A NEW PROOF OF THE COMPLETENESS OF THE LUKASIEWICZ AXIOMS(1)

BY C. C. CHANG

The purpose of this note is to provide a new proof for the completeness of the Łukasiewicz axioms for infinite valued propositional logic. For the existing proof of completeness and a history of the problem in general we refer the readers to [1; 2; 3; 4]. The proof as was given in [4] was essentially metamathematical in nature; the proof we offer here is essentially algebraic in nature, which, to some extent, justifies the program initiated by the author in [2].

In what follows we assume thorough familiarity with the contents of [2] and adopt the notation and terminology of [2]. The crux of this proof is contained in the following two observations: Instead of using locally finite MV-algebras as the basic building blocks in the structure theory of MV-algebras, we shall use linearly ordered ones. The one-to-one correspondence between linearly ordered MV-algebras and segments of ordered abelian groups enables us to make use of some known results in the first-order theory of ordered abelian groups(2).

We say that P is a *prime* ideal of an MV-algebra A if, and only if, (i) P is an ideal of A, and (ii) for each $x, y \in A$, either $x\bar{y} \in P$ or $\bar{x}y \in P$.

LEMMA 1. If P is a prime ideal of A, then A/P is a linearly ordered MV-algebra.

Proof. By 3.11 of [2], we have to prove that given x/P and y/P, either $x/P \le y/P$ or $y/P \le x/P$. But by 1.13 of [2], this just means that either $x\bar{y} \in P$ or $\bar{x}y \in P$.

LEMMA 2. If $a \in A$ and $a \neq 0$, then there exists a prime ideal P of A such that $a \notin P$.

Proof. Consider an ideal I of A which is maximal with respect to the property that $a \in I$. We show that I is a prime ideal. Let x, $y \in A$ and assume $x\bar{y} \in I$ and $\bar{x}y \in I$. Thus the ideal generated by I and the element $x\bar{y}$ would contain the element a, i.e.,

(1)
$$a \le t + p(x\bar{y})$$
 for some $t \in I$ and p integer.

Received by the editors July 3, 1958.

⁽¹⁾ The preparation of this paper was supported by the National Science Foundation under grant G-5009.

⁽²⁾ The author wishes to give thanks to Dana Scott who first suggested this new angle of attack; in particular, Scott has simplified the original argument of the author for Lemma 2.

Similarly, the ideal generated by I and $\bar{x}y$ would also contain the element a, i.e.,

(2)
$$a \le s + q(\bar{x}y)$$
 for some $s \in I$ and q integer.

Let u = s + t and let $n = \max(p, q)$. Then clearly $u \in I$ and from (1) and (2),

(3)
$$a \le u + n(x\bar{y}) \text{ and } a \le u + n(\bar{x}y).$$

From (3) and Axiom 11 of [2],

$$(4) a = a \wedge a \leq [u + n(x\bar{y})] \wedge [u + n(\bar{x}y)] = u + [n(x\bar{y}) \wedge n(\bar{x}y)].$$

Now, using the dual of 3.7 of [2], we see that

$$n(x\bar{y}) \wedge n(\bar{x}y) = 0.$$

Thus, by (4), $a \leq u$ which implies the contradiction that $a \in I$.

LEMMA 3. Every MV-algebra is a subdirect product of linearly ordered MV-algebras.

Proof. This is obvious by Lemma 2, as all we need to show is that the set intersection of all prime ideals of an MV-algebra contains the 0 element only.

Given an additive ordered abelian group G (with the operations + and -, the identity 0, and the ordering \leq) let the segment G[c] determined by a positive element c of G be the set of all elements $x \in G$ such that $0 \leq x \leq c$. We define the operations +', ', and -' on the elements of G[c] as follows:

$$x +' y = \min(c, x + y),$$

 $\bar{x}' = c - x,$
 $x'y + (\bar{x}' = '\bar{y}')^{-'}.$

LEMMA 4. The algebraic system determined by the set G[c], the operations defined above, and the distinguished elements 0 and c is a linearly ordered MV-algebra.

