
THE CYCLIC JACOBI METHOD FOR COMPUTING THE
PRINCIPAL VALUES OF A COMPLEX MATRIX^)

BY

G. E. FORSYTHE AND P. HENRICI

1. Introduction and summary

1.1. Jacobi's method for computing the eigenvalues of a real symmetric

matrix. Let A = (apf) be a real symmetric matrix of order «, and let

Xi, Xa, • • • , X„ be its eigenvalues. It is well known that if U is an orthogonal

matrix such that

(1) A = UA UT

is diagonal (T denotes the transpose), then the main diagonal of A is made

up of the numbers X< in some order. If it is desired to compute the Xj numer-

ically, this result is of no immediate use, since for w>2 there exists no man-

ageable expression for the general orthogonal matrix of order n. However,

Jacobi [6] suggested the computation of the set of X,- as the limiting set of

diagonal elements of a sequence of matrices which are generated from A re-

cursively by plane rotations.

ForA = 0,l, 2, • • • , let <j> = 4>k be a real angle and (i, j) = (ik, jk), a pair of

integers such that l^ik<jk^n. The matrix Uk = (upf), where

upp = 1 (p 9* i, j),

ua = cos <p, ua = sin <p,

u,i = — sin <t>,        Ujj = cos <j>,

all other upq = 0,

is clearly orthogonal. We define a sequence of matrices Ak= (a*) by

Ao = A,        Ak+X = UkAkUTk (k = 0, 1, 2, • ■ ■ ).

The eigenvalues of A* are the same as those of A. Hence, if

(3) lim Ak = A
i->«o

exists and is diagonal, or if there exist permutation matrices Pk such that
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(4) lim PkAkPiT1 = A

exists and is diagonal, then A has on its diagonal the eigenvalues of A. Jacobi

essentially showed that (4) holds if the matrices Uk are selected as follows:

Choose

(I) (»t, jk) such that | a,y |   = max | aPq \ ,

and

(II) <j>k such that atj      = 0.

He also showed that (II) can always be realized and gave an estimate for the

rate of convergence of the method. In [3] Goldstine, Murray, and von Neu-

mann gave a description of Jacobi's method and studied the effect of round-

off errors.

1.2. Extensions of Jacobi's method. In this paper we extend and gen-

eralize Jacobi's method in various directions. We shall first describe the results

which we obtain in each of these directions, and then in §1.3 synthesize them

in the form of four theorems. While one of these extensions is in common use

on automatic digital computers, ours is apparently the first proof of its con-

vergence.

The cyclic Jacobi method. Jacobi's method in its original form requires at

each step the scanning of n(n —1)/2 numbers for one of maximum modulus.

For large matrices this is a relatively slow process, especially for automatic

digital computers. It is more convenient to select the pairs (i,j) in some cyclic

order. We here consider two cyclic orders: (i) cyclic by rows, indicated by the

scheme

(to, jo) - (1,2),

(ik,jk + 1), if ik < n — l,jk < n,

(IHr) (ik+i,jk+i) =    (ik + 1, ik + 2), ii ik < n — 1, jk = n,

(1, 2), if ik = n — l,jk = n;

and (ii) cyclic by columns, as follows:

(*o,/o) = (1,2),

(t* + 1, jk), if ik < jk - 1, jk ^ n,

(Hie) iik+i,jk+i) = ■ il, jk + 1), if ik = jk - l,jk < n,

.(1, 2), iiik = n — l,jk = n.

A modified Jacobi method, here called the cyclic Jacobi method, consisting

of selecting (ik, jk) according to one of the rules (III) and (pk according to

(II), is used on electronic computers (see Gregory  [5]), apparently with
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satisfactory results. Using both analysis and machine experiments, Pope and

Tompkins [12] have studied the convergence of certain variations of the

Jacobi method, including one in which the rotations are not performed unless

|fe| exceeds a prescribed threshold value. Givens [2] has used the rotations

(2) in a different way to bring A in one cycle to an orthogonally congruent

triple diagonal form, and has discussed the round-off error in detail. An at-

tempt to prove the convergence of Ak to A and the analogous result for prin-

cipal values stated below, based on heuristical statistical arguments, has been

published by Kogbetliantz [7].

We shall exhibit examples which show that under either rule (III) con-

vergence in the sense of (4) cannot be guaranteed if fe is subjected solely to

the condition (II). On the other hand it will be shown that convergence in

the stronger sense of (3) does take place if the fe are subjected to the further

restriction that

(IV) fe C J (for all k = 0,1,2, ••■),

where / is some closed interval independent of k and interior to the open inter-

val (—7r/2, ir/2). It will also be shown that the conditions (II) and (IV) can

always be realized simultaneously.

Eigenvalues of hermitian matrices. If A is a hermitian matrix, and if U

is a unitary matrix such that A= UA U* is diagonal (* denotes the complex

conjugate of the transpose), then as before the main diagonal of A consists

of the eigenvalues of A in some order. It is therefore natural to ask whether

either the original or the cyclic Jacobi method can be extended to hermitian

matrices by replacing the submatrices

/   cos fe    sin fe\

V—sin fe    cosfe/

of the matrices Uk defined in §1.1 by suitably chosen 2X2 unitary matrices.

This has already been done formally by Kogbetliantz [7]. Greenstadt [4]

and Lotkin [9] have proposed other methods for the computation of the

eigenvalues of nonsymmetric matrices which use 2X2 unitary transforma-

tions. All these authors chose their unitary matrices to be of some special

type.

In contrast to this, we shall not subject the unitary matrices involved to

any condition not imposed by the problem itself. It is easy to see that any

2X2 unitary matrix can be represented in the form

(efa cos <p   e* sin d>\

— e*> sin <f>   ea cos <p)'

where a, ft, y, S, d> are real numbers with

(5) a-ft-y + 8sQ (mod 2tt).
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(Causey [l] has given an equivalent representation of 2X2 unitary matrices.)

