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The purpose of this note is to provide a new proof for the completeness

of the Lukasiewicz axioms for infinite valued propositional logic. For the

existing proof of completeness and a history of the problem in general we

refer the readers to [l; 2; 3; 4]. The proof as was given in [4] was essentially

metamathematical in nature; the proof we offer here is essentially algebraic

in nature, which, to some extent, justifies the program initiated by the author

in [2].

In what follows we assume thorough familiarity with the contents of [2]

and adopt the notation and terminology of [2]. The crux of this proof is con-

tained in the following two observations: Instead of using locally finite MV-

algebras as the basic building blocks in the structure theory of MV-algebras,

we shall use linearly ordered ones. The one-to-one correspondence between

linearly ordered MV-algebras and segments of ordered abelian groups enables

us to make use of some known results in the first-order theory of ordered

abelian groups(2).

We say that P is a prime ideal of an MV-algebra A if, and only if, (i) P

is an ideal of A, and (ii) for each x, yEA, either xyEP or xyEP-

Lemma 1. If P is a prime ideal of A, then A/P is a linearly ordered MV-

algebra.

Proof. By 3.11 of [2], we have to prove that given x/P and y/P, either

x/P^y/P or y/P^x/P. But by 1.13 of [2], this just means that either

xyEP or xyEP.

Lemma 2. If aEA and ay^O, then there exists a prime ideal P of A such that

a<£P.

Proof. Consider an ideal 7 of A which is maximal with respect to the prop-

erty that aEI- We show that 7 is a prime ideal. Let x, yEA and assume

xyEI and xyEl- Thus the ideal generated by 7 and the element xy would

contain the element a, i.e.,

(1) a g t + p(xy)       for some / E I and p integer.

Received by the editors July 3, 1958.
(') The preparation of this paper was supported by the National Science Foundation under

grant G-5009.
(*) The author wishes to give thanks to Dana Scott who first suggested this new angle of

attack; in particular, Scott has simplified the original argument of the author for Lemma 2.

74



A PROOF OF THE COMPLETENESS OF THE LUKASIEWICZ AXIOMS        75

Similarly, the ideal generated by I and xy would also contain the element a,

i.e.,

(2) a ^ 5 + q(xy)       for some s (Ez I and q integer.

Let u = s+t and let re = max (p, q). Then clearly wG/ and from (1) and (2),

(3) a ^ u + n(xy)    and    a ^ u + n(xy).

From (3) and Axiom 11 of [2],

(4) a = a A a ^ [« + «(^y)] A [« + n(xy)\ = u + [n(xy) A n(xy)\.

Now, using the dual of 3.7 of [2], we see that

n(xy) A n(xy) — 0.

Thus, by (4), a^u which implies the contradiction that aG-f.

Lemma 3. Every MV-algebra is a subdirect product of linearly ordered MV-

algebras.

Proof. This is obvious by Lemma 2, as all we need to show is that the set

intersection of all prime ideals of an MV-algebra contains the 0 element only.

Given an additive ordered abelian group G (with the operations + and —,

the identity 0, and the ordering ^) let the segment G[c] determined by a

positive element c of G be the set of all elements xGG such that Ogx^c.

We define the operations +', ', and _' on the elements of G[c] as follows:

x+'y = min(c, x + y),

x'y+ (x' ='y')-'.

Lemma 4. The algebraic system determined by the set G[c], the operations

defined above, and the distinguished elements 0 and c is a linearly ordered MV-

algebra.

Proof. The proof consists in checking that all axioms of MV-algebras

hold in G[c], plus the fact that it is linearly ordered. We shall not give the

details here.

What we now wish to establish is the converse to Lemma 4. Given an

MV-algebra A, we let A* be the set of all ordered pairs (m, x) where ret is

an integer and xG-<4. On the set A* we define the following:

(m + 1, 0) = (m, 1),

(m, x) + (re, y) = (m + », x + y)        if x + y < 1,

(m, x) + (re, y) — (m + re + 1, xy)      if x + y = 1,

— (m, x) = ( — m — 1, x).
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Lemma 5. Let A be a linearly ordered MV-algebra, then the set A* under the

operations + and — and with the distinguished element (0, 0) is an additive

ordered abelian group.