Proof. The proof consists in checking that all axioms of MV-algebras hold in G[c], plus the fact that it is linearly ordered. We shall not give the details here.

What we now wish to establish is the converse to Lemma 4. Given an MV-algebra A, we let A^* be the set of all ordered pairs (m, x) where m is an integer and $x \in A$. On the set A^* we define the following:

$$(m+1, 0) = (m, 1),$$

 $(m, x) + (n, y) = (m+n, x+y)$ if $x + y < 1,$
 $(m, x) + (n, y) = (m+n+1, xy)$ if $x + y = 1,$
 $-(m, x) = (-m-1, \bar{x}).$

LEMMA 5. Let A be a linearly ordered MV-algebra, then the set A^* under the operations + and - and with the distinguished element (0, 0) is an additive ordered abelian group.

Proof. We first prove a result which belongs to the elementary theory of MV-algebras:

(1) If x, y, z are elements of a linearly ordered MV-algebra and if $\bar{x} \le y$ and y+z<1, then x(y+z)=xy+z. This can be seen as follows:

$$xy + z + \bar{x} = xy + \bar{x} + z = (y \lor \bar{x}) + z = y + z,$$

and

$$x(y+z) + \bar{x} = \bar{x} \lor (y+z) = y+z.$$

Therefore,

$$xy + z + \bar{x} = x(y + z) + \bar{x}.$$

Since y+z<1, the conclusion of (1) follows by 3.13 of [2].

To proceed with the main proof, we first check that the definitions of + and - as given above is consistent with respect to the equality (m+1, 0) = (m, 1). Also, it is clear that the operation + on A^* is commutative and that each element of A^* has an additive inverse. It now remains to prove that + is associative. Therefore, let three elements (m, x), (n, y), (q, z) of A^* be given. We wish to show that

(2)
$$(m, x) + [(n, y) + (q, z)] = [(m, x) + (n, y)] + (q, z).$$

We proceed by cases.

Case 1. x+y+z<1. It is clear that x+y<1 and y+z<1, therefore (2) becomes

$$(m + (n + q), x + (y + z)) = ((m + n) + q, (x + y) + z)$$

which certainly holds.

Case 2. x+y+z=1. There are now four subcases.

Case 2a. x+y<1 and y+z<1. In this case (2) becomes

$$(3) (m+n+q+1, x(y+z)) = (m+n+q+1, (x+y)z).$$

Suppose x+z=1. Then $\bar{x} \leq z$ and $\bar{z} \leq x$, and by (1),

$$x(y+z) = y + xz = (x+y)z$$

which proves (3). Suppose now

$$(4) x+z<1.$$

Since $(x+y)^- \le z$,

$$z = z \lor (x + y)^{-} = (x + y)z + (x + y)^{-},$$

and

$$z + x = (x + y)z + (x + y)^{-} + x = (x + y)z + \bar{x}\bar{y} + x = (x + y)z + xy + \bar{y}.$$

Since x+y<1, we have that xy=0, therefore

$$(5) z + x = (x + y)z + \bar{y}.$$

Similarly, as $(y+z)^- \le x$, we obtain (using the fact y+z<1)

(6)
$$z + x = z + (y + z)x + (y + z)^{-} = x(y + z) + z + \bar{y}\bar{z}$$
$$= x(y + z) + yz + \bar{y} = x(y + z) + \bar{y}.$$

(4), (5), (6), and 3.13 of [2] enable us to cancel \bar{y} and obtain (3).

CASE 2b. x+y<1 and y+z=1. In this case the right hand side of (2) becomes

$$(7) (m+n+q+1, (x+y)z)$$

and the left hand side of (2) becomes

(8)
$$(m, x) + (n + q + 1, yz).$$

Since x+y < 1, hence x+yz < 1, therefore (8) becomes

$$(9) (m+n+q+1, x+yz).$$

Using (1), we see easily that

$$(x+y)z=x+yz,$$

hence the equality of (7) and (9) is assured.