Consequently we shall consider unitary matrices Uk = (upq) which are of the

form(2)

upp = 1 (p ?* i,j).

ua = eia cos <p, Uij = e^ sin <f>,

(6)
Ujt = — e*7 sin d>,       Ujj = e's cos <j>,

all other upq = 0,

where a, B, y, S, <p are real numbers satisfying (5) and depending on k

We shall show for Jacobi's rule (I) and for either of the cyclic orders (III)

that the sequence of matrices

A0 = A,        Ak+i = UkAkUk* (k = 0,1,2, ■■ ■)

converges to a diagonal matrix for all choices of matrices Uk of the form (6)

satisfying (II) and (IV) with respect to <p.

It will be shown that matrices Uk with these properties always exist.

Moreover, for Jacobi's rule (I)—but not for a cyclic order (III)— we

shall show that there exists a sequence of permutation matrices Pk such that

PkAkP^1 converges to a diagonal matrix for all choices of matrices Uk of

the form (6) satisfying (II) with respect to </>, and not necessarily satisfying

(IV).
Principal values of arbitrary matrices. In spite of certain attempts [4; 9; l],

there does not seem to be an obvious way of modifying Jacobi's method to

yield the eigenvalues of a nonhermitian matrix. As Kogbetliantz [7] states,

however, it is easy to extend Jacobi's method formally to yield the principal

values of an arbitrary complex matrix A. By the principal values of A we

mean the positive square roots of the eigenvalues of A A *. (These numbers are

occasionally called the singular values of .4.) The extension is based on the

following result (see [10, Corollary 41.6]): If U and V are two unitary

matrices such that 11= UAV is diagonal, then, since IIII* = UAA*U*, the

absolute values of the diagonal elements of II are the principal values of A.

For Jfe = 0, 1, 2, ■ • • let Uk he a matrix of the form (6), and let Vk = (vPQ)

be defined similarly by

vPP = 1 (p ?* i,j),

Vu = eif cos \p, vtj = e'" sin \f/,

(7)
Vji = — e'( sin ^,        %• = em cos \p,

all other vpq = 0;

here £, n, f, w, xp are real numbers depending on k, the first four of which

satisfy the condition

(2) Here and below i as a superscript to e denotes (— l)1'2, while in other contexts i is a row

or column index.
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(8) £-77-f + <o = 0 (mod 2tt).

We now consider the sequence of matrices Ak= (apq), where

Ao = A,        Ak+X = UkAkVk (k = 0, 1, 2, • • • ).

Let \Ak\ = (\a$\) denote the matrix of non-negative elements \<$\, and

not the determinant of A*.

It will be shown that the sequence {| Ak\ } converges to a diagonal matrix

whose diagonal elements are the principal values ol A, if one of the following

two procedures is adopted:

(i) Select (ik, jk) such that

,T,. I      (*)|2 |      (*),2 ,   I    <*)   ,2 |      (t),2j

(I) I ««/ I   + I an \   = max \\apq\ + \ aqp | j,

and the remaining parameters of Uk and Vk such that

,   ,. (*+D <*+o
(II) an      = aji      = 0,

and such that fe and ^* satisfy the conditions

(IV) fe C J,       *kCJ (all k = 0,1,2, ■■ ■),

where / is some closed interval independent of k and interior to the open

interval (-tt/2, ir/2).

(ii) Select (ik, jf) according to either (IIL) or (IIIC), and the remaining

parameters such that (II') and (IV) hold.

It will moreover be proved that there exists a sequence of permutation

matrices Pk such that PtlAilP^"1 converges to a diagonal matrix whose di-

agonal elements are the principal values of A, provided that (ik,jk) is selected

according to (I'), and provided that the remaining parameters of Uk and Vk

are selected to satisfy (II').

It will be demonstrated that the conditions given under (i) can always be

realized. The conditions (II') and (IV), on the other hand, cannot be realized

simultaneously in certain cases, so that convergence of the cyclic Jacobi

method for determining principal values in the above form cannot be guar-

anteed. This situation will be remedied by a device to be explained next.

Under- or overrotation. It will finally be shown that it is not necessary to

take conditions (II) and (II') too literally. All statements made above remain

valid if these conditions are replaced by the following weaker conditions:

There exists a number t (0^t<l) independent of k such that for £ = 0,1, 2, • • •

nr\ I   <4+1) I2 <- ,\   (*° I2(V) | an     |   g 11 an |

and

(\n\ I    (*+1)|2   ,    I    (*+1)|2^^|    (k) I2   ,    I    (k)\\
(V) \Oij     I   + I an     |   &t(\aij I   + {on |),
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respectively. The fact that the weaker conditions (V) and (V) are sufficient

for convergence is important for several reasons. First, it can be shown that

(in contrast to (II')) condition (V) can be realized simultaneously with

(IV) for every t > 0. Second, the necessary rounding off of numbers in a digital

computer means that conditions (II) and (II') can never be achieved exactly,

while (V) and (V) certainly can. Third, the use of a t>0 corresponds to an

under- or overrotation of the (ik, jk) coordinate plane. Its use here brings out

the analogy between rotation in the various Jacobi methods for computing

eigenvalues or principal values and relaxation in the methods of Gauss,

Seidel, and Southwell for the iterative solution of a system of linear algebraic

equations. See Ostrowski [ll] for a discussion of under- and overrelaxation

for linear systems.