Proof. We first prove a result which belongs to the elementary theory of

MV-algebras:

(1) If x, y, z are elements of a linearly ordered MV-algebra and if x^y

and y+z<l, then x(y+z) =xy+z. This can be seen as follows:

xy + z + * = xy + * + z = (y V *) + z = y + z,

and

x(y + z) + * = * V (y + z) = y + z.

Therefore,

*y + z + * = *(y + z) + *.

Since y+z<l, the conclusion of (1) follows by 3.13 of [2].

To proceed with the main proof, we first check that the definitions of +

and — as given above is consistent with respect to the equality (w + 1, 0)

= (m, 1). Also, it is clear that the operation + on A* is commutative and that

each element of A * has an additive inverse. It now remains to prove that + is

associative. Therefore, let three elements (m, x), (n, y), (q, z) of A* be given.

We wish to show that

(2) (m, x) + [(», y) + (q, a)] = [(m, x) + (n, y)] + (q, z).

We proceed by cases.

Case 1. x+y+z<l. It is clear that x+y<l and y+z<l, therefore (2)

becomes

(m + (n + q), x + (y + z)) = ((m + n) + q, (x + y) + z)

which certainly holds.

Case 2. x+y+z= 1. There are now four subcases.

Case 2a. x+y<l and y+z<l. In this case (2) becomes

(3) (m + n + q + 1, x(y + z)) = (m + » + q + 1, (* + y)z).

Suppose x+z= 1. Then x^z and z^x, and by (1),

x(y + z) = y + xz = (* + y)z

which proves (3). Suppose now

(4) x + z < 1.

Since (x+y)~^z,

z = z V (* + y)~ = (* + y)z + (x + y)~,

and
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z + x = (x + y)z -f- (x -\- y)~ + x = (x + ;y)z + xy + x = (x + y)z -\- xy + y-

Since x-r-y<l, we have that xy = 0, therefore

(5) z + x = (x + y)z + y.

Similarly, as (y+z)~^x, we obtain (using the fact y+z<l)

z+x=z+(y + z)x + (y + z)~ — x(y -{■ z) -\- z -\- yz
(6)

= x(y + z) + yz + y = x(y + z) + y.

(4), (5), (6), and 3.13 of [2] enable us to cancel y and obtain (3).

Case 2b. x+y<l and y + s=l. In this case the right hand side of (2)

becomes

(7) (m + n + q + 1, (x + y)z)

and the left hand side of (2) becomes

(8) (m, x) + (re + q + 1, yz).

Since x+y<l, hence x+yz<l, therefore (8) becomes

(9) (m + re + q + 1, x + yz).

Using (1), we see easily that

(x + y)z = x + yz,

hence the equality of (7) and (9) is assured.

Case 2c. x+y=l and y+z<l. The argument for this case is analogous

to that of Case 2b.

Case 2d. x+y = 1 and y+s= 1. In this case the right hand side of (2) be-
comes

(10) (m + n+1, xy) + (q, z)

and the left hand side of (2) becomes

(11) (m, x) + (re + q + 1, yz).

We consider two more subcases.

Case 2d(i). xy-\-z= 1. In this case we show that x+yz= 1. We have that

x+y^z and x^y, thus

(12) x = x/\y — (x-{- y)y ^ zy.

(12) of course implies that x+yz=l, hence both (10) and (11) are equal to

(m+n-\-q + 2, xyz) which proves (2).

Case 2d(ii). xy+z<l. In this case by considering the argument in Case

2d(i) and symmetry, we also have x+yz<l. Hence (10) becomes

(m + re + q + 1, xy + z)
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and (11) becomes

(m+n + q+1, x + yz).

We now have to show under these conditions,

(13) xy + z = x + yz.

Since xy+z<l, x+yz<l, y^z, and y^x, we have by (1)

(xy + z)y = xy + zy,

(x + yz)y = xy + zy,

and

(14) (xy + z)y = (* + yz)y.

Adding y to both sides of (14), we get by using the commutativity of V,

(15) yz(x + y) + xy + z = y*(y + z) + * + yz.

But since x+y = y+z=l, yz = xz = 0, therefore  (15)  leads to the desired

equality (13).

Finally, in order to show that A* is an ordered group, we simply exhibit

the ordering relation ^ and leave it to the reader to check that the ordering

is preserved by the group operations:

(m, x) ^ (n, y) if and only if either m < n or m = » and x ^ y.