CASE 2c. x+y=1 and y+z<1. The argument for this case is analogous to that of Case 2b.

Case 2d. x+y=1 and y+z=1. In this case the right hand side of (2) becomes

$$(10) (m+n+1, xy) + (q, z)$$

and the left hand side of (2) becomes

$$(11) (m, x) + (n + q + 1, yz).$$

We consider two more subcases.

CASE 2d(i). xy+z=1. In this case we show that x+yz=1. We have that $\bar{x}+\bar{y} \le z$ and $\bar{x} \le y$, thus

(12)
$$\bar{x} = \bar{x} \wedge y = (\bar{x} + \bar{y})y \leq zy.$$

(12) of course implies that x+yz=1, hence both (10) and (11) are equal to (m+n+q+2, xyz) which proves (2).

CASE 2d(ii). xy+z<1. In this case by considering the argument in Case 2d(i) and symmetry, we also have x+yz<1. Hence (10) becomes

$$(m+n+q+1, xy+z)$$

and (11) becomes

$$(m + n + q + 1, x + yz).$$

We now have to show under these conditions,

$$(13) xy + z = x + yz.$$

Since xy+z<1, x+yz<1, $\bar{y} \le z$, and $\bar{y} \le x$, we have by (1)

$$(xy + z)y = xy + zy,$$

$$(x + yz)y = xy + zy.$$

and

$$(14) (xy+z)y = (x+yz)y.$$

Adding \bar{y} to both sides of (14), we get by using the commutativity of \vee ,

(15)
$$\bar{y}\bar{z}(\bar{x}+\bar{y}) + xy + z = \bar{y}\bar{x}(\bar{y}+\bar{z}) + x + yz.$$

But since x+y=y+z=1, $\bar{y}\bar{z}=\bar{x}\bar{z}=0$, therefore (15) leads to the desired equality (13).

Finally, in order to show that A^* is an ordered group, we simply exhibit the ordering relation \leq and leave it to the reader to check that the ordering is preserved by the group operations:

$$(m, x) \le (n, y)$$
 if and only if either $m < n$ or $m = n$ and $x \le y$.

LEMMA 6. If A is a linearly ordered MV-algebra, then $A^*[(0, 1)]$ is isomorphic with A; furthermore, the element (0, 1) in A^* has the property that for each $x \in A^*$, there exists an n such that $n(0, 1) \le x \le (n+1)(0, 1)$. On the other hand, if G is an ordered abelian group and c is a positive element of G such that for each $x \in G$, there exists an n such that $nc \le x < (n+1)c$, then $G[c]^*$ is isomorphic with G.

Proof. The first part of the lemma is clearly true from our construction of A^* . For the second part we shall exhibit the isomorphism of G onto $G[c]^*$. For each $x \in G$, there exists an n_x such that $n_x c \le x < (n_x + 1)c$. The function f is defined as follows:

$$f(x) = (n_x, x - n_x c).$$

It is an elementary exercise to prove that f is well-defined and is an isomorphism.

Incidentally, we remark here that for Lemmas 6 and 7, if A is a locally finite MV-algebra then A^* is an Archimedean ordered abelian group. Using this fact we see that the conjecture stated after 3.21 of [2] is true. It also follows that every locally finite MV-algebra has at most a continuum number of elements.

Lemma 7. To each identity E in the theory of MV-algebras, there corresponds an universal sentence E^* (with one free variable c) in the theory of ordered abelian groups such that for any linearly ordered MV-algebra A, E holds in A if and only if E^* holds in A^* with the free variable c interpreted as the element (0, 1).