1.3. Summary of the results of this paper. In the general case we are

given an arbitrary complex matrix A of order re^2 and two sequences of

unitary matrices { Uk] and } Vk} defined by (6) and (7). Consider the se-

quence of matrices Ak = (a^) defined by

Ao = A,       Ak+i = UkAkVk (k = 0, 1, 2, • • • ).

Let II be a diagonal matrix whose diagonal elements are the principal values

of A in some preassigned fixed order. If A is hermitian, let A be the diagonal

matrix whose diagonal elements are the eigenvalues of A in some preassigned

fixed order. We are interested in sufficient conditions under which the follow-

ing proposition is true:

Proposition (N). Let \Ak\ —(\a^\). There exists a sequence of permuta-

tion matrices Pk such that

P* U* | Pr1-> n (£-»°o).

If A is hermitian and Vk=U*, there exists a sequence of permutation matrices

Pk such that

PkAkPiTl-+A (£^co).

We are also interested in conditions for the following stronger proposi-

tion :(3)

Proposition (P). There exists a fixed permutation matrix P (not depending

on k) such that

P\Ak\P-1-^ll (£-+°o).

If A is hermitian and Vk= U*, there exists a fixed permutation matrix P such

that

PAkP-1^*. (£->oo).

(') We are indebted to the referee for pointing out the distinction between Propositions

(N) and (P), and for showing us the example (41) of §2.4.
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Introducing the abbreviation

(9) spq  =  \apq\   + | aqp | ,

we can state our main results as follows:

Theorem 1. (Jacobi's method generalized.) Let t be independent of k,

with 0^7<1. Then Proposition (N) is true if for all large k

rT/\ (t) (t)
(I) Sij   = max spq ,

pr't

and

rirn <t+1)  ^  , (*>(V) Sij     ^ tsij .

Theorem 2. Let J be a closed interval interior to the open interval ( — ir/2,

7r/2). //, in addition to the conditions of Theorem 1,

(IV) fe C J,      IhCJ

for all large k, then Proposition (P) is true.

Theorem 3. (The cyclic Jacobi method generalized.) Let t and J be

defined as in Theorems 1 and 2. Let the sequence of pairs (ik, jk) be defined by

one of the rules (III). Then Proposition (P) is true if (V) and (IV) hold for

all large k. Even Proposition (N) becomes false if (IV) is omitted from the

hypothesis.

The proofs of these theorems will be given in §2. We shall begin by prov-

ing Theorem 1 and a weaker form of Theorem 3, which is obtained from

Theorem 3 by replacing (P) by (N). Theorem 2 and the full statement of

Theorem 3 are then a consequence of the following Theorem 4, in which no

reference is made to any particular ordering of the pairs (ik, jf).

Theorem 4. Any choice of the matrices Uk and Vk (or, for hermitian A, of

the Uk) which implies the truth of Proposition (N) and satisfies (IV) (or, in

the case of hermitian A, (IV)), 0/50 implies the truth of Proposition (P). Proposi-

tion (P) is not necessarily true if (IV) is not satisfied.

In §3, we shall derive explicit formulas for the parameters involved in

Uk and Vk. They will enable us to discuss how the hypotheses on Uk and Vk

can be realized in the various cases mentioned in §1.2.

2. Proof of the theorems of §1

2.1. Preliminary lemmas. Following Jacobi, we take as a measure of the

closeness of the matrix |A*| (or Ak) to a diagonal matrix the non-negative

quantity
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do) s(i)=El4T.

The relation

(11) lim S<*> = 0
t—.00

is evidently necessary for Proposition (N). The plan of our proofs is as fol-

lows: We show in §2.1 that the conditions of Theorem 1 imply (11). In §2.2

we prove that the conditions of Theorem 3 imply (11). We then proceed to

show in §2.3 that (11) is in fact equivalent to Proposition (N), and this

proves Theorem 1. Theorem 4 is proved in §2.4, whence follow Theorems 2

and 3. In §2.5 we show that (IV) is necessary as well as sufficient for the

validity of Theorem 3.

In the following discussion we shall frequently write

(*) _ (*+D _    /
PQ     '       "'PQy PQ dpq'

A similar notation may be used for other quantities which depend on k.

In view of (6), premultiplication by Uk affects only the ith and jth rows

of Ak. Similarly, postmultiplication by Vk affects only the ith and jth col-

umns, and elements in these rows and columns will be called affected. All

other elements apq are thus unaffected by the transformation; i.e. we have

(12) a'pq = apq (p 9* i,j; q 9* i,j).

Furthermore, since Uk is unitary, premultiplication of Ak by Uk leaves the

sum of the squares of the absolute values of the elements in each column

invariant. Similarly, postmultiplication by Vk leaves the sum of the squares

of the absolute values of the elements in each row invariant. Using (12), we

can thus establish the following lemma:

Lemma 1. For p9*i,j,

I a'ip |   +  | a'jP |   =| aip \   + \ ajp \ ,

I a'pi |   +  | a'Pj |   =   | api |   +  | apj \ .

For brevity, we shall call the elements of the pairs (aiP, ajP) and (api, apl),

where p9^i, j, coupled during the &th transformation.

Using (12) and Lemma 1, it follows that

(13) S-S' = Sij - s'n.

If condition (V) is satisfied, we have

(14) S' £ S - (1 - l)sij.

It condition (I') holds, then sij^2Sn~1(n—1)_1. Hence
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5" ^ [1 - 2(1 - «)»_1(« - l)~l]S.

Since 0<l-q = 2(l-t)n-1(n-l)-1^l, we have

S<*> g qkC,

where C is a constant and 0^g<l. This shows that (11) is a consequence of

the hypotheses of Theorem 1.