Lemma 6. 7/ .4 is a linearly ordered MV-algebra, then A*[(0, 1)] is iso-

morphic with A; furthermore, the element (0, 1) in A* has the property that for

each xG-4*, there exists an n such that n(0, 1) ^x^(w + l)(0, 1). On the other

hand, if G is an ordered abelian group and c is a positive element of G such that

for each xEG, there exists an n such that nc^x<(n + l)c, then G[c]* is iso-

morphic with G.

Proof. The first part of the lemma is clearly true from our construction of

A*. For the second part we shall exhibit the isomorphism of G onto G[c]*.

For each xEG, there exists an nx such that wIc^x<(«I+l)c. The function

/ is defined as follows:

/(*) = (nx, x — nxc).

It is an elementary exercise to prove that/ is well-defined and is an isomor-

phism.

Incidentally, we remark here that for Lemmas 6 and 7, if A is a locally

finite MV-algebra then A * is an Archimedean ordered abelian group. Using

this fact we see that the conjecture stated after 3.21 of [2] is true. It also

follows that every locally finite MV-algebra has at most a continuum number

of elements.
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Lemma 7. To each identity E in the theory of MV-algebras, there corresponds

an universal sentence E* (with one free variable c) in the theory of ordered abelian

groups such that for any linearly ordered MV-algebra A, E holds in A if and

only if E* holds in A* with the free variable c interpreted as the element (0, 1).

Proof (in outline). Given an identity E in the theory of MV-algebras, we

assume that Xi, x2, • ■ • , xn are the only variables occurring in E and that the

identity E is built up from the variables, the constants 0 and 1, and the oper-

ations + and ~. We arrive at the associated universal sentence E* in a finite

number of steps in the following manner: First we replace in E the symbol 1

by the symbol c. Then we replace (in the order of their lengths) each expres-

sion of the form

in E by the expression

min (v +*£, c),

and each expression of the form

I
in E by the expression

Thus we obtain, at the end of the process, an expression E' which is built up

from the group operations +* and — and the function min (x, y). Let now

E" be the expression obtained from E' by simply removing everywhere in

E' the symbol *. Finally, the universal sentence E* in the theory of ordered

abelian groups is

E* - (xx) • • • (x,.)(0 £ * £,c A *' • •  A0 ^ x„ £ c — E").

From our construction of E* and A* it is evident that E holds in A if and

only if E* holds in A* with c interpreted as (0, 1).

At this point we shall make use of two known results:

(I) Every ordered abelian group can be embedded in a divisible ordered

abelian group.

(II) The first-order theory of divisible ordered abelian groups is complete.

Result (I) is well-known, and result (II) can be found in [5] and [6](3). From

(I) and (II) we infer immediately that

(III) An universal sentence £ in the first-order theory of ordered abelian

groups holds in the additive group R of rationals if and only if £ holds in

every ordered abelian group.

(3) Indeed, (II) is a result of Tarski's which somehow never appeared explicitly as such in

print. The closest reference to it can be found in [5] and in an English translation of [5] in

[6, p. 134], second paragraph.
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We are now ready for

Lemma 8. An identity E (in the theory of MV-algebras) holds in the linearly

ordered MV-algebra R[l] if and only if it holds in every linearly ordered MV-

algebra.

Proof. The lemma is trivial in one direction. Assume now an identity E is

given which does not hold in some linearly ordered MV-algebra A. Thus E*

will not hold in A* with c interpreted as the element (0, 1); in particular, the

universal sentence (without free variables)

£ = (c)(0<c^E*)

will not hold in A*. By result (III), i; does not hold in the group R, i.e.,

(1) there exists an element (positive) c in R such that E* does not hold

in R.

By the fact that there is an automorphism (both group and order) of the

rationals R onto R mapping c onto 1, we see from (1) that E* does not hold

in R with c interpreted as 1. By Lemma 6, i?[l]* is isomorphic with R, hence

we finally arrive at the result that E does not hold in R[l] which proves the

lemma.

Theorem. In the Lukasiewicz axiom system for infinitely valued proposi-

tional logic every valid formula is provable.

Proof. From our previous results and considerations to be found in §5

of [2 ], we only need to show that every identity E which holds in the linearly

ordered MV-algebra R[l] holds in the algebra L. By Lemma 3, L is a sub-
algebra of a direct product of linearly ordered algebras. By Lemma 8, if E

holds in R[l], then E holds in each one of these linearly ordered factors;

which, of course, implies that E holds in L.
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