X — C let e(x, y) =inf {e(x, z)+e(z, y)\zEC}.

To show that e is a metric it is sufficient to show that e satisfies the tri-

angle inequality, i.e., e(x, z) ^e(x, y)+e(y, z). Suppose that x and z are both

in C. If y is in C, then the inequality is clear. If y is in X—C, then the in-

equality follows since e^d on C. Suppose that x is in C and z is in X— C.

If y is in C, then the inequality follows from the triangle inequality in C. If

y is in X — C, then the inequality follows from the triangle inequality for d

on X and e on C, and the fact that e^d on C. Analogously for x in X—C and

z in C. For x and z both in X—C, the inequality is apparent.

Clearly e preserves the isolation of each point in X—C. Since the Hilbert

cube is precompact, so is C under e. Since distance in X—C is measured via

C, if a sequence of pairs of points have distances approaching zero, the points

approach Cand hence include a Cauchy sequence. Thus the conditions of 5.5

are satisfied.

Proof of 5.7. Suppose that XfxX is metric. By 5.5, the set of nonisolated

points of wXfxX is compact. By 4.4, irXkiX=XwliX'. The result then follows

since XirfxX is homeomorphic with ttliX.

Suppose that the set of nonisolated points of ttliX is compact. Let Y be

the complete metric space -wixX. By 4.2, XirixX^aY. By 5.6, aY is metric.

Since aY=XirixX = irXixX, the subspace X/xX is metric.

Proof of 5.8. The sufficiency of the given conditions is trivial. Conversely,

suppose that /is uniformly continuous on fxX into aR, and a fortiori into mR.

Consider the coverings (not open) v" of R consisting of the interval ( — re, re)

and all single points y, \y\ ^n. If any/_1(i)n) is uniform, then it is a partition

satisfying the hypothesis. Suppose that no such vn exists. Then for each n

there exist xn and z» in X such that d(xn, z„) <l/n, |/(xn)| Sre and /(x„)

9^f(zn). By taking a subsequence if necessary we may suppose that |/(xn+i) |

> l/OO I • Let { Wn} be a disjoint family of open neighborhoods of the points

/(x„), such that/(z„) is not in Wn. Let Wo be the complement of the set of all

/(x„). Since |/(x„)| goes to infinity, W0 is open. Then { Wi} is uniform on aR.

But {/_1(^n)} is n°t uniform, since none of its elements contains any pair

{x„, zn}. This is a contradiction, and the proof is complete.
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