If condition (I') is not assumed to hold, we can still conclude from (V)

and (14) that OgS'^S, and therefore that lim*,*, 5(4) exists. We shall show

that this limit is zero under the hypotheses of Theorem 3. Again from (14),

Sij^il— /)-1(5-5'). From the existence of lim Sw it follows that lim*^, sff

= 0. We call the elements a$ and ajf, where (i, j) = (ik, jk), the rotated ele-

ments of Ak, and state our conclusion in the following form:

Lemma 2. If condition (V) is satisfied, the rotated elements of Ak tend to zero

as k—> w.

We note that this statement does not depend on the order in which the

pairs (ik,jk) are selected. If Theorem 3 is not true, this can only be because

the bulk of the quantity S is pushed around in the matrix A ahead of the

rotated elements. Our next lemma shows that under condition (IV) an al-

most complete transfer of the contribution to S between two coupled ele-

ments is not possible in one transformation.

Lemma 3. Suppose that e>0, that p^i, j and that

(15) | aip\   < e,        | a'jp\   < e.

If Uk and Vk satisfy (IV), then

(16) |<4|   <Ce,        | aJp |   <C«,

where C is a constant which depends only on the interval J. Similar statements

hold if the roles of aiP and ajP are interchanged, and also for two coupled elements

iaPi, aPj).

Proof. By definition of A*+i, for p9*i, j,

aiP = e"* cos <paiP + e*" sin d>ajP,

aip = — e<T sin faip + e<s cos ^aip.

From the second of these relations we obtain, since (IV) implies that

cos <p9^0,

(17) ajp = e-<s(a'jP + e** sin fer<p)(cos tf>)_1.

Inserting this into the first relation and using (5), we get
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(18) a'ip = eia(aip + e~^ sin <j>a'ip)(cos <£)_1.

Introducing the abbreviations c = min$ej cos <p, s = max^e/ |sin <p\, we find

from (17) and (18) that

| ajp |   :g e(l + s)c~\        \ a'ip |   g «(1 + s)c~\

Hence (16) has been proved with

(19) C = (1 + s)c~\

The remaining assertions of the lemma can be proved similarly and yield

the same value of C.

2.2. Sufficiency of (V) and (IV) for (11). In this section we shall combine

the lemmas of §2.1 with the special orderings of the pairs given by the rules

(III) to obtain Lemma 4, which will be the principal tool for the proof of (11).

We introduce some terminology. For l^^<g^«we shall define the sub-

matrix Mpq as follows:

Mpq  = (aim ), where p ^ I ^ q and p 5« ^ q.

An index k will be said to be associated with a pair (p, q), written k = I(p, q),

if (ik, jk) = (p, <z)- Fix one of the rules (III). A set of indices (ki, k2, • • • , km)

will be called cocyclic, if it is contained in one of the intervals [IN, (l + l)N— 1 ],

where / = 0, 1, 2, • • • , and N = n(n — l)/2 is the number of rotations neces-

sary to make up a full cycle under the fixed rule (III). For l^p<q^n we

define

(20) Spq = 22 | atm I .

We note that

(*) (*)
(21) Op,r+l — sp,p+i

and

(22) SZ = S°*.

Lemma 4. Assume (IV) and (V) hold. Let one of the rules (III) be adopted

for the selection of (ik,jk), and let e>0 be given. Let ko be such that s$ <efor all

k>ko, and let h, r, s be three cocyclic indices associated with the pairs (p, q),

(p, q + 1), (p + 1, 2+1), respectively (l^p<q<n). Assume h>ko. Then the

inequalities

(23) Spq     <   t, Sp+l.q+l   <   e

imply

(24) S^i+i < Di,
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where D = Dq-p depends only on q—p and on the constant C of Lemma 3.

Proof. We shall give the proof for the rule (IIL); the proof for the rule

(I IL) is analogous. All indices occurring in the proof will be cocyclic with h.

We first consider the history of the off-diagonal elements of Af*' for

h^k^r. During the rotations with indices associated with (p, q), (p + 1, q),

• • • , (q— 1, q) the elements of M^ are either unaffected or rotated or

coupled among themselves. Hence, by Lemma 1, if k = I(l, q + 1),

During the rotations of the elements in the positions (1, q + 1), (2, q + 1), • • •,

(p — 1, q+1) the elements of M$ are unaffected. Therefore

(25) Spq < «,

and to prove the assertion of the lemma we have only to show that the

squared moduli of the elements which are in MVT\+X but not in M]£ are of the

order of magnitude of e. This is clear for the elements apT^+1 and aq%XiV, be-

cause we have by assumption

(26) SP!q+i < «.

After the rotation with index r the elements am,q+i (p<m^q) are less than

e1'* in modulus, by (23). They are coupled with the elements amp (p<m^q)

which belong to MPl and which by (25) are less than e1/2 in modulus before

the rotation. Thus, by Lemma 3,

(27) | am,q+i | < Ce (for all m with p <m g q),

where C is given by (19). Similarly we can prove

(28) | aq+i,m | < Ce1'2 (for all m with p < m S q).

Combining (25), (26), (27), and (28), we get

c(r)      - c(r) j.   <r>     -L    V1     (r)

m=p+l

< [2 + 2(q - p)C>\e.

Hence Lemma 4 has been proved with

(29) D = Dq-P = 2[1 + (q- p)C*].

Proof of (11). Let 8>0 be given and choose h such that h = 1(1, 2), while

s(y<(DxDi • • • Dn-i^S for all k^h. Then the hypothesis of Lemma 4 is

satisfied for q — p = l and e=(DxD2 • • • Z>n_2)-15. We use induction with

respect to q — p. Assume that for some positive integer Kn



12 G. E. FORSYTHE AND P. HENRICI [January

(fr) _J

(30) Sp.p+i < (DiDi+i ■ ■ ■ Dn-2) 5 (for all p such that 1 ^ p £ » - I),

and for all k = I(p, p+l) cocyclic with h. By Lemma 4 it then follows that

Sp,p+i+i < (Di+i ■ ■ ■ Dn-2)   0        (for all p such that l^itt- I — 1),

and for all r = I(p, p+l+T) cocyclic with h. But this is (30) with I replaced

by l+l. Since (30) is true for 1=1, it follows that S£>,<5, where s = I(l, n).