Proof (in outline). Given an identity E in the theory of MV-algebras, we assume that x_1, x_2, \dots, x_n are the only variables occurring in E and that the identity E is built up from the variables, the constants 0 and 1, and the operations + and -. We arrive at the associated universal sentence E^* in a finite number of steps in the following manner: First we replace in E the symbol 1 by the symbol e. Then we replace (in the order of their lengths) each expression of the form

$$\nu + \xi$$

in E by the expression

$$\min (\nu + * \xi, c),$$

and each expression of the form

ξ

in E by the expression

$$c - \xi$$
.

Thus we obtain, at the end of the process, an expression E' which is built up from the group operations $+^*$ and - and the function min (x, y). Let now E'' be the expression obtained from E' by simply removing everywhere in E' the symbol *. Finally, the universal sentence E^* in the theory of ordered abelian groups is

$$E^* = (x_1) \cdot \cdot \cdot (x_n)(0 \le x_1 \le c \wedge \cdot \cdot \cdot \wedge 0 \le x_n \le c \to E'').$$

From our construction of E^* and A^* it is evident that E holds in A if and only if E^* holds in A^* with c interpreted as (0, 1).

At this point we shall make use of two known results:

- (I) Every ordered abelian group can be embedded in a divisible ordered abelian group.
- (II) The first-order theory of divisible ordered abelian groups is complete. Result (I) is well-known, and result (II) can be found in [5] and [6](3). From (I) and (II) we infer immediately that
- (III) An universal sentence ξ in the first-order theory of ordered abelian groups holds in the additive group R of rationals if and only if ξ holds in every ordered abelian group.

⁽³⁾ Indeed, (II) is a result of Tarski's which somehow never appeared explicitly as such in print. The closest reference to it can be found in [5] and in an English translation of [5] in [6, p. 134], second paragraph.

We are now ready for

Lemma 8. An identity E (in the theory of MV-algebras) holds in the linearly ordered MV-algebra R[1] if and only if it holds in every linearly ordered MV-algebra.

Proof. The lemma is trivial in one direction. Assume now an identity E is given which does not hold in some linearly ordered MV-algebra A. Thus E^* will not hold in A^* with c interpreted as the element (0, 1); in particular, the universal sentence (without free variables)

$$\xi = (c)(0 < c \rightarrow E^*)$$

will not hold in A^* . By result (III), ξ does not hold in the group R, i.e., (1) there exists an element (positive) c in R such that E^* does not hold in R.

By the fact that there is an automorphism (both group and order) of the rationals R onto R mapping c onto 1, we see from (1) that E^* does not hold in R with c interpreted as 1. By Lemma 6, $R[1]^*$ is isomorphic with R, hence we finally arrive at the result that E does not hold in R[1] which proves the lemma.

THEOREM. In the Lukasiewicz axiom system for infinitely valued propositional logic every valid formula is provable.

Proof. From our previous results and considerations to be found in §5 of [2], we only need to show that every identity E which holds in the linearly ordered MV-algebra R[1] holds in the algebra L. By Lemma 3, L is a subalgebra of a direct product of linearly ordered algebras. By Lemma 8, if E holds in R[1], then E holds in each one of these linearly ordered factors; which, of course, implies that E holds in L.

References

- 1. C. C. Chang, *Proof of an axiom of Lukasiewicz*, Trans. Amer. Math. Soc. vol. 87 (1958) pp. 55-56.
- 2. ——, Algebraic analysis of many valued logics, Trans. Amer. Math. Soc. vol. 88 (1958) pp. 467-490.
- 3. C. A. Meredith, The dependence of an axiom of Lukasiewicz, Trans. Amer. Math. Soc. vol. 87 (1958) p. 54.
- 4. Alan Rose and J. Barkley Rosser, Fragments of many-valued statement calculi, Trans. Amer. Math. Soc. vol. 87 (1958) pp. 1-53.
- 5. A. Tarski, Sur les ensembles définissables de nombres réels. I, Fund. Math. vol. 17 (1931) pp. 210-239.
 - 6. ——, Logic, semantics, metamathematics, Oxford University Press, 1956.

University of Southern California, Los Angeles, California University of California, Los Angeles, California