By (22) this is equivalent to SM <8. Since 5 was arbitrary, this establishes

that the hypotheses of Theorem 3 imply (11).

2.3. Proof that (11) implies (N). We shall establish the following lemma,

in which again no reference is made to any particular property of the matrices

Uk and Vk.

Lemma 5. Any choice of the matrices Uk and Vk (or, if A=A*, of Uk) which

implies that

(11) S<4>->0 (/fe->oo)

also implies Proposition (N).

We shall base our proof on relation (31), which is deducible from the

maximum-minimum property of the eigenvalues of hermitian matrices, but

which we shall prove from a theorem established by Wielandt (after its

publication by Lidskii [8]). For any nXn matrix Z=(zpq), define ||Z||

= (Zm-i \zPt\ 2)1/2- Let B, C, D be three hermitian matrices of order n with

their respective eigenvalues arranged in decreasing order as vectors 8= {Bp},

7=}7p}, 5=|5p} (p = l, ■ ■ ■ , n). Suppose B — C = D. Then it was proved

by Wielandt [13, p. 110] that there exists a matrix M with the properties

of a doubly stochastic matrix:

n n

mpq ̂  0, X mPQ ~ 2 mPQ — 1,
p=l a-l

such that

B — y = Mb.

Hence, for any p,

n n

I Bp — yp I   g "Z2 mpl \Sq\   g 2~2 mPQ max I 5« I
q=\ a-i «

= max I &q\  ^(tsl)W = \\D\\.
a \ a=i    /

The last equality is a consequence of the analogue of (1) for hermitian ma-

trices. Hence, dropping the assumption that the eigenvalues of B and C are



1960] THE CYCLIC JACOBI METHOD 13

ordered monotonically, we see that there exists a permutation {vi, • ■ ■ , vn}

of the set {l, • • • , n] such that

(31) \PP-y>,\   ^ll*-C|| (p=l,---,n).

To prove Lemma 5 in the hermitian case, we set B = (hpqaptf) and C = Ak.

Then

||C - B\\ = (5<*>)1'2.

Writing

(32) (SM)1'* = ek,

and using the fact that the eigenvalues of Ak are the same as those of A, we

find that

(33) | app - \,p(k) |   g ek (p = 1, ■ ■ ■ , n; k = 0, 1, • • • ).

The notation vp(k) indicates that the permutation vp may depend on k.

Since ek—>0, (33) establishes Lemma 5 for A=A*.

To prove the lemma in the nonhermitian case, we write

(34) Ak = Dk + Ek,

where Dk = (bpqafa)). This makes

(35) H&H  = e*.

We apply (31) with B=DkD* and C = AkA*. We have

\\C - B\\ = \\EkDk* + DkEk* + EkEk*\\ g ||£t||(2||l?i|| + ||£*||)

and, in view of (34),

HaIIsIWI + IWI.
Hence, since

||A»||=||A|| (4-1,2,-..),

\\C- B\\ ̂ ^(2II A|| +3ek).

Also, the eigenvalues of C are the squares of the principal values of A. It

follows that there exists a sequence of permutations

vp(k) (p= 1,- ■ • ,n;k= 1,2,- ■ ■)

such that

(36) ||4T-4c*>l   S*(2||il||+3*).
Since e*—>0, (36) establishes Proposition (N).

At this stage we have proved Theorem 1 and also a weakened form of

Theorem 3, obtained from Theorem 3 by substituting (N) for (P).



14 G. E. FORSYTHE AND P. HENRICI [January

2.4. Proof of Theorem 4. We now prove Theorem 4, starting with the case

A =A *. If the eigenvalues of A are all identical, there is nothing left to prove.

If not, set
d = min | X„ — X« | ,

and define e* by (32). Let ko be such that e*<d/2 for all k>ko. Then for

k>ko every diagonal element a® of Ak is by (33) closest to exactly one num-

ber of the set {X,}. We call this number the eigennumber affiliated with a*.

(The term eigennumber serves to emphasize that we no longer distinguish

between identical eigenvalues.)

The proof of Theorem 4 for A =A* will be complete if we establish the

following lemma:

Lemma 6. No diagonal element of Ak can change its affiliation if k is suffi-

ciently large.

Proof. Since the set {«*„(&)} is a permutation of the set {l, •••,»} for

each k, if any one element changes its affiliation, at least one other element

must do likewise. On the other hand, an element can change its affiliation

at any particular step only if it is affected at that step. Since exactly two

diagonal elements are affected at each step, it follows that a change of

affiliation can take only the form of an exchange of affiliation between two

elements affiliated with two different eigennumbers. Again omitting the index

k, we let an and a# be two such elements, and let them be affiliated with the

eigennumbers ju and v, respectively. By (33)

(37) \ou- ajj\   ^ \u-v\ + 2e*.

By (6), the element a,-,- transforms according to

an = ai( cos2 <p + ajj sin2 <p + Re [aye**0-^] sin 2<j>.

Hence

(38) an — an = (an — aj,) sin2 <p — Re [aye*("~")] sin 2<p.

Using the facts that, in view of (IV), sin2 <f>^s2<l, where s is independent

of k, and that \a{j\ ^ek, we get, using (38),

(39) | an -a'n\   :g 52( | u - v\   + 2ek) + e*.

If a'ti were affiliated with v, it would have to satisfy

| an — v |   ^ ft+i.

This would imply

(40) | a'n — an \   ^  | n — v \ — e* — et+i.
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For k sufficiently large, this inequality is incompatible with (39). Hence a,<

cannot change its affiliation. Lemma 6 and Theorem 4 for A=A* are thus

proved.

To prove Theorem 4 in the general case, let Ck = AkA*, as in §2.3. We

have

Ck+i - UkAkVkVk*Ak*Uk* = UkAkAk*Uk* = UkCkUk*.

The sequence of matrices {Ck} can thus be thought of as generated by a

Jacobi process for the hermitian matrix Co = AA * and defined by the sequence

of matrices Uk. Since the sequence {^4*} satisfies Proposition (N), the se-

quence {Ck} satisfies the hermitian property (N). The angles <pk of Uk

satisfy (IV) and hence (IV). The sequence {Ck\ is thus generated by a her-

mitian Jacobi process satisfying (N) and (IV). By the statement of Theorem

4 for hermitian matrices, which has been proved above, {Ck} converges to

a diagonal matrix. The diagonal elements of this matrix are the squares of

the principal values of A in some order. Thus

Cpp = L, I »*« I ~* T',     (* -»°° ; P = i, ■ • ■,«),
i-i

where {vp} is some fixed permutation of {l, • • • , w}. But

V»      I   (t) I2 <r *
Z,      \apq |   ^ e*.

q—Vqr'p

Hence

I aPP I -* T»p (* -»°°; £ = i, • • •, »).

This completes the proof of the first sentence of Theorem 4.

To prove that (IV) is necessary for the validity of Theorem 4, let

'-G -D-
and choose

<t>k = x/2 (k = 0,l,---).

Then

^ = ("o     l) (* - 1, 3, S, • • •),

while Ak = A0 (fe = 2, 4, • • • )•

The following example (4) shows that it is impossible to replace the inter-

(*) See footnote 3.
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val J in condition (IV) even by the open interval ( — tr/2, w/2). Yet \ek} be

a sequence of positive angles which converge to zero monotonically, with

e0<ir/2. Put

/    cos e0    — sin e0\
Ao=[      . I

\—sm e0    —coseo/

and choose

/    cosfe      sinfe\

\—sin fe      cosfe/'

where fe = (— l)k(ir — ek — ek+x)/2. It is easily verified that

(41) Ak=({-1)kC°Stk ~Sine*Y

\    -sine*   (-1)*+1C0S€*/

Obviously, the sequence [Ak] satisfies (11), and the angles fe all lie in

(—7r/2,7r/2). Yet the sequence [Ak] does not converge to a diagonal matrix.

This completes the proof of Theorem 4. As we remarked above, out of

Theorem 4 now follows the truth of Theorem 2 and of the sufficiency part of

Theorem 3.

2.5. Necessity of condition (IV) for Theorem 3. To prove that condition

(IV) is necessary for the convergence of the cyclic Jacobi method even in

the weaker sense of Proposition (N), we shall exhibit a real symmetric matrix

for which (11) fails to hold, if the angles fe are only subjected to (II). Obvi-

ously the order of such a matrix must be at least 3. We shall achieve diver-

gence by constructing a matrix for which a$ = 0 lor all k and by then select-

ing fe = 7r/2. This interchanges the two affected elements in the main di-

agonal and does not destroy the zero in the (i, j)-position. If the ordering

(Illr) is adopted, a matrix with the desired features is given by

2    0    1

(42) A = A0 =   0   3    0 .

.1    0   4.

It is easily verified that

3      0     0] [4-1      0] [4     0      1'

Ax =   0     2 -1  , Ai =    -12     0, A3=   030,

.0 -1      4j [00     3] ll      0     2.
'3     0     0] [    2 -1     0] [2     0     1

A4 =   0      4 -1   , At =    -1      4      0  , Ao =   0      3      0  •

.0 -1      2] [00     3] ll      0     4.
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Thus At = Ao and hence Ak+t=Ak lor all k, so that the sequence \Ak\ can

never converge to a diagonal matrix.

Remark. From the point of view of numerical computation it might seem

unfair to perform a nonzero rotation when the element to be annihilated is

already zero. Actually, we have also constructed examples of matrices where

the cyclic Jacobi method fails even if fe is selected such that (II) holds and

0^fe<7r/2. This will be the case for any matrix of the form

a       « 1

Ao =   e    a + c 0       ,

.1        0        a + 2c.

where a is arbitrary, c>0 is sufficiently large and e (>0) is sufficiently small.

(We have proved that (11) fails for c^4 and e^ 1.) This example also shows

that it is not possible to replace the interval / in condition (IV) by the open

interval (—jr/2, x/2).

3. Realization of the conditions of Theorems 1 to 4

In this section we shall justify the statements made in §1.2 concerning

the existence of unitary matrices  Uk and  Vk satisfying the conditions of

Theorems 1, 2, 3, and 4, both for an arbitrary complex matrix A and for

A=A* (in the latter case we assume Vk= Z7*). Throughout this section we

put

(*) / (t+i)
apq — apq,       apq     apq

and omit the subscript k on the parameters a, ft, y, S, <p, and £, v, f, w, d>.

We shall also write

(*pq  ~~   *pqy        y

where rpq and 6pq are real and rP8§0.

3.1. Eigenvalues of hermitian matrices. We assume that A=A* and

Vt = U* lor all k. The latter condition implies

{ m — a,        v = — y,        f s — P,        a = — S

and

*= -fe
where all congruences are taken modulo 2x.

Theorem 5. Let A=A* and A*+i= UkA [/*. In order that condition (II) be

satisfied it is necessary and sufficient that the parameters of Uk satisfy the follow-

ing relations :(6)

(5) Condition (43) should be disregarded when fjy=0. Condition (44) and all subsequent

tangent equations should be disregarded when they take the form tan « = 0/0.
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(43) B - a = da (mod tt),

(44) tan 2<p = + 2ry(ay - a,-,)-1.

The upper or lower sign is to be chosen according to whether B — a differs from

Oij by an even or an odd multiple of w, respectively.

Proof. Direct computation yields, if Uk is any matrix of the form (6),

a'a = a'n = cos <p sin <£(e«"-S)ay - e^^^an) + cos2 <^e*(a-*)ay — sinVe^-^a/,-.

Hence, using (5),

e*(«-^>ay = sin 2<£(ay> - aix)/2 + cos2 tf>e*<a-«ay - sin2</>e-*<a-«ay
(45) r r

= sin 2<p(ajj - a,-,)/2 + Re [e*<a-<i>ay] cos 2<p + i Im [e^-^'ay].

If (II) is satisfied, the expression on the right side of the last equation is

zero. Putting its real and imaginary parts equal to zero yields the necessity

of (43) and (44). Their sufficiency is obvious from (45).

If A is a real symmetric matrix, an obvious solution of (43) is a = B = y = S

= 0. It follows that in this case Uk may be taken to be a real orthogonal

matrix. Equation (44) then takes the form given by Jacobi,

(46) tan 2<p = 2ay(aj,- — a#)-1.

Returning to hermitian A, we note that, since the function tan 2<p takes

on all real values in each closed interval of length 7r/2, <p can be selected to

satisfy (IV), provided the length of J is at least ir/2. It follows that for a

hermitian matrix A conditions (IV) and (V) can always be realized with t = 0.

By the above it is trivial that for A =A* conditions (IV) and (V) can be

realized for every t>0. Conversely, we shall now show that even if (44) is

not completely satisfied (V) may still hold with some t<l.

We assume that (43) holds and define p by

(47) tan 2p = ± 2ry(a« - an)-1, -v/4 ^ p ^ v/1,

with the sign conv«ntion of Theorem 5. We then have

Theorem 6. Let A=A* and Vk= Ut- If (43) holds and if

(48) <p = (1 - P)p,

where —Kp<l, then condition (V) is satisfied with

t = sia2 (pir/2).

Proof. We shall make use of the following two facts, both of which are

easily verified:
(i) If -Kp<l and
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iix) -i* {X = 0)'
Isin px/sin x (0 < | x|   £> x/2),

then

(49) max  | g(x) |  = | sin f>/2) | .
1*1 £*/*

(ii) If a, b are real, and

tan 0 = b/a,

then

(50) (a1 + b*) sin2 <j> = J2.

Turning to the proof of Theorem 6, we find from (43), (45), and (47) that

I a'n |   = [(an - ai() /4 + fy] sin  (2<f> - 2p).

Then by (49) and (50)

I a'n |   = [(ajj - an) /4 + r<y] sin  2pP

g sin  (pr/2) [(a}i — an) /4 + ri}] sin  2p

= sin  (pir/2)fij.

This completes the proof of Theorem 6.

3.2. Principal values of arbitrary complex matrices. We shall now formu-

late and prove two theorems which are analogous to those of §3.1 when A is

an arbitrary complex matrix and Uk and Vk are not related. It is convenient

to perform some preliminary computations before stating the analogue of

Theorem 6.

If Uk and Vk are arbitrary matrices of the forms (6) and (7), we find for

the rotated elements of Ak+i the following expressions:

an = e«'(<»+{> cos <f> cos ipan — eiia+n cos # sin $ati

+ e*tf+f) sin d> cos fan — ei(fi+t) sin <p sin fan;

a(j = £*<<"+'> cos <f> sin fejjj + e<(a+") cos <p cos fan

+ e«w+'> sin 0 sin fajt + ei(ff+"> sin <j> cos fan;

an — — e*<Tfl) sin <j> cos ^<ijj + e'(l,+r> sin 0 sin ^a,y

+ eii>+i) cos 0 cos ^a;< — e'W cos 0 sin fan;

flyy = — e'(rH,) sin 0 sin ^fl<< _ c<(y+») sjn ^ cos fejf)

+ e"'4"'' cos 0 sin fan + eHS+u) cos 0 cos fan.

Multiplying the third equation by e<\ where X is a real number to be
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determined later, and adding it to the second equation, we obtain

oy + e^a'n = a«(e*(a+,|) cos <f> sin ^ — e*(rl"£+X) sin <j> cos $)

+ ay(e*(a+B) cos <t> cos ^ + e*(?+r+x> sin <£ sin ^)

+ aii(e*w+') sin <£ sin \p + e*(5+{+x) cos <f> cos \p)

+ ajj(ei^+a) sin <f> cos ^ — e*(5+f+X) cos <£ sin ^).

We now select X=a—7—£+17. Since

(52) a-/3-7 + o' = £-57-f + a> = 0 (mod 2ir),

our choice of X implies that

X = 0-5-f + w (mod 2x).

It follows that (51) can be written in the form

(53) a'n + ea'jt = C sin (<p — >p) + D cos (<p — ip),

where I e| = 1 and

C = ayye*<*+»> - oue«'+i\
(54)

D = aye*(a+") + ay,e*W-"'.

Similarly, we obtain

(55) a'ij - ta'ji = E sin (<p + f) + P cos (0 + f),

where

£ = ay,-e«*+»> + a«e«"+»>,
(56)

F = aye""*") - anew*.

Using the abbreviations

©Ap  —  Oip  —  6jp, 0j,A   =  6Pi ~  8pj,

Rrp = fipfjp, Rp* = TpiTpi (p = i,j),

we now can state the following result:

Theorem 5'. In order that the unitary matrices Uk and Vk satisfy condition

(II'), it is necessary and sufficient that their parameters obey the following rela-

tions:

Rii sin @a< + Rtj sin ©Ay
tan (a — B) =-——;

RTi COS ©Ai + Pr; COS ©Ay

P<x sin @,a + Rjt sin @yi
tan (tj — 01) =-,

P,r COS @,A + P » COS @yA
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(58) tan (d> - p) = - D/C, tan (d> + P) = - F/E,

where C, D, E, F are defined in (54) and (56).

Proof. We assume that condition (II') is satisfied. Then the left sides of

(53) and (55) are zero. The condition that the numbers sin (<f>±p) and

cos (<p + p) be real is then equivalent to the condition that CD and EF be

real. Expressing the fact that Im (CD±EF) =0, we readily obtain the equa-

tions (57). Conversely, if conditions (57) are met, CD and EF are real num-

bers. If (IF) holds, then the equations (53) and (55) imply (58). Conversely,

if (58) holds, then a'i} and a'jt are zero. This completes the proof of Theorem 5'.

If the matrix A is real, an obvious solution of (57) is a=ft = r)=co = 0. We

then may also take 7 = 5=£ = f = 0. It follows that in this case Uk and Vk

may be assumed to be real orthogonal matrices. The equations (58) then take

the form

tan (d> - p) = (an + <*y)/(a« - a„),

tan (4> + p) = (an — ai])/(au + a;i).

When A is real and symmetric, we may take Vk = 77*, so that <p = —p. Note

that the first condition (59) then reduces to (46).

Returning to the general case, we shall now show that the conditions

(II') and (IV) cannot always be realized simultaneously. By (58) the values

of <p + p are determined modulo x. Let

d> — p = X + W) <t> + P = K + Wi

where m and n are integers to be chosen suitably. It follows that

<t> = (k + x)/2 + im + n)ir/2,

P = (« - x)/2 + im- n)ir/2.

We can select k = m + n such that <j>CJ- There are values of k+X f°r which

there is only one possible choice of k. It follows that

p = (k — x)/2 + £x/2 — mr.

Without changing k+x, we can adjust k — x so that there is no n for which

PCJ.
The next theorem implies the fact that for any t>0 the conditions (IV)

and (V) can be realized simultaneously.

We define a and r by

tan t = - D/C,       tan a = - F/E,
(60) ' '

-x/2 gr^ x/2, -x/2 ^ a- g x/2.

Theorem 6'. If (47) holds and if
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(61) 4, = (1 - p)(* + r)/2,        * - (1 - p)(* - r)/2,

where —Kp<l, then condition (V) holds with

(62) / = sin2 (Pt/2).

Proof. From (53) and (55) we have, using the fact that CD and EF are

real,

s'ii =  I <4|2+ | a'ji\2

= { | a'ij + ta'ji\2 + [ da - «*y,-|2}/2

= {(|C|2+  |Z>|2)sinVr+ (|P|2+  |F|2)sin2/xr}/2.

As in the proof of Theorem 6 we find that

(| C|2 + | Z>]2) sin2 pT g sin2 (p-ir/2) \ D\\

(| E |2 + | P |2) sin 2 po- g sin2 (pir/2) | P |2.

It follows that

s[j ^ sin2 (^r/2)(| Z>|2 +  | P|2)/2 = sin2 (^r/2)*y,

proving the theorem.

For 0<p<l, <p and \p as given by (61) are the arithmetic means of the

number pairs (1 —p)a, (1 —p)r, and (1 —p)o-, — (1 —p)r, respectively, both of

which are contained in the interval /= [— (1— p)ir/2, (1—^)ir/2]. This

interval meets the requirements of condition (IV). Since for every tE(0, 1)

there exists a pE(0, 1) such that (62) holds, it follows that the conditions

CIV) and (V) can be realized simultaneously for every tE(0, 1).

Professor M. R. Hestenes has remarked to us that for an arbitrary com-

plex matrix A it is possible to choose the parameters of the Uk and the Vk so

that the limit matrix II of §1.2 has only non-negative elements in its prin-

cipal diagonal^—i.e., the principal values of A in some order. With such

choices the matrices \Ak\ of Proposition (P) can be replaced by Ak, and we

can assert that

P^*P-1^n (&->°o).

To prove Professor Hestenes' remark, refer to the formulas for a'u and

ai at the start of §3.2. Observe that a'ti and a'a can be made non-negative by

changing a, 8, y, 8 to a +/*, B+fi,y + v,S + v, respectively, for some real numbers

/i, v. Since these changes do not alter conditions (5), (57), (58), (60), (61),

they have no effect on <f>, \J/, X, nor on (II'), (IV), (V). Thus Theorem 3 con-

tinues to hold. But, since after the first cycle all a«' remain non-negative, the

limit matrix II is non-negative.

4. Open questions

One obvious problem which arises in connection with the results of the

present paper is to find the rate of convergence of the cyclic Jacobi method.
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For the generalized Jacobi method described in Theorem 1 the rate of con-

vergence is easily bounded by use of (14). Other questions are suggested by

the strong resemblance which several aspects of the Jacobi method bear to

relaxation methods for solving systems of linear equations. Ostrowski's work

[ll] on relaxation methods suggests, among others, the following question.

Does the convergence of the Jacobi method under the conditions (II) (or

(V)) and (IV) persist if (III) is replaced by any cyclic order of the couples

(i,j) in which all couples actually occur? How about an order which is subject

only to the condition that each couple (i, j) occurs infinitely often in the

sequence (ik, jk) ? Young's work [14] on the successive overrelaxation method

raises the question whether the convergence of the cyclic Jacobi method can

be improved, at least for certain matrices A, by systematic use of over- or

underrelaxation (p<0 or p>0 in Theorem 6).